首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2578篇
  免费   139篇
  国内免费   168篇
林业   212篇
农学   242篇
基础科学   66篇
  713篇
综合类   960篇
农作物   127篇
水产渔业   137篇
畜牧兽医   220篇
园艺   79篇
植物保护   129篇
  2024年   6篇
  2023年   29篇
  2022年   67篇
  2021年   61篇
  2020年   84篇
  2019年   102篇
  2018年   62篇
  2017年   98篇
  2016年   131篇
  2015年   102篇
  2014年   112篇
  2013年   254篇
  2012年   216篇
  2011年   188篇
  2010年   145篇
  2009年   144篇
  2008年   140篇
  2007年   115篇
  2006年   106篇
  2005年   93篇
  2004年   71篇
  2003年   76篇
  2002年   59篇
  2001年   57篇
  2000年   53篇
  1999年   42篇
  1998年   34篇
  1997年   27篇
  1996年   35篇
  1995年   33篇
  1994年   35篇
  1993年   31篇
  1992年   20篇
  1991年   21篇
  1990年   12篇
  1989年   7篇
  1988年   6篇
  1987年   6篇
  1986年   1篇
  1985年   1篇
  1982年   2篇
  1978年   1篇
排序方式: 共有2885条查询结果,搜索用时 15 毫秒
1.
Differences in gas exchange parameters i.e. carbon exchange rate (CER), transpiration (Tr), water vapor conductance (g) were investigated, under a controlled environment, in a semi-dwarf (SD) Triticum aestivum line, its tall (TL) near isoline and the Payne (PA) variety characterized by small leaves. The plants were maintained in: (a) optimal substrate moisture condition (CTR); (b) salinized by watering with a 0.12 m NaCl solution (SLT); (c) water stressed by withholding waterings during a period of six days (STR); (d) stressed and salinized during the same period and with the same saline solution (S + S). CER and Tr were negatively affected by the stresses; SLT and S + S treatments had a higher WUE compared to their respective controls CTR and STR.
SD line had a better performance in terms of CER and WUE, particularly when water and salt stresses interacted. Leaf anatomy and assimilation/internal CO2 concentration curves contributed to explaining the SD performance.  相似文献   
2.
研究了以Li~+、Na~+、K~+、NH~+_4等一价阳离子取代磷灰石表面交换性二价阳离子对磷灰石中磷和钙释放的影响,并就可能涉及的机理进行了探讨.  相似文献   
3.
Dry Matter Production, CO2 Exchange, Carbohydrate and Nitrogen Content of Winter Wheat at Elevated CO2 Concentration and Drought Stress
Methods of mathematical modelling and simulation are being used to an increasing degree in estimating the effects of rising atmospheric CO2 concentration and changing climatic conditions on agricultural ecosystems. In this context, detailed knowledge is required about the possible effects on crop growth and physiological processes. To this aim, the influence of an elevated CO2 concentration and of drought stress on dry matter production, CO2 exchange, and on carbohydrate and nitrogen content was studied in two winter wheat varieties from shooting to milk ripeness. Elevated CO2 concentration leads to a compensation of drought stress and at optimal water supply to an increase of vegetative dry matter and of yield to the fourfold value. This effects were caused by enhanced growth of secondary tillers which were reduced in plants cultivated at atmospheric CO2 concentration. Analogous effects in the development of ear organs were influenced additionally by competitive interactions between the developing organs. The content and the mass of ethanol soluble carbohydrates in leaves and stems were increased after the CO2 treatment and exhausted more completely during the grain filling period after drought stress. Plants cultivated from shooting to milk ripeness at elevated CO2 concentration showed a reduced response of net photosynthesis rate to increasing CO2 concentration by comparison with untreated plants. The rate of dark respiration was increased in this plants.  相似文献   
4.
Abstract. Soil samples from a 32-year grassland field experiment were taken from 0–5, 5–10, and 10–15 cm soil depths in February 2002. Plots received annual treatments of unamended control, mineral fertilizer, three rates of pig slurry and three rates of cow slurry, each with six replicates. Samples were analysed for cation exchange capacity (CEC), exchangeable cations (Na+, K+, Ca2+, Mg2+), pH and Olsen P. Exchangeable sodium percentage (ESP) was calculated as a sodicity indicator. Mean ESP was generally greater for slurry treatments than the control, with a trend of increasing ESP with application rate. This was particularly marked for cow slurry. At 0–5 cm depth ESP increased from 1.18 in the control to 1.75 at the highest rate of pig slurry and 5.60 at the highest rate of cow slurry. Similar trends were shown for CEC, exchangeable Na+, K+ and Mg2+, Ca2+ and Olsen P. The build-up of soil P due to slurry applications, together with this combination of physical and chemical factors, may increase the risk of P loss to surface waters, particularly from soils receiving high rates of cow slurry.  相似文献   
5.
设计了一种新的单亲遗传算法,该算法对个体和基因分别计算其适应值,并将适应值最差的基因 进行变异,从而大大提高了遗传算法的全局收敛速度。以n皇后问题为例,采用这种算法求解3000个皇 后问题所用时间平均约为55min,而求解100个皇后问题所用时间平均只有约124ms。实验表明,该算法 不仅能在短时内找到全局最优解(精确解),而且具有良好的稳定性。  相似文献   
6.
