首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
园艺   1篇
  2019年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
Context

Animal population dynamics are shaped by their movement decisions in response to spatial and temporal resource availability across landscapes. The sporadic availability and diversity of resources can create highly dynamic systems. This is especially true in agro-ecological landscapes where the dynamic interplay of insect movement and heterogeneous landscapes hampers prediction of their spatio-temporal dynamics and population size.

Objectives

We therefore systematically looked at population-level consequences of different movement strategies in temporally-dynamic resource landscapes for an insect species whose movement strategy is slightly understood: the Queensland Fruit Fly (Bactrocera tryoni)

Methods

We developed a spatially-explicit model to predict changes in population dynamics and sizes in response to varying resources across a landscape. We simulated the temporal dynamics of fruit trees as the main resource using empirical fruiting dates. Movement strategies were derived from general principles and varied in directedness of movement and movement trigger.

Results

We showed that temporal continuity in resource availability was the main contributing factor for large and persistent populations. This explicitly included presence of continuous low-density resources such as fruit trees in urban areas. Analysing trapping data from SE Australia supported this finding. We also found strong effects of movement strategies, with directed movement supporting higher population densities.

Conclusions

These results give insight into structuring processes of spatial population dynamics of Queensland Fruit Fly in realistic and complex food production landscapes, but can also be extended to other systems. Such mechanistic understanding will help to improve forecasting of spatio-temporal hotspots and bottlenecks and will, in the end, enable more targeted population management.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号