首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
糖载体存在于糖运输途径的关键部位。糖载体不仅介导了蒸糖从叶肉细胞外流、韧皮部装载、韧皮部卸出和进入库细胞贮藏和利用,还可能作为糖传感蛋白在糖运输和代谢调节的信号转导中直接起作用。  相似文献   

2.
植物中糖转运途径、糖转运蛋白及其生理功能   总被引:1,自引:0,他引:1  
植物源叶进行光合作用而固定大气中的CO2,为汇组织或器官提供了能源和碳源。碳从源到汇的转运以糖的形式尤其是蔗糖进行的。糖在韧皮部中的运输是由糖转运蛋白完成的,糖转运蛋白具有双重功能,即糖载体和糖传感。糖在植物体内的转运直接影响到植物的生理活动,如光合作用和碳分配。如何使光合作用所固定的碳朝人们所希望的方向转运是研究糖在植物体内转运及糖转运蛋白的生理功能的根本目的,因此,这些研究对于提高农作物和林木的生产力具有重大意义。  相似文献   

3.
番茄果实成熟过程中SlSWEET7a的功能分析   总被引:1,自引:0,他引:1  
程杰  张新圣  李安琪  姜晶 《中国农业科学》2018,51(15):2958-2968
【目的】SWEETs(sugars will eventually be exported transporters)是一种糖转运蛋白,参与植物生物进程,对植物生长发育、响应各种胁迫、宿主-病原体的互作发挥作用。克隆番茄SWEET7a,通过构建Sl SWEET7a沉默和过表达载体,研究其在糖的转运过程中的作用,为探索SWEETs在植物果实发育过程中的功能提供理论依据。【方法】以Micro-Tom(Solanum lycopersicum)番茄为试材,利用RT-PCR技术从果实中克隆SWEET7a的c DNA全长842bp,进行生物信息学分析,并利用MEGA6.0构建拟南芥进化树,与Sl SWEET7a进行蛋白序列同源性分析;利用实时荧光定量PCR技术探明其在果实发育时期的时空表达特征分析,并构建基因的沉默和过表达载体,通过农杆菌介导的果实注射法进行瞬时表达检测构建载体的表达效率;然后进行番茄的遗传转化,获得T1代转基因株系,利用实时荧光定量PCR技术检测绿熟期果实SWEET7a的表达,通过高效液相色谱法检测转基因果实和叶片中糖组成与含量的变化。【结果】Sl SWEET7a蛋白结构是由7个跨膜结构域构成的。同源性比对分析结果显示,Sl SWEET7a与拟南芥At SWEET6和At SWEET8序列同源性较高,都属于SWEETs家族的CladeⅡ。番茄果实各部位的表达分析显示,Sl SWEET7a在绿熟期果柄、果实维管束相对表达量最高,转色期和红熟期相对表达量较低。构建SWEET7a沉默(S7a)及过表达载体(OE7a)在番茄果实的瞬时表达,发现OE7a样品果实中Sl SWEET7a的表达量是未注射果实的6倍,其Sl SWEET7a表达量明显上调,与对照相比,S7a样品果实中Sl SWEET7a明显下调了5倍。在番茄中的遗传转化中卡那霉素抗性筛选获得10株可能的超表达T0代植株,PCR鉴定得到了Sl SWEET7a超表达8株;沉默株系经除草剂筛选,获得14株,PCR检测得到10株沉默株系。T1代植株的实时定量分析显示,过表达Sl SWEET7a植株发生转基因沉默现象,Sl SWEET7a表达量显著低于正常植株,而沉默植株表达量也降低,说明获得的过表达植株也发生了基因沉默。果糖、葡萄糖和蔗糖含量测定结果表明,降低番茄中Sl SWEET7a的表达,植株成熟叶片和绿熟期果实中果糖、葡萄糖和蔗糖含量均高于对照,尤其是叶片中蔗糖含量显著高于对照,这说明Sl SWEET7a对细胞中蔗糖的易化扩散起着重要作用。【结论】Sl SWEET7a对叶片中蔗糖向源组织韧皮部的装载及果实果柄、维管束的运输、卸载起重要调控作用。  相似文献   

4.
(1) The pith of maize shows a changing sugar content with changing sugar movement in the phloem which would not be predicted from our present picture of the morphology of the maize bundle. (2) By all tests of changing concentration, sucrose is the important carbohydrate of translocation in maize. Interconversion of the several sugars is too rapid, however, to permit a final conclusion. (3) An hypothesis of translocation in maize must not only account for movement against an osmotic gradient, but against gradients of each of the substances which might possibly be translocated. Such secretory translocation certainly occurs between the leaf mesophyll and the phloem and probably along the phloem itself. (4) Translocation in maize is polarized, out of the leaf, out of the xylem and toward the developing fruit. Polarized translocation out of the leaf is established during the later stages of tissue differentiation. Polarized translocation toward the fruit is established in the early phases of embryo development and does not develop in the absence of pollination.  相似文献   

