首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11373篇
  免费   336篇
  国内免费   575篇
林业   626篇
农学   677篇
基础科学   391篇
  1065篇
综合类   4883篇
农作物   314篇
水产渔业   888篇
畜牧兽医   2420篇
园艺   739篇
植物保护   281篇
  2024年   74篇
  2023年   224篇
  2022年   223篇
  2021年   252篇
  2020年   306篇
  2019年   338篇
  2018年   172篇
  2017年   280篇
  2016年   312篇
  2015年   404篇
  2014年   603篇
  2013年   552篇
  2012年   767篇
  2011年   828篇
  2010年   739篇
  2009年   697篇
  2008年   1008篇
  2007年   677篇
  2006年   522篇
  2005年   549篇
  2004年   454篇
  2003年   490篇
  2002年   296篇
  2001年   252篇
  2000年   144篇
  1999年   125篇
  1998年   114篇
  1997年   100篇
  1996年   117篇
  1995年   114篇
  1994年   119篇
  1993年   80篇
  1992年   65篇
  1991年   83篇
  1990年   52篇
  1989年   36篇
  1988年   25篇
  1987年   29篇
  1986年   11篇
  1985年   11篇
  1984年   3篇
  1983年   4篇
  1982年   7篇
  1981年   4篇
  1980年   8篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   3篇
  1955年   1篇
排序方式: 共有10000条查询结果,搜索用时 609 毫秒
1.
研究了超声提取-离子色谱法测定芹菜中氯含量的方法。芹菜经超声提取20 min后,以浓度4.5 mmol/L Na2CO3和0.8 mmol/L NaHCO3为淋洗液,经IonPacAG23分离测定。本方法具有快速、灵敏、准确度高,适合于芹菜中氯量的测定。  相似文献   
2.
《种子科技》2021,(8):41-41
凡涉及计量的地方请用法定计量单位。重量单位:公斤用kg,克用g,吨用t;长度单位:米用m,厘米用cm,毫米用mm,微米用μm;面积单位:公顷用hm2,平方米用m2,不能使用亩制;浓度单位:采用百分比浓度或mol/L;时间单位:小时用h,分钟用min,秒用s。  相似文献   
3.
4.
农药自动混药装置的研究现状与展望   总被引:1,自引:0,他引:1  
目前,我国农作物病虫害防治主要依靠施用农药,现有的大多数农药剂型需要加水稀释,配制成一定浓度后再施用。近年,我国农业航空迅速发展,对农业航空的智能化农业机械装备的需求变得非常迫切。系统总结了农药自动混药装置类型以及农药自动混药装置特点,通过对农药自动混药装置研究发展概况分析,阐明了国内农药自动混药装置所存在的问题,展望未来农药混药装置的发展趋势,为后续的研究方向奠定基础。  相似文献   
5.
【目的】了解杨树在干旱胁迫下矿质离子分布及其动态变化。【方法】以吴屯杨、新疆杨和荷兰杨为实验材料,在中度和重度干旱条件下测定了根、茎、叶和质外体的K^+、Ca^2+、Na^+和Mg^2+等4种离子含量的变化。【结果】干旱胁迫使K^+、Ca^2+和Na^+离子含量上升,Mg^2+含量下降,其中K^+和Ca^2+含量自胁迫开始明显升高,Na^+含量则在中度胁迫之后明显增加。离子在各器官分布情况为:K^+主要分布于杨树的叶片,Ca^2+、Na^+和Mg^2+主要分布于杨树根部,且离子分布存在品种间差异,荷兰杨和新疆杨中K^+分布为:叶>根>茎,而吴屯杨体内K^+分布则为:叶>茎>根;3种杨树中Ca^2+分布均为:根>叶>茎;吴屯杨和荷兰杨中Na^+分布为:根>茎>叶,新疆杨则为:根>叶>茎;在Mg^2+的分布上吴屯杨和新疆杨较为类似即:根>叶>茎,而荷兰杨为叶>根>茎。【结论】干旱胁迫下杨树首选吸收的离子是K^+和Ca^2+,K^+主要分布在杨树的叶片中,其次是根部,Ca^2+主要分布在杨树的根部。重度干旱胁迫下,杨树开始吸收Na^+,储存在杨树的根部。不同品种杨树之间离子的分布和吸收都存在品种差异。质外体作为离子的运输通道,在各干旱条件下运输4种矿质离子至杨树的其他部位,Mg^2+存在滞留在质外体中的情况。本研究可为植物在干旱胁迫下矿质离子吸收和分布的研究提供理论依据。  相似文献   
6.
