首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The acute tolerance of juvenile Florida pompano Trachinotus carolinus L. (mean weight±SE=8.1±0.5 g) to environmental unionized ammonia‐nitrogen (NH3‐N) and nitrite‐nitrogen (NO2‐N) at various salinities was determined via a series of static exposure trials. Median‐lethal concentrations (LC50 values) of NH3‐N and NO2‐N at 24, 48, and 96 h of exposure were calculated at salinities of 6.3, 12.5 and 25.0 g L?1 at 28 °C (pH=8.23–8.36). Tolerance of pompano to acute NH3‐N exposure was not affected by salinity, with 24, 48 and 96 h LC50 values ranging from 1.05 to 1.12, 1.00 to 1.08 and 0.95 to 1.01 mg NH3‐N L?1 respectively. Regarding NO2‐N, tolerance of pompano to this environmental toxicant was compromised at reduced salinities. Median‐lethal concentrations of NO2‐N to pompano at 24, 48 and 96 h of exposure ranged from 67.4 to 220.1, 56.9 to 140.7 and 16.7 to 34.2 mg NO2‐N L?1 respectively. The results of this study indicate that juvenile Florida pompano are relatively sensitive to acute NH3‐N and NO2‐N exposure, and in the case of the latter, especially at lower salinities.  相似文献   

2.
This study investigated the secondary stress responses of Paralichthys orbignyanus exposed to ammonia and nitrite and after recovery. Fish were exposed to 0.12, 0.28, and 0.57 mg NH3‐N/L, or 5.72, 10.43, and 15.27 mg NO2‐N/L for 10 d followed by the same time length for recovery. Ammonia‐ and nitrite‐free water was used as a control treatment. Blood samples were collected after 1, 5, and 10 d of exposure and after recovery. Fish exposed to ammonia presented lower and higher glucose levels after 10 d of exposure and recovery, respectively. Ammonia induced initial and transient ionic disturbances and metabolic alkalosis. Nitrite exposure caused hyperglycemia, increased plasma K+ levels, and respiratory alkalosis, whereas metabolic acidosis was observed after recovery. Increased proportion of monocytes and/or granulocytes and reduced number of lymphocytes were demonstrated in fish exposed to 0.28 mg NH3‐N/L (Day 1) and 10.43 mg NO2‐N/L (Day 5) and after recovery in the 0.28 and 0.57 mg NH3‐N/L treatments. Exposure to ammonia decreased the proportion of granulocytes on Day 5. In conclusion, exposure to concentrations at 0.12 mg NH3‐N/L and 5.72 mg NO2‐N/L provoked physiological disorders in Brazilian flounder. Nonetheless, fish exposed to 5.72 mg NO2‐N/L following a 10‐d recovery period showed complete resumption of homeostasis.  相似文献   

3.
The present study examined the protective effects of water chloride (Cl?) towards nitrite toxicity in Atlantic salmon parr during 84‐day long nitrite exposure. Effects on growth, histology, blood indices and gene expression were studied at a fixed nominal Cl? concentration of 200 mg/L and at several water nitrite concentrations (0, 0.5, 2, 5 and 10 mg/L NO2?–N). The specific growth rate was significantly reduced during the first three weeks at a Cl:NO2?–N ratio of 21:1, suggesting the activation of coping mechanisms at the later stages of the experiment. No significant effect of nitrite on gill histology and mortality was found. Nitrite accumulated in plasma; however, a Cl:NO2?–N ratio of 104:1 or higher prevented nitrite entry. The concentration of NO2?–N in plasma was significantly reduced at the end of the study, supporting the hypothesis of coping mechanisms. Cystic fibrosis transmembrane conductance regulator (cftr)‐1 showed a significant up‐regulation at highest nitrite concentration on day 22, and in three of the highest exposure groups at the end of the experiment. Our findings suggest that a Cl:NO2?–N ratio above 104:1 should be maintained through episodes of nitrite accumulation in water during the production of Atlantic salmon parr.  相似文献   

