首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
综合类   2篇
园艺   1篇
  2019年   1篇
  2011年   1篇
  2002年   1篇
排序方式: 共有3条查询结果,搜索用时 93 毫秒
1
1.
Context

Urbanization can affect the density of hosts, altering patterns of infection risk in wildlife. Most studies examining associations between urbanization and host-parasite interactions have focused on vertebrate wildlife that carry zoonotic pathogens, and less is known about responses of other host taxa, including insects.

Objectives

Here we ask whether urban development predicts infection by a protozoan, Ophyrocystis elektroscirrha, in three populations of monarchs (Danaus plexippus): migratory monarchs in northeastern U.S., non-migratory monarchs in southeastern coastal U.S., and non-migratory monarchs in Hawaii.

Methods

We used impervious surface and developed land cover classes from the National Land Cover Database to derive proportional measures of urban development and an index of land cover aggregation at two spatial scales. Parasite data were from previous field sampling (Hawaii) and a citizen science project focused on monarch infection in North America.

Results

Proportional measures of urban development predicted greater infection prevalence for non-migratory monarchs sampled in the southern coastal U.S. and Hawaii, but not in the northern U.S. Aggregations of low intensity development, dominated by single-family housing, predicted greater infection prevalence in monarchs from the northern and southern coastal U.S. populations, but predicted lower infection prevalence in Hawaii.

Conclusions

Because natural habitats have been reduced by land-use change, plantings for monarchs in residential areas and urban gardens has become popular among the public. Mechanisms that underlie higher infection prevalence in urban landscapes remain unknown. Further monitoring and experimental studies are needed to inform strategies for habitat management to lower infection risk for monarchs.

  相似文献   
2.
Climate warming and disease risks for terrestrial and marine biota   总被引:1,自引:0,他引:1  
Infectious diseases can cause rapid population declines or species extinctions. Many pathogens of terrestrial and marine taxa are sensitive to temperature, rainfall, and humidity, creating synergisms that could affect biodiversity. Climate warming can increase pathogen development and survival rates, disease transmission, and host susceptibility. Although most host-parasite systems are predicted to experience more frequent or severe disease impacts with warming, a subset of pathogens might decline with warming, releasing hosts from disease. Recently, changes in El Ni?o-Southern Oscillation events have had a detectable influence on marine and terrestrial pathogens, including coral diseases, oyster pathogens, crop pathogens, Rift Valley fever, and human cholera. To improve our ability to predict epidemics in wild populations, it will be necessary to separate the independent and interactive effects of multiple climate drivers on disease impact.  相似文献   
3.
Animal migrations are often spectacular, and migratory species harbor zoonotic pathogens of importance to humans. Animal migrations are expected to enhance the global spread of pathogens and facilitate cross-species transmission. This does happen, but new research has also shown that migration allows hosts to escape from infected habitats, reduces disease levels when infected animals do not migrate successfully, and may lead to the evolution of less-virulent pathogens. Migratory demands can also reduce immune function, with consequences for host susceptibility and mortality. Studies of pathogen dynamics in migratory species and how these will respond to global change are urgently needed to predict future disease risks for wildlife and humans alike.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号