目的 探明不同类型水稻品种产量和氮素吸收利用对FACE(大气CO2浓度增高)响应的差异。方法 以常规粳稻、杂交籼稻、常规籼稻共6个品种为供试材料,研究FACE对不同类型水稻产量、氮素吸收利用的影响。结果 1)FACE处理极显著提高了水稻产量,平均增加24.17%, 常规籼稻增幅最大,FACE和对照均以杂交籼稻最高;2)FACE处理显著增加了单位面积穗数,常规粳稻增幅最大,并显著增加了杂交籼稻和常规籼稻每穗粒数;3)FACE处理显著提高了成熟期吸氮量和氮素籽粒生产效率,成熟期吸氮量平均增加21.23%,杂交籼稻增幅最大, FACE和对照均以常规籼稻最高;氮素籽粒生产效率平均增加7.33%,杂交籼稻增幅最大,FACE和对照均以杂交籼稻最高。成熟期吸氮量对产量促进作用略大于成熟期氮素籽粒生产效率;4)FACE处理降低了植株含氮率,成熟期平均下降0.105个百分点,常规粳稻降幅最大。FACE处理极显著提高植株干物质量,成熟期平均增加23.95%,常规籼稻增幅最大;FACE处理显著提高常规籼稻和杂交籼稻成熟期单穗吸氮量,分别增加10.79%、13.93%,但常规粳稻下降了9.60%;FACE处理显著提高了成熟期群体吸氮强度,平均增加22.29%,杂交籼稻增幅最大。FACE处理对水稻全生育期天数无显著影响;FACE处理显著提高茎鞘、叶片、穗各器官吸氮量,叶片增幅最大,平均增加51.86%,杂交籼稻增幅最大;FACE处理显著提高了不同生育阶段吸氮量,抽穗-成熟阶段增幅最大,平均增加108.90%,杂交籼稻增幅最大;5)植株干物质量、单穗吸氮量、吸氮强度、穗吸氮量、抽穗-成熟阶段吸氮量对成熟期总吸氮量的促进作用分别大于植株含氮率、单位面积穗数、生育天数、茎鞘叶吸氮量、移栽-分蘖和分蘖-抽穗阶段吸氮量;6)FACE处理显著提高了氮肥偏生产力,降低了每百千克籽粒需氮量,前者平均增加24.16%,常规籼稻增加最多;后者平均降低4.7%,常规籼稻降幅最大。结论 FACE处理可显著提高水稻产量和氮素吸收利用效率,但品种间差异较大。  相似文献   
7.
为探究1-甲基环丙烯(1-MCP)对猕猴桃后熟质地品质作用效果的差异,寻找适宜的1-MCP临界使用浓度,研究通过应用质地多面分析(TPA)测试法,以"贵长"猕猴桃为试材,比较不同处理果肉质地品质差异和好果率,分析各质地参数之间相关性,并且用主成分分析法进行综合评价。结果表明:0.75μL/L和0.50μL/L 1-MCP处理均能够更好地保持猕猴桃货架期的好果率;果实的咀嚼性、弹性、硬度、回复性和凝聚性相互之间都有较好的相关性,但黏着性与其他指标相关性较差,所以用咀嚼性、弹性、硬度、回复性和凝聚性作为评价猕猴桃果实质购性能的主要参数。与对照比较,6种浓度1-MCP处理中,0.75μL/L 1-MCP的处理对维持猕猴桃后熟质地品质效果最好,其次是0.50μL/L1-MCP处理,两组处理均能够延缓果实硬度并且使果实正常后熟。而高浓度(1.50μL/L和1.25μL/L)的1-MCP对猕猴桃果实后熟质地的保持效果较差,出现"僵尸果"现象。另外综合主成分分析显示,货架末期(9 d)时,不同处理猕猴桃质地品质从高到低的排列顺序为:0.75μL/L0.50μL/L1.00μL/L0.25μL/L1.25μL/L1.50μL/L0μL/L。因此,从经济和后熟质地品质考虑,采后用0.50~0.75μL/L1-MCP来处理猕猴桃对保持果实质地品质的效果最好。  相似文献   
8.
不同保存条件对水质粪大肠菌群的检测结果有直接的影响,本文通过设计科学的实验来探讨不同样品在不同保存温度和保存时间的水质变化情况,以选择合适的样品保存条件来保存尚未检测的样品。  相似文献   
9.
消毒药是指能迅速杀灭病原微生物的化学药物,其作用机理是使蛋白质凝固或变性、干扰微生物重要酶系统或改变细胞膜通透性。消毒药的作用,不仅取决于其自身的理化性质,而且受许多因素的影响。 (一)病原微生物类型 不同的病原微生物,对消毒药的敏感性有很明显的不同,例如形成芽胞的微生物对消毒药敏感性差,因而所用药物的浓度及作用时间都要增加;病毒对碱和甲醛很敏感,而对酚类的抵抗力却很大;乳酸杆菌对酸的抵抗力强。大多数的消毒药对细菌有作用,但对细菌的芽胞和病毒作用很小,因此,在消灭传染病时应考虑病原微生物的特点,正确选用消毒…  相似文献   
10.
要学会正确选择牛奶,首先要了解人们在选购牛奶时容易陷入的误区。误区之一:越香越好纯牛奶只有在加热时才有较明显的香味,凉奶则很难闻到香味。有些消费者认为牛奶越香越好,使得一些生产商为了迎合这种要求,在牛奶中添加香精等添加剂,以提高口感。误区之二:越浓越好牛奶的稀、  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号