4.
This study evaluated the toxicity of ammonia and nitrite to different larval stages of Macrobrachium carcinus. Three replicated groups of larvae in the zoea stages II, V, and VIII (hence named Z2, Z5, and Z8, respectively) were exposed separately to five ammonia (5, 10, 20, 40, and 80 mg total ammonia nitrogen [TAN]/L) and six nitrite concentrations (5, 10, 20, 40, 80, and 160 mg NO2‐N/L), plus a control treatment with no addition of ammonia and nitrite, at a salinity of 20 g/L. The ammonia LC50 values at 96 h for Z2, Z5, and Z8 were 8.34, 13.84, and 15.03 mg TAN/L (0.50, 0.71, and 0.92 mg NH3‐N/L), respectively, and the nitrite LC50 values at 96 h for Z2, Z5, and Z8 were 3.28, 9.73, and 34.00 mg NO2‐N/L, respectively. The estimated LC50 values for NO2‐N were lower than those for TAN in most of the stages evaluated. This observation suggests that M. carcinus larvae are more tolerant to ammonia, except at Z8, in which larvae had a higher tolerance to nitrite. Based on the lethal concentrations at 96 h, it may be concluded that the tolerance of M. carcinus to ammonia and nitrite increases with larval development. Safe levels were estimated to be 0.834 mg TAN/L (0.05 mg NH3‐N/L) and 0.328 mg NO2‐N/L; therefore, efforts should be made to maintain lower concentrations of these compounds throughout the larval rearing of M. carcinus.  相似文献   

5.
False clownfish, Amphiprion ocellaris, is one of the most commercialized fish species in the world, highly produced to supply the aquarium market. The high stocking densities used to maximize fish production can increase ammonia and nitrite to toxic levels. In this study, A. ocellaris juveniles (1.20 ± 0.34 g) were exposed to six concentrations of ammonia ranged from 0.23 to 1.63 mg/L NH3-N and eight concentrations of nitrite (26.3–202.2 mg/L NO2 ?-N). The LC50- 24, LC50-48, LC50-72 and LC50-96 h were estimated to be 1.06, 0.83, 0.75 and 0.75 mg/L for NH3-N and 188.3, 151.01, 124.1 and 108.8 mg/L for NO2 ?-N. Analysis of gill lesions caused by sublethal concentrations of these nitrogenous compounds showed that both nitrogenous compounds induced tissue lesions such as hyperplasia of epithelium cells, hypertrophy of chloride cells and lamellar lifting to all concentrations tested. However, histopathological alterations were more conspicuous accordingly the increase of ammonia or nitrite in fish exposed to 0.57 mg/L NH3-N or 100 mg/L NO2 ?-N. Based on our results, we recommend to avoid concentrations higher than 0.57 mg/L of NH3-N and 25 mg/L of NO2-N in water.  相似文献   

6.
Two experimental modules with different stocking densities (M1 = 70 and M2 = 120 shrimp /m2) were examined weekly over a culture cycle in tanks with low‐salinity water (1.9 g/L) and zero water exchange. Results showed survival rates of 87.7 and 11.9% in M1 and M2, respectively. Water temperature, pH, dissolved oxygen, electrical conductivity and chlorophyll a were not significantly (p > .05) different between modules. In contrast, the concentrations of nitrogen compounds were significantly (p < .05) different between modules, except nitrite‐N (M2 were 2.31 ± 1.38 mg/L N‐TAN, 0.18 ± 0.49 mg/L N‐NO2? and 6.83 ± 6.52 mg/L N‐NO3?; in M1: 0.97 ± 0.73 mg/L N‐TAN, 0.05 ± 0.21 mg/L N‐NO2? and 0.63 ± 0.70 mg/L N‐NO3?). When waters of both modules reached higher levels of ammonia and nitrite, histological alterations were observed in gills. The histological alterations index (HAI) was higher in M2 (5‐112) than in M1 (2‐22).  相似文献   