5.
短叶罗汉松叶的发育起始于茎端侧面分生组织区细胞分裂形成的叶原基。在叶的发育过程中,维管束下方的3个树脂道最先分化发育,然后,维管束内的原生木质部由近轴面向远轴面分化发育,同时原表皮下的一层薄壁细胞发育形成厚壁组织纤维,起支持幼叶的作用。当木质部基本成熟时,转输组织和韧皮部以及副转输组织开始发育,最后,叶肉组织分化发育为发达的栅栏组织细胞和海绵组织细胞。在叶内部结构分化发育的同时,表皮细胞的外侧形成较厚的角质层。在短叶罗汉松叶的结构中,发达的栅栏组织和角质层对于其生长在干旱和寒冷地区进行光合作用和蒸腾作用具有极为重要的意义。  相似文献   

6.
The leaf development of Podocarpus macrophyllus var.maki Endl.started from the leaf primordium formed by the cell division in shoot apical meristem.During the leaf development,three resin canals from the inferior part of vascular bundles firstly began to differentiate,then protoxylem in vascular bundles differentiated from adaxial side to abaxial side.Meanwhile,a layer of parenchyma cells from the inferior part of protoderm developed into the sclerenchyma,which played an important role in supporting young leaves.When xylem became mature basically,transfusion tissue,phloem and accessory transfusion tissue began to differentiate,so mesophyll tissue finally differentiated into developmental palisade cells and sponge cells.The thicker cuticle was formed in the lateral side of epidermal cells at the same time of differentiation and development for the inner structure of leaves.Therefore,the developmental palisade cells and the cuticle in the leaf structure of Podocarpus macrophyllus var.maki Endl.is greatly significant for photosynthesis and transpiration when it grows in arid and cold regions.  相似文献   

7.
枯草芽孢杆菌XF1菌株中XFsacA基因的克隆及功能验证   总被引:1,自引:0,他引:1  
枯草芽孢杆菌Bacillus subtilis XF1是从土壤中分离的一株利用蔗糖快、能高效防治根肿病的专利菌株.为探明其高效的蔗糖代谢机制,用PCR从该菌中扩增到蔗糖代谢关键基因蔗糖-6-磷酸水解酶基因(XFsacA基因),其编码的蛋白质氨基酸序列与枯草芽孢杆菌B168菌株中的XFsacA基因有97%的相似性,且发生了12个氨基酸突变.将该基因中约1.4 kb的编码框序列连接到表达载体pQE30上,构建了重组表达质粒pQE30-XFsacA,该质粒转入到不能利用蔗糖的Escherichia coli BL21中,后者能在以蔗糖为唯一碳源的M9无机离子培养基中正常生长,并表达出了一条约54 000蛋白条带.结果预示XFsacA基因氨基酸序列的替代可能是XF1高效利用蔗糖的基础,同时XFsacA基因的克隆与其在E.coli中的表达研究,为利用蔗糖发酵的工程E.coli构建奠定了基础.  相似文献   

8.
[目的]研究北药白鲜的生物学特征并观察其茎叶的解剖结构。[方法]采用石蜡制片的方法研究北药白鲜的茎叶解剖结构特征。[结果]白鲜的茎由表皮、皮层和维管柱3部分组成,皮层由厚角组织和薄壁组织构成,维管束环状排列,由外到内依次是韧皮部和木质部。叶片为典型的异叶面,由表皮、叶肉及维管束构成,表皮细胞排列规则,叶肉分为栅栏组织和海绵组织,分化明显。[结论]该方法研究了北药白鲜的生物学特征,并观察其茎叶的解剖结构,效果良好。  相似文献   

9.
采用双标记法,将14C-糖和3H-水分别引入到棉茎韧皮部和木质部不同处理中,再用示踪动力学分析法对数据进行测定、计算和分析。结果表明,同化物在韧皮部中运输时,必须有木质部水的参与,和木质部分离的韧皮部不能单独运输同化物,仅存在同化物和水分的扩散迁移。同化物在韧皮部中以液流形式运输,液流中的水主要来自木质部。同化物向韧皮部的装载,是不伴随水的主动装载过程。同化物在韧皮部中的分布,存在着一定的浓度梯度,是推动同化物由源到库运输的动力来源之一,这与压力流学说基本一致。  相似文献   

