首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   8篇
农学   1篇
综合类   3篇
园艺   1篇
植物保护   23篇
  2021年   3篇
  2019年   2篇
  2017年   3篇
  2015年   4篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2000年   2篇
排序方式: 共有28条查询结果,搜索用时 109 毫秒
1.
Between 1998 and 2009, the four tomato‐infecting begomovirus species detected in Taiwan were Ageratum yellow vein Hualien virus (AYVHuV), Tomato leaf curl Taiwan virus (ToLCTWV), Tomato yellow leaf curl Thailand virus (TYLCTHV) and a newly defined species Tomato leaf curl Hsinchu virus (ToLCHsV). AYVHuV was detected occasionally in 2003 and ToLCHsV only in 2000–2001, whilst ToLCTWV was detected throughout the period. TYLCTHV was first detected in 2005. Between 1998 and 2005, >99% of the begomovirus‐positive samples were infected with ToLCTWV. In 2007 in western Taiwan, 16% of the positive samples were infected with ToLCTWV, 35% with TYLCTHV and 49% with mixed infection (ToLCTWV/TYLCTHV). In contrast, in eastern Taiwan the proportions were 84% ToLCTWV, 2% TYLCTHV and 14% mixed infection. However, throughout Taiwan in 2008–2009, most positive samples were either identified as TYLCTHV (51%) or mixed infection (ToLCTWV/TYLCTHV; 41%), and only 8% were ToLCTWV. This shows a clear trend of shifting from ToLCTWV to TYLCTHV and mixed infection over a short time period in Taiwan. Sequence analyses indicated that tomato‐infecting AYVHuV, an apparent recombinant between ToLCTWV and AYVHuV from Ageratum, represents a new strain Hsinchu. TYLCTHV Taiwan isolates were highly similar to each other, whereas ToLCTWV isolates had greater diversity and were classified into three strains which had one country‐wide and two local distributions. ToLCTWV and TYLCTHV were confirmed as monopartite and bipartite begomoviruses, respectively, by agroinfection followed by transmission with Bemisia tabaci biotype B. In addition, TYLCTHV was found to be mechanically transmissible together with viral DNA‐B.  相似文献   
2.
Bemisia tabaci is a cryptic species complex, causing significant loss on many agriculturally important crops worldwide. Knowledge on species composition and diversity within B. tabaci complex is critical for evolving sustainable pest management strategies. Here we investigate the whitefly species complex in soybean in major soybean growing states of India. The mitochondrial cytochrome oxidase gene subunit-1(mt COI) based phylogenetic relationships established using Bayesian methods indicated the existence of three cryptic species namely AsiaⅠ, AsiaⅡ1, and AsiaⅡ7. All the haplotypes detected in the study could be assigned to these three cryptic species following the species demarcation criteria of 3.5% divergence threshold. Of these, AsiaⅡ1 was found to be predominant with wide spread distribution across the surveyed regions from cool temperate zones to hot and humid tropical plains. On the contrary, cryptic species AsiaⅡ7 showed localized distribution. The AsiaⅡ1 exhibited the highest haplotype diversity and AsiaⅠ showed high level of nucleotide diversity. There was a significantly high genetic differentiation among these three cryptic species. The MEAM 1, a dreadful invasive species was not detected in the specimens tested in the current study. The diversity and distribution of three cryptic species is discussed in the light of current knowledge on distribution of whitefly species in India and yellow mosaic disease observed during sampling survey.  相似文献   
3.
Yellow vein mosaic disease (YVMD) caused by whitefly‐transmitted begomoviruses is an economically significant viral disease of okra. In this study, a survey of begomoviruses associated with YVMD was carried out in eight states and two union territories of India. A total of 92 full‐length DNA‐A components were sequenced and characterized. Sequence comparisons and population structure analysis revealed the existence of four begomovirus species. Two novel species were detected with several recombinationally derived genome fragments that probably originated from begomoviruses known to infect malvaceous and non‐malvaceous hosts. Among the four species, Bhendi yellow vein Maharastra virus (BYVMaV) and Bhendi yellow vein Madurai virus (BYVMV) were found to be predominant in okra, with BYVMV having a pan‐India distribution. There was evidence for a high degree of genetic variability and subpopulation structure within these four species. Neutrality tests suggested the occurrence of purifying selection acting upon these populations. The results of the current study have uncovered the diversity and genetic structure of okra‐infecting begomoviruses in India and generated potentially useful information for developing management strategies for YVMD.  相似文献   
4.