7.
The nitrite toxicity was estimated in juveniles of L. vannamei. The 24, 48, 72 and 96 h LC50 of nitrite‐N on juveniles were 8.1, 7.9, 6.8 and 5.7 mg L?1 at 0.6 g L?1; 14.4, 9.6 8.3 and 7.0 mg L?1 at 1.0 g L?1; 19.4, 15.4, 13.4 and 12.4 mg L?1 at 2.0 g L?1 of salinity respectively. The tolerance of juveniles to nitrite decreased at 96 h of exposure by 18.6% and 54.0%, when salinity declined from 1.0 to 0.6 g L?1 and from 2.0 to 0.6 g L?1 respectively. The safe concentrations at salinities of 0.6, 1.0 and 2.0 g L?1 were 0.28, 0.35 and 0.62 mg L?1 nitrite‐N respectively. The relationship between LC50 (mg L?1), salinity (S) (g L?1) and exposure time (T) (h) was LC50 = 8.4688 + 5.6764S – 0.0762T for salinities from 0.6 to 2.0 g L?1 and for exposure times from 24 to 96 h; the relationship between survival (%) and nitrite‐N concentration (C) for salinity of 0.6–2.0 g L?1, nitrite‐N concentrations of 0–40 mg L?1 and exposure times from 0 to 96 h was as follows: survival (%) = 0.8442 + 0.1909S – 0.0038T – 0.0277C + 0.0008ST + 0.0001CT–0.0029SC, and the tentative equation for predicting the 96‐h LC50 to salinities from 0.6 to 35 g L?1 in L. vannamei juveniles (3.9–4.4 g) was 96‐h LC50 = 0.2127 S2 + 1.558S + 5.9868. For nitrite toxicity, it is shown that a small change in salinity of waters from 2.0 to 0.6 g L?1 is more critical for L. vannamei than when wider differences in salinity occur in brackish and marine waters (15–35 g L?1).  相似文献   

8.
Meagre, Argyrosomus regius, is a candidate marine fish species for aquaculture diversification, presenting a high economic value in the Mediterranean. Tolerance of juvenile meagre to nitrite (NO2‐N) was determined relating to temperature. Fish (3.2 ± 0.6 g and 5.4 ± 0.9 cm) were exposed to different NO2‐N concentrations in a series of acute toxicity tests by the static renewal method at three temperatures (18, 22, and 26 C) at a pH of 8.0. Low temperature clearly increased tolerance to NO2‐N (P < 0.05). The 96‐h median lethal concentration (LC50) values of NO2‐N were 177.63, 139.55, and 49.61 mg/L, at 18, 22, and 26 C, respectively. The safe levels of NO2‐N for juvenile meagre were estimated to be 17.7, 13.9, and 4.9 mg/L at 18, 22, and 26 C, respectively (P < 0.05). This study indicates A. regius is more sensitive to nitrite than other marine fish species cultured in the Mediterranean.  相似文献   

9.
Sea bream, Sparus aurata, is one of the most important fish species that is commonly cultured in the Mediterranean and the eastern coasts of the Atlantic Ocean. The life cycle of sea bream in its natural habitat passes through hyposaline and hypersaline lagoons. It is important to determine the tolerance of the fish to nitrogenous compounds for aquaculture at maximum stocking densities. In the present study, a series of acute experiments were performed to evaluate the effect of salinity on ammonia and nitrite toxicity to sea bream. The fish were exposed to different ammonia and nitrite concentrations according to the static renewal methodology at three different salinities (10, 20, and 30 ppt) and at a temperature of 20 C and a pH of 8.2. The toxic effect of total ammonia nitrogen (TAN) and nitrite nitrogen (NO2‐N) decreased with increasing salinity levels (P < 0.001). Acute toxicity (96‐h lethal concentration 50 [LC50]) values of TAN were determined to be 5.93, 11.72, and 19.38 mg/L at 10, 20, and 30 ppt salinity, respectively. The 96‐h LC50 values of NO2‐N were determined to be 370.80, 619.47, and 806.33 mg/L at 10, 20, and 30 ppt salinity, respectively. Results indicate that sea bream is less tolerant to ammonia but more tolerant to nitrite compared with some other fish species.  相似文献   

10.
The effects of nitrite concentration on larval development of Amazon river prawn, Macrobrachium amazonicum, were studied in laboratory. In Experiment 1, larvae were reared in 600‐mL glass beakers filled with 300‐mL water with nitrite concentration of 0, 0.2, 0.4, 0.8 and 1.6 mg/L NO2‐N. In Experiment 2, total ammonia nitrogen (TAN, NH3‐N + NH4‐N) excretion were analyzed in zoea (Z) I, III, VII and IX exposed to 0, 0.4, 0.8 and 1.6 mg/L NO2‐N. In both experiments each treatment was conducted in five replicates. The experiments were carried out in test solutions at 10 salinity, constant temperature 30 C and 12:12 h daylight : darkness regime. Survival, productivity, weight gain and larval stage index decreased linearly with increasing ambient nitrite concentration. However, there was no significant difference among larvae reared at concentration ranging from 0 to 0.8 mg/L NO2‐N by ANOVA in all variables. Individual ammonia‐N and mass‐specific ammonia‐N excretion increased in ZI and ZIX, was almost constant in ZIII and decreased in ZVII from 0 to 1.6 mg/L NO2‐N. The relationship between individual TAN and body mass suggested that 1.6 mg/L NO2‐N stress the larvae. Despite of the effects of nitrite on larvae follow a dose‐dependent response and shows large variability among individuals, levels below 0.8 mg/L may be used as a general reference in commercial hatcheries, which should be applied carefully.  相似文献   