10.
杜仲茎韧皮部超微结构的初步研究   总被引:8,自引:0,他引:8  
杜仲(Eucommia ulmoides Oliv.)茎韧皮部组成分子的超微结构与一般双子叶植物的相类似,但其韧皮薄壁组织细胞之间分布着含胶细胞。韧皮薄壁细胞中含有少量橡胶颗粒,伴胞和成熟的筛分子中却未见有分布。橡胶物质在细胞间转移的趋势不明显。因此,我们认为韧皮部含胶细胞内橡胶物质的合成和积累具有相对的独立性。其筛分子质体为S—型。此外,在成熟筛板的筛孔周围都衬有很厚的胼胝质,并为一些电子不透明的P—蛋白质所堵塞,这种现象可能是由于制备样品过程中对韧皮部损伤而引起的损伤反应。  相似文献   

11.
采用同位素双标记技术 ,在棉花带库离体果枝的韧皮部与木质部基部不分离的情况下 ,韧皮部引入 14 C-蔗糖溶液 (ρ=50 g/ L ) ,木质部引入 3H- H2 O并对其液流分子运输速率进行研究。结果表明 ,同化物在韧皮部中以液流形式运输 ,液流中的水主要来源于木质部 ;同化物分子和水分子在韧皮部的运输存在多速率现象。把速率范围均匀等分成若干个速率区间 ,以此为横坐标 ;测量并计算各速率区间对应运输的同化物或水分的相对百分比 Pi,以此为纵坐标 ,可得液流中同化物分子和水分子运输的速率分布曲线。  相似文献   

12.
用微量注射器分别将2,4-二硝基酚、叠氮化钾、叠氮化钠和木瓜酶溶液注射到韧皮部溢泌伤口,研究溢泌速率、蔗糖浓度和钾离子浓度的变化。试验结果显示,呼吸抑制剂和木瓜酶均导致溢泌速率显著下降。呼吸抑制剂和木瓜酶处理后韧皮部溢泌速率随溢泌过程分别为不可恢复和可部分恢复;韧皮部溢泌速率降低伴随汁液中钾离子浓度降低和蔗糖浓度增高。  相似文献   

13.
为了揭示板蓝根和大青叶外观形状和显微特征与其内在质量的关系,利用光学显微镜和组织化学方法对菘蓝叶和根的显微结构特征以及生物碱类物质在叶和根中的分布情况进行了研究。结果表明:菘蓝叶的上、下表皮上都无毛被;叶的上、下表皮上都分布有无规则型气孔,下表皮的气孔指数明显高于上表皮的。叶肉有栅栏薄壁组织和海绵薄壁组织之分,栅栏组织有2层细胞。根的韧皮部和木质部间有明显的形成层,韧皮部的薄壁细胞中有大量的淀粉粒。生物碱类化合物在叶中分布在包括栅栏组织和海绵组织在内的一些叶肉细胞中,在根中生物碱类化合物主要分布在韧皮部的一些薄壁细胞中。表明菘蓝根的横切面上韧皮部越宽的质量越佳。  相似文献   

14.
钟俐  李冠 《中国农业科学》2012,45(19):4040-4049
【目的】对接种白粉病菌前后的甜瓜叶片中Ca2+ 进行细胞定位分析,并探讨外源Ca2+ 对白粉病菌胁迫下3种同工酶的影响,为研究甜瓜在白粉病胁迫下的信号转导及抗病机制奠定基础。【方法】通过电镜和细胞化学技术对抗病性不同的甜瓜幼叶在白粉病菌胁迫下的Ca2+ 进行超微细胞化学定位研究,采用Hoagland营养液栽培法,对不同外源Ca2+作用并接种白粉病菌的甜瓜叶片的POD、CAT和SOD同工酶进行分析。【结果】接种白粉病菌2 d时,Ca2+在抗病品种和感病品种叶肉细胞胞质内聚集;液泡和细胞间隙内Ca2+水平急剧下降;接种白粉病菌6 d后,抗病品种‘MR-1’胞质内Ca2+水平又逐渐恢复至接种前的状态,Ca2+主要分布在液泡和细胞间隙,而感病品种‘JS’叶肉细胞内Ca2+在细胞基质中分布集中并聚集成大的沉淀颗粒,细胞结构逐渐破坏,直至死亡,在液泡和细胞间隙未发生Ca2+恢复现象。外源Ca2+对3种同工酶谱的作用结果为:与对照相比,营养液增施6 mmol•L-1 CaCl2可明显缓解白粉菌对甜瓜的伤害,其POD、CAT和SOD同工酶活性高于对照水平;营养液增施75 mmol•L-1 的LaCl3 显著抑制了甜瓜幼叶POD、CAT和SOD同工酶的活性。【结论】白粉病菌胁迫下,抗病性不同的甜瓜叶片中Ca2+的时空定位分布有差异:抗病品种中Ca2+由胞内钙库(即液泡)释放入细胞基质,之后又被泵回液泡,而感病品种中Ca2+仅发生从液泡向胞质释放的过程;外源Ca2+可能增加了Ca2+向甜瓜叶片内的运输,促进白粉病胁迫信号向植株体内的传递,提高甜瓜叶片保护酶的表达量及其活性氧清除水平,从而延缓白粉病胁迫对甜瓜叶片的伤害。  相似文献   