Research carried out to assess the impact of open-pollinated Tomato leaf curl virus (ToLCV)-resistant tomatoes and hybrids on the livelihoods of resource-poor farmers in Southern India is described and discussed. Three high-yielding ToLCV-resistant tomato varieties were developed initially using conventional breeding and screening techniques involving inoculation by ToLCV-viruliferous whitefly, Bemisia tabaci. In 2003 and 2004, respectively, these varieties were released officially by the Karnataka State Seed Committee and the Indian Ministry of Agriculture through notification in the Gazette of India. From 2003 to 2005, eleven seed companies bought breeder seed of the ToLCV-resistant varieties and used them to begin breeding F1 hybrids from them. Socio-economic studies carried out to assess the benefits obtained from growing the ToLCV-resistant varieties found that farmers could gain up to 10 times the profit by growing the ToLCV-resistant varieties compared to the pre-existing ToLCV-susceptible varieties. Adoption of ToLCV-resistant tomatoes was also associated with reduced pesticide use. Extra income from tomato sales was prioritised by farmers to pay for children's education, better nutrition and medicines. In a joint effort with the commercial seed sector in India, a promotional field day was organised in 2007. As well as the three ToLCV-resistant varieties, 62 ToLCV-resistant hybrid tomatoes were exhibited during a farmer-field day by 17 commercial seed companies and several public institutes. Tomatoes with ToLCV-resistance are now grown widely in South India and seeds of the three open-pollinated varieties have been distributed to more than 12 countries. In 2007, a conservative estimate of the financial-benefit to cost of the research ratio was already more than 837:1.  相似文献   
5.
Molecular and biological characterization of the begomovirus isolate BR:LNS2:Pas:01, obtained from yellow passionfruit plants in Livramento de Nossa Senhora, Bahia state, Brazil, was carried out. Sequence analysis demonstrated that the BR:LNS2:Pas:01 DNA‐A had highest nucleotide sequence identity with Tomato chlorotic mottle virus (77%) and had five ORFs corresponding to the genes cp, rep, trap, ren and ac4. The DNA‐B had highest nucleotide sequence identity with Tomato yellow spot virus (74%) and two ORFs corresponding to the genes mp and nsp. These identity values indicate that this isolate represents a new begomovirus species, for which the name Passionfruit severe leaf distortion virus (PSLDV), is proposed. Phylogenetic analysis clustered the PSLDV DNA‐A and ‐B in a monophyletic branch with Brazilian tomato‐infecting begomoviruses. The isolate’s host range was restricted to species from the Passifloraceae and Solanaceae. PSLDV‐[BR:LNS2:Pas:01] was capable of forming pseudorecombinants with tomato‐infecting begomoviruses, reinforcing its close relationship with these viruses and suggesting a possible common origin. However, the virus was not capable of infecting tomato.  相似文献   
6.
India is one of the world’s largest producers of papaya. Viruses, mainly begomoviruses and potyviruses, cause a significant loss in papaya production. The study described here has identified a new species of begomovirus and a new species of betasatellite infecting Carica papaya in India. The sequences of the begomovirus and betasatellite show 90.03% nucleotide sequence identity to an isolate of Radish leaf curl virus and 92.25% identity to an isolate of Tomato leaf curl betasatellite, respectively. Maximum likelihood phylogenetic tree of begomovirus sequence of isolate DP2 (KX353622) showed distant relationships with previously characterised begomoviruses. Recombination analysis proposed six recombination breakpoints in begomovirus genome with other geographical begomovirus isolates.  相似文献   
7.