11.
Haematological parameters of 2‐year‐old carp (Cyprinus carpio L.) were assessed to study the protective effect of chloride on the health of fish exposed to elevated nitrite concentrations. Four groups of carp were exposed to different concentrations of nitrite and chloride for 96 h (group E1: 67 mg L?1 NO2?, 11 mg L?1 Cl?; group E2: 67 mg L?1 NO2?, 100 mg L?1 Cl?; group E3: 0 mg L?1 O2?, 100 mg L?1 Cl? and group C: 0 mg L?1 NO2?, 11 mg L?1 Cl?). The main haematological response of carp to an acute exposure to nitrite (group E1) was a significant decrease (P<0.05) in haemoglobin concentrations (53.40±6.61 g L?1), haematocrit (0.21±0.02 LL?1), erythrocyte count (1.13±0.12 TL?1), leucocyte count (7.1±4.19 GL?1) and lymphocyte count (5.28±2.51 GL?1), and a significant increase in methaemoglobin concentration (90.50±4.38%, P<0.01) and mean corpuscular haemoglobin concentration (0.27±0.2 LL?1, P<0.05). At higher chloride concentrations (group E2), a lower nitrite toxicity was observed. In group E2 carp, methaemoglobin made up 38.32±13.30%. Erythrocytes in carp exposed to nitrite showed qualitative changes. Compared with the control group C, group E1 carp showed a significantly higher number (P<0.05) of elongated erythrocytes, with the nucleus located at one cell pole (0.519±0.388 TL?1). All erythrocytes of group E1 carp had remarkably clear cytoplasms compared with the cytoplasm in the control group C. The biochemical values found were comparable with those found in controls. The main histological lesions were found in the gills of carp exposed to nitrite and consisted of hyperplasia and an elevated number of chloride cells.  相似文献   

12.
Early larval stages of mud crab Scylla serrata were exposed to different concentrations of nitrite (40, 80 and 160 mg L−1 and a control, without added nitrite) and three salinity levels (25, 30 and 35 g L−1) using a static renewal method. No interactive effect of nitrite and salinity was detected. Estimated LT50 in 96‐h toxicity tests decreased in all stages with increasing nitrite concentrations in all salinity levels. The 96‐h LC50 values of nitrite‐N were 41.58, 63.04, 25.54, 29.98 and 69.93 mg L−1 for zoea 1, 2, 3, 4 and 5 respectively. As the larvae grew, they showed a progressive increase in tolerance to nitrite. The toxicity of nitrite to larvae increased with exposure time. The median lethal concentration was not affected by salinity. The chloride component of salinity within 25–35 g L−1 did not seem to be as effective in alleviating toxicity as has been reported in other crustacean species. Based on 96‐h LC50 and an application factor of 0.1, the ‘safe level’ of rearing mud crab larvae was calculated to be 4.16, 6.30, 2.55, 2.99 and 6.99 mg L−1 nitrite‐N for zoea 1, 2, 3, 4 and 5 respectively.  相似文献   