高效阴离子交换色谱法测定毛头鬼伞多糖中的单糖组成   总被引:2,自引:0,他引:2  
本文采用高效阴离子交换色谱—脉冲安培检测器(HAPEC-PAD),建立了一种测定多糖中单糖比例的方法。以NaOH为淋洗液、CarboPac^TM A20预处理柱,CarboPac^TMPA20分离柱,金工作电极,Ag/AgCl参比电极,8种自然界中常见单糖标准品做混合标样,探索方法可行性。在淋洗液浓度为2.5mmol/L时,各种单糖组分得到有效分离,其线性和重现性均良好并在此基础上测定了毛头鬼伞多糖中单糖比例;与传统的方法相比,此方法具有前处理简单、灵敏度高、节省时间和试剂等优点。  相似文献   
7.
研究了以不同比例十六烷基三甲基溴化铵(CTMAB)单一修饰和十六烷基三甲基溴化铵 十二烷基磺酸钠(CTMAB SDS)混合修饰土娄土耕层对重金属镉离子吸附的影响,结果表明:吸附量顺序为耕层原土>50%CTMAB>100%CTMAB 20%SDS>100%CTMAB,温度升高,吸附量上升;最佳吸附等温线模型可以用BET模型描述,热力学参数的研究表明,吸附自发性与吸附量具有相同的变化规律,反应的焓变与熵变共同决定了反应的自发性。从热力学角度对修饰改性土娄土对Cd2 吸附的机理进行了探讨。  相似文献   
8.
The effects of growth and leaf temperature on photosynthesis were evaluated in sweet orange seedlings ( Citrus sinensis cv. Pera) infected with Xylella fastidiosa (the bacterium that causes citrus variegated chlorosis, CVC). Measurements of leaf gas exchange and chlorophyll  a fluorescence were taken at leaf temperatures of 25, 30, 35 and 40°C in healthy and infected (without visible symptoms) seedlings submitted to two temperature regimes (25/20 or 35/20°C, day/night), not simultaneously. The CO2 assimilation rates ( A ) and stomatal conductance ( g s) were higher in healthy plants in both temperature regimes. Values for A and g s of infected and healthy plants were higher in the 35/20°C regime, decreasing with leaf temperature increase. In addition, differences between healthy and infected plants were higher at 35/20°C, while no differences in chlorophyll  a fluorescence parameters were observed except for potential quantum efficiency of photosystem II, which was higher in infected plants. Low A values in infected plants were caused by low g s and probably by biochemical damage to photosynthesis. The high alternative electron sink of infected plants was another effect of reduced A . Both high growth and high leaf temperatures increased differences in A between healthy and infected plants. Therefore this feature may be partially responsible for lower growth and/or productivity of CVC-affected plants in regions with high air temperature.  相似文献   
9.
宗绪岩  王世富  李丽 《蚕业科学》2005,31(4):494-496
对不同pH及阳离子浓度下柞蚕蛹蛋白的溶解性进行了研究。结果表明,柞蚕蛹蛋白的等电点pI为4.2~4.5。测定不同的阳离子对其溶解度的影响顺序为Zn2+>Ca2+>Mg2+>Na+,随着阳离子浓度的增加,蛹蛋白的溶解性增加,当离子浓度超过1.0 mol/L时,其溶解性则降低。  相似文献   
10.
The salt‐sensitive Glycine max N23674 cultivar, the salt‐born Glycine soja BB52 population, and their hybrid 4076 strain (F5) selected for salt tolerance generation by generation were used as the experimental materials in this study. First, the effects of NaCl stress on seed germination, tissue damage, and time‐course ionic absorption and transportation were compared. When qualitatively compared with seed germination appearance in culture dishes, and tissue damages on roots or leaves of seedlings, or quantitatively compared with the relative salt injury rate, the inhibition on N23674 was all the most remarkable. After the exposure of 140 mm NaCl for 1 h, 4 h, 8 h, 12 h, 2 days and 4 days, the content of Cl? gradually increased in the roots and leaves of seedlings of BB52, 4076 and 23674. Interestingly, the extents of the Cl? rise in roots of the three experimental soybean materials were BB52 > 4076 > N23674, whereas those in leaves were just on the contrary. Secondly, by using the scanning ion‐selective electrode technique (SIET), fluxes of Na+ and Cl? in roots and protoplasts isolated from roots and leaves were also investigated among the three experimental soybean materials. After 140 mm NaCl stress for 2, 4 and 6 days, and when compared with N23674, slighter net Cl? influxes were observed in root tissue and protoplasts of roots and leaves of BB52 and 4076 seedlings, especially at the cellular protoplast level. The results indicate that with regard to the ionic effect of NaCl stress, Cl? was the main determinant salt ion for salt tolerance in G. soja, G. max and their hybrid, and the difference in their Cl?/salt tolerance is mainly attributed to the capacity of Cl? restriction to the plant above‐ground parts such as leaves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号