Bemisia tabaci is important in agriculture worldwide, mainly because it is a vector of numerous plant viruses, probably the most important of which are members of the genus Begomovirus. Dozens of begomoviruses have been reported to infect tomato plants in Brazil, although tomato severe rugose virus (ToSRV) predominates in tomato crops. ToSRV, found so far only in Brazil, is efficiently transmitted by B. tabaci MEAM1. However, no studies have assessed the occurrence of vertical and horizontal transmission of the virus in the insect, which may have epidemiological consequences affecting disease management. This study evaluated the possibility of transmission of ToSRV between whiteflies during copulation and transovarial transmission from viruliferous females of B. tabaci MEAM1 to their progeny. Transmission of ToSRV did not occur during mating between males and females of B. tabaci MEAM1. Aviruliferous males and females confined with viruliferous insects of the opposite sex were also unable to transmit the virus to tomato plants. ToSRV was detected, by PCR, in the ovaries of viruliferous females of B. tabaci MEAM1 but not in eggs, nymphs, or adults of the progeny of viruliferous females. Adult progeny of viruliferous females also did not transmit ToSRV to tomato plants. Together, the results indicate that vertical and horizontal transmission of ToSRV by B. tabaci MEAM1 is unlikely. Sustainable management of the tomato golden mosaic disease caused by ToSRV should continue to focus on using resistant varieties, managing sources of inoculum around tomato fields, and rational chemical control of the vector.  相似文献   
8.
9.
Breeding resistance to whitefly‐transmitted begomoviruses is an important goal of tomato breeding programmes worldwide. So far, resistance to begomoviruses in tomato has been achieved using wild species, and at least five resistance genes (Ty genes) have been studied. The present study was undertaken to combine Ty‐2 and Ty‐3 and to determine the effect of pyramiding on infection of tomato by three diverse begomovirus species. The diagnostic ability of the markers linked to Ty genes was assessed and marker‐assisted selection was used to develop pyramided tomato lines from the crosses between Ty stocks. Five stable pyramided tomato lines that differ in fruit morphology and yield potential were developed. The horticultural performance of pyramided lines in field trials showed that the yield and horticultural traits are well maintained in the plants. The response of these lines was assessed using agroinoculation and field tests in a disease hotspot. The pyramided lines and Ty‐3‐carrying lines exhibited a high level of resistance to the monopartite and two bipartite begomoviruses tested. The pyramided tomato lines developed in this study could be important genetic resources for sustainable tomato production in areas affected by tomato leaf curl virus disease. The combined results of disease resistance tests also showed that Ty‐3 is critical for achieving broad‐spectrum resistance. The limitations of relying on a single gene and the importance of pyramiding are discussed in the light of available evidence on frequent recombination in begomoviruses.  相似文献   
10.
Sweet potato begomoviruses diverge basally from all other begomoviruses and have been named sweepoviruses. In 2009, a sweepovirus was detected for the first time in sweet potato crops in Uganda by using the indicator plant Ipomoea setosa and generic primers in a polymerase chain reaction (PCR). An isolate was cloned and sequenced, the first fully sequenced genome of a sweepovirus from mainland Africa. At the nucleotide level, this isolate differed from other sweepoviruses by at least 13%, discriminating the Ugandan isolate as a new species which has been tentatively named Sweet potato leaf curl Uganda virus (SPLCUV). In infected sweet potato plants, SPLCUV showed an uneven distribution; it was detected more often in samples from the midrib and lamina of middle and lower leaves, and reversion to healthy tissue occurred, especially in shoots of cv. New Kawogo. This appears to be the first report of resistance to a sweepovirus in sweet potato. While it was only detected at relatively low efficiency by PCR, use of I. setosa plants as an indicator of sweepovirus infection in sweet potato plants was as efficient as using real‐time quantitative PCR (qPCR). Storage of dry leaves for 84 days and dried DNA extracts for 21 days did not affect the ability of PCR and qPCR to detect it. Sweepovirus(es) was detected frequently using generic primers in cultivars Ejumula, New Kawogo and 318L in eastern and central Uganda.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号