13.
This study evaluated the effects of short-term exposure to sublethal levels of nitrite on oxidative stress parameters and histology of juvenile Brazilian flounder Paralichthys orbignyanus. An assessment of fish recovery was also performed. Fish were exposed to 0.08 (control), 5.72, 10.43, and 15.27 NO2-N mg L?1 for 10 days followed by the same recovery time. Gill, liver, and muscle samples were collected after 1, 5, and 10 days of exposure and after recovery for the measurement of antioxidant capacity against peroxyl radicals (ACAP), glutathione-S-transferase (GST) activity, content of non-protein (NPSH) and protein thiols (PSH), and lipid peroxidation levels by thiobarbituric acid-reactive substances (TBARS) content. Nitrite exposure induced alterations which compromised the overall antioxidant system (reduced ACAP and GST activity) and enhanced oxidative damage in lipids and proteins. Increases in GST activity and NPSH and PSH contents were also demonstrated. The recovery period allowed for resumption of basal levels for all (treatment 5.72 NO2-N mg L?1) or some of the evaluated parameters (other treatments). In conclusion, exposure to nitrite concentrations from 5.72 to 15.27 NO2-N mg L?1 induced oxidative stress and antioxidant responses in juvenile Brazilian flounder. The 10-day recovery period was sufficient for a complete resumption of basal physiological condition of fish exposed to concentrations of up to 5.72 NO2-N mg L?1.  相似文献   

14.
A study of factors limiting crab densities in closed blue crab Callinectes sapidus shedding systems was conducted using scaled down experimental units. Nitrification beds, activated carbon, dolomite and plants were used to maintain water quality. Nitrite (NO2N) was found to be the most critical toxic element accumulating in the system as a result of the nitrification process. Concentrations of approximately 20 mg liter?1 NO2N and above caused increased mortality in intermolt crabs. Mortality in molting crabs was observed at concentrations as little as 2 mg liter?1 NO2N. Dissolved oxygen (DO) was identified as the factor limiting the efficiency of the nitrification beds. As DO concentrations decreased, the rate of nitrification slowed, apparently causing nitrification to be inhibited at the nitrite to nitrate conversion step. As nitrite concentrations increased, high mortalities resulted, further increasing the loading in the systems and depressing DO concentrations, due to the high BOD exerted by the dead crabs. Elevated crab populations were maintained in the systems when aeration and flow increases were supplied to the nitrification beds.  相似文献   

15.
Ammonium toxicity of short‐duration alkaline events and their variability, as related to 1–30 day‐old postlarvae whiteleg shrimp Litopenaeus vannamei (Boone), was assessed by determining medium lethal concentration (LC50) of total ammonium‐nitroen (TAN) and NH3‐N to 4‐h exposures. Exploratory concentrations of TAN were tested at 30°C and pH 9, until mortality from 5% to 95% occurred between 0.9 and 18 mg N L?1. To determine the daily variation of ammonium toxicity, 64 lots of 20 postlarvae were exposed to eight different ammonium concentrations (0, 0.9, 3, 6, 9, 12, 15 and 18 mg N L?1), in two different environmental scenarios: α (pH 8, 26°C) and β (pH 9, 30°C). In environmental scenario α, ammonium concentrations up to 18 mg L?1 pose no short‐term mortality risks for ages 1–30 days. In scenario β, mortality was recorded at all ages. The values of LC50 (4 h) for different postlarvae ages have daily variability, ranging from a minimum of 2.54 to a maximum of 6.02 mg L?1 of TAN (0.76 and 1.81 mg N L?1 of NH3‐N), for PL3 and PL19, respectively, with a logarithmic linear tendency to increase with age. Postlarvae mortality at 4 h and 3.0 mg N L?1 TAN exposure was lower and less variable in ages greater than 19 days old.  相似文献   

16.

The effects of fish size and nitrite level on metabolic rate and growth were investigated in the obligate air-breathing snakehead Channa striata, which is an important aquaculture species in Vietnam. Channa striata displayed respiratory size dependence, whereby the standard metabolic rate (SMR) and routine metabolic rate (RMR) decreased progressively in an exponential manner as fish size increased from 50 to 200 g. A mildly elevated nitrite level of 5% of the LC50 96 h (12 mg NO2?/L or safe concentration) induced significant increases in Channa striata SMR and RMR, which were almost double that of the control at the same size. At mild elevation, nitrite caused no significant effect on fish growth and survival during 3 months of rearing. However, both growth and survival rates of fish reared at severely elevated nitrite levels were significantly lower than those of the control; in particular, survival rates were under 50%. While changes in size reduced SMR and RMR, the percentage of air oxygen partitioning remained unchanged. Channa striata upregulation of SMR and RMR and air-breathing regulation were not significantly proven in this study. In summary, maintaining water environments at levels lower than 12 mg NO2?/L with ample oxygenation will not affect the growth and survival rate of snakeheads.