15.
巨龙竹营养器官解剖学研究   总被引:2,自引:0,他引:2  
对巨龙竹根、茎、叶等营养器官的显微结构进行了解剖学研究,对其竹笋发育中各细胞的形态特征进行了观察与分析,结果发现:巨龙竹茎的顶端结构为原套—原体结构(原套为1层细胞),在旺盛发育的幼茎的节和节间细胞中,有丰富的淀粉粒;秆茎的节间维管束为断腰型和双断腰型,节部维管束的木质部导管与韧皮部筛管的排列均无规律,并具有多层密集的细胞组成的“韧皮部结”;叶肉细胞包括指状内摺的臂细胞、不规则细胞及放射状细胞,并在维管束两侧具有无色透明的大型梭形细胞,其中脉的维管束往往与许多小维管束交织在一起形成一个复合的维管系统;根的顶端原始细胞为圆锥状排列的原始细胞群,未见典型的组织原分区。  相似文献   

16.
17.
感染甘蔗黄叶病毒后甘蔗叶组织超微结构的病变   总被引:1,自引:0,他引:1  
利用电镜技术对感染甘蔗黄叶病毒蔗叶组织超微结构进行观察表明,韧皮部伴胞及叶肉细胞内的线粒体、叶绿体等细胞器及细胞核都发生了明显的病理变化.线粒体形态异常,有的肿大、内嵴模糊,严重者内嵴消失,空泡化,仅剩未被消解的残骸;叶绿体被膜破裂,严重者被膜完全消解,基粒类囊体和基质片层消失,基质外流.维管束鞘细胞中的叶绿体被膜和基质片层也遭到破坏,淀粉粒增多、膨大;细胞核形态变为不规则,局部核膜破裂,核内染色质分布不均匀,呈降解状.  相似文献   

18.
带库棉花果枝的韧皮部与木质部基部不分离,通过韧皮部引入14C-蔗糖溶液(5%)、木质部引入3H-H2O的双标记技术所作的研究表明,同化物在韧皮部中以液流形式运输,液流中的水主要来源于木质部,运输一定量的14C-同化物需一定量的3H-H2O。由LS-9800液闪仪测出韧皮部中14C-同化物的放射性计数和对应CaO中3H-H2O的放射性计数,由此计算出韧皮部运输的同化物的量(Y)与伴随运移水分的量(X)之间的定量关系为:Y=0.10773X。  相似文献   

19.
采用酶细胞化学技术对7个甘蔗种和品种进行研究。甘蔗茎韧皮部细胞 ATP 酶活性定位于筛管、伴胞质膜、伴胞核、小囊泡、充分发育的液泡膜和 P—蛋白上。野生种和栽培种茎韧皮部细胞 ATP 酶活性较高,而生产品种则较低。认为甘蔗茎韧皮部 ATP 酶活性与糖分的运输和抗性等有关。茎韧皮运输中,可能有 P—蛋白和 ATP 酶主动参与。  相似文献   

20.
为探讨生长素过度合成对植物韧皮部发育的影响,利用韧皮部特异表达的拟南芥蔗糖合成酶基因启动子与色氨酸单加氧酶基因(iaaM)重组,构建载体,通过根癌农杆菌介导的叶盘转化法将其转入烟草,获得了转化的烟草植株。大多转基因烟草都表现出叶片卷曲、植株生长异常的生长素过度表型。转基因烟草植株生长较野生型烟草(对照)植株明显迟缓,但其茎横切面韧皮部细胞显著增多,排列更加紧密整齐,木质部也较早开始分化。转基因烟草茎段有大量不定根分化,其根部则在韧皮部薄壁细胞处诱生大量根原基,在不定根上有大量侧根和根毛的分化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号