首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
  1篇
水产渔业   1篇
植物保护   1篇
  2020年   1篇
  2016年   1篇
  2009年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Abstract

A study was carried out in sandy clay loam textured soil of Mymensingh, Bangladesh to evaluate weed control efficiency of pre-emergence herbicide pyrazosulfuron-ethyl either alone or in sequential application with post-emergence herbicide in transplanted rainy season rice under non-puddled strip-tilled (NPST) field condition and also to examine the residual effect of those herbicides on germination and growth of the subsequently grown wheat crop. Five treatment combinations of pyrazosulfuron-ethyl were tested against one weedy check and one weed-free check. The study revealed that NPST rice field was mostly infested by grass and sedge weeds and herbicide treatments offered a wide range of control (above 50% to 95%) on all types of weeds. Application of pyrazosulfuron-ethyl followed by (fb) orthosulfamuron fb butachlor plus propanil provided the most effective and economic weed control over two years of the study. Moreover, micro-plot bioassay study claimed germination and growth of subsequently grown wheat were not adversely affected by herbicides that were applied in rice. Therefore, application of pyrazosulfuron-ethyl followed by post-emergence herbicide could be effective and economic to control weeds in NPST rice under rice-wheat system, but proper rate and time of application should strictly be followed.  相似文献   
2.
3.
Manganese (Mn) deficiency is reported worldwide and often decreases crop yield. However, plant species differ in their susceptibility to Mn deficiency. Poaceae are often inefficient, whereas Brassicaceae seem to be efficient in Mn uptake. The objective of this paper was to determine the relevance of Mn‐uptake kinetics, root‐system size, and Mn mobilization for differences in Mn efficiency of wheat, oat, and raya. To determine Mn‐uptake kinetics, wheat (Triticum aestivum L. cv. PBW 343), raya (Brassica juncea L. cv. RLM 619), and oat (Avena sativa L. cv. Aragon) were grown in a growth chamber together in complete nutrient solution having an average Mn concentration of 90, 180, 360, 910, and 2270 nmol L–1. For determining Mn efficiency of the three species in soil, the plants were grown for 22 d in pots filled with 3 kg of a loamy soil low in Mn availability (pH (CaCl2) 7.4; DTPA‐extractable Mn: 3.5 mg (kg soil)–1). The soil was fertilized with 0, 1, 2, 4, and 8 mmol Mn (kg soil)–1 resulting in Mn soil‐solution concentrations ranging from 40 to 90 nmol L–1, hence lower than in the solution experiment. In order to determine Mn soil‐solution concentration close to the root surface, the root length density was increased by growing two plants of raya and four plants of wheat in only 250 mL soil columns for 25 d. In solution culture at high concentrations, raya showed a higher Mn uptake compared to wheat and oat. However, at low Mn supply, all three species were comparably Mn‐efficient, i.e., plant growth was similar, and also the uptake was similar. In soil, the highest yield was achieved for raya in the unfertilized treatment whereas the Poaceae needed at least a fertilization of 1 mmol Mn (kg soil)–1. The Poaceae showed a yield reduction of about 40% in the unfertilized treatment. Manganese concentration in the shoot dry weight was always higher in raya than in wheat or oat. This was due to a higher Mn uptake whereas relative shoot‐growth rate and root‐to‐shoot ratio were similar among the species. The higher Mn uptake of raya in soil was in contradiction to the comparable Mn‐uptake kinetics of the three crops at low Mn concentration in solution. This points to plant differences in their ability to affect Mn availability in the rhizosphere. In the bulk soil, all the crops decreased Mn solution concentration, but this effect was somewhat less for raya. But in the rhizosphere, raya increased Mn soil‐solution concentration significantly to 58 nmol L–1, as compared to 37 nmol L–1 of the unplanted control soil. In contrast, wheat showed a Mn solution concentration of 25 nmol L–1 which was not significantly different from the control. The results indicate that differences in Mn efficiency among the crops studied are related to their ability to affect the solubility of Mn in the rhizosphere.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号