  相似文献   

17.
While the effects of ammonia on fish and prawn larvae are well documented, little is known of its effect on mud crab (Scylla serrata) (Forsskål, 1755) larvae. Two experiments were conducted in 5 L hemispherical plastic bowls, containing 3 L of ultra‐filtered and settled seawater and various larval stages of mud crab to (1) determine the acute median lethal concentration (LC50) of unionized ammonia and (2) to determine the chronic effects of unionized ammonia on survival and percentage moulting to zoea and megalop stages. The larval stages that exhibited the highest tolerance to ammonia over 24 h were zoea 1 (LC50 of 4.05 mg L?1 of unionized ammonia) and zoea 5 (LC50 of 6.64 mg L?1 of unionized ammonia). The megalop stage had the lowest total ammonia LC50 at both 24 and 48 h, making it the larval stage most susceptible to total ammonia. Exposure to 6.54 mg L?1 of unionized ammonia resulted in 100% death of all larvae within 24 h. The tolerance of S. serrata larvae to total ammonia did not appear to increase with ontogenetic development. The results indicate that the concentrations at which total ammonia produces an acute or chronic response in mud crab larvae are far higher than those experienced in current larval production systems (0–0.5 mg L?1 of total ammonia) used as industry standards in Australia.  相似文献   

18.
The tolerance of Litopenaeus vannamei larvae to increasing concentrations of total ammonia nitrogen (TAN) using a short‐term static renewal method at 26°C, 34 g L?1 salinity and pH 8.5 was assessed. The median lethal concentration (24 h LC50) for TAN in zoea (1‐2‐3), mysis (1‐2‐3) and postlarvae 1 were, respectively, 4.2‐9.9‐16.0; 19.0‐17.3‐17.5 and 13.2 mg L?1TAN (0.6‐1.5‐2.4; 2.8‐2.5‐2.6 and 1.9 mg L?1 NH3‐N). The LC50 values obtained in this study suggest that zoeal and post‐larval stages are more sensitive to 24 h ammonia exposure than the mysis stage of L. vannamei larvae. On the basis of the ammonia toxicity level (24 h LC50) at zoea 1, we recommend that this level does not exceed 0.42 mg L?1 TAN – equivalent to 0.06 mg L?1 NH3‐N – to reduce ammonia toxicity during the rearing of L. vannamei larvae.  相似文献   

19.
The pink shrimp Farfantepenaeus brasiliensis is native in southern Brazil and is potentially suited for aquaculture. Under intensive culture, the accumulation of nitrogenous compounds results from excretion by the shrimp and from the processes of feed decomposition and nitrification. The objective of this study was to evaluate ammonia, nitrite, and nitrate toxicity effects on oxygen consumption of juvenile pink shrimp. Shrimps (initial weight 0.7 ± 0.15 g) were exposed over a period of 30 days to 50%, 100%, and 200% of the safe levels of total ammonia (TAN = 0.88 mg/L), nitrite (NO2? = 10.59 mg/L), and nitrate (NO3? = 91.20 mg/L) for the species. The specimens were individually collected and placed in respirometry chambers, where the oxygen consumption was measured over a period of two hours. Throughout the experiment there was no significant difference (p > 0.05) among treatments in terms of survival and growth. The pink shrimp juveniles exposed to nitrogen concentrations of 200% of the nitrite and nitrate safe level showed the highest oxygen consumption (p < 0.05).  相似文献   

20.
The nitrite threshold concentration in rearing water of African catfish (Clarias gariepinus) was assessed. African catfish with an initial mean (SD) weight of 219.7 (57.8) g were exposed to an increasing range of water nitrite from 6 (Control) to 928 μM nitrite for 28 days. Mean (SD) plasma nitrite concentrations increased from 5.0 (3.6) to 32.5 (12.6) μM at 928 μM ambient nitrite. The increase in nitrite was accompanied by gradual increase in plasma nitrate from 41.6 (28.4) μM to 420.2 (106.4) μM. Haematocrit, haemoglobin, methemoglobin, plasma concentrations of cortisol, glucose, lactate, osmolality, gill morphology and branchial Na+/K+‐ATPase activity were not affected. Feed intake, final weight, SGR, FCR and mortality were not affected. We advise not to exceed a water nitrite concentration of 43 μM (0.6 mg L?1 NO2?‐N) to prevent the risk of reduced growth and feed intake in African catfish aquaculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号