首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
水稻数量性状的基因效应分析   总被引:13,自引:0,他引:13  
郭平仲  伍时照 《作物学报》1988,14(4):273-278
利用9个水稻品种杂交得到11个组合的 P_1、P_2、F_1、F_2和 B_1、B_2世代群体的数据进行了世代平均值分析。文中估算了 a、d、aa、ad 和 dd 各类基因效应、其相应的方差及平方和百分比。分析发现世代间有显著差异,其差异大小取决于杂交双亲。8个性状中加性率超过50%的是出穗期、株高和百粒重。穗长和总粒数的加性率与显性率之  相似文献   

2.
对4个云南半矮秆籼稻品种主要农艺性状的遗传研究表明:(1)矮麻秔和矮沱谷的株高都受制于与sd-1等位的单一隐性基因;(2)矮麻秔、矮沱谷、毫牙坐与高秆品种杂交的F_1,以及毫安信与矮麻杭杂交的F_1经济性状具有超亲优势;(3)表型变异系数以有效穗数最大,其次为每穗实粒数、每穗总粒数和着粒密度,而一次枝梗数、结实率和穗长最小。这4个新矮源在育种中具有应用价值。  相似文献   

3.
陈献功  刘金波  洪德林 《作物学报》2006,32(8):1143-1150
调查了3个粳稻杂交组合镇稻88×C堡、丙8979×C堡和丙8979×77302-1的P1、P2、F1、B1、B2和F2 6个世代的穗角和每穗颖花数性状的表型分布。运用主基因+多基因混合遗传模型和6个世代联合分析的方法,对这两个性状进行了遗传分析。结果表明,穗角和每穗颖花数性状均受2对加性-显性-上位性主基因+加性-显性-上位性多基因共同控制;穗角性状以加性效应为主,每穗颖花数性状以上位性效应为主;穗角和每穗颖花数都以主基因遗传为主。  相似文献   

4.
按Hayman方法对8×8完全双列杂交F_1的6个性状进行基因效应分析与模型检验,株高、穗长、实粒数符合加性-显性模型.株高、实粒数为部分显性,加性方差和显性方差均显著,基因的加性效应比显性效应更重要;穗长为超显性,显性基因效应比加性基因效应更重要.对杂交F_1、F_2进行配合力效应值分析表明,一般配合力方差和特殊配合力方差对所研究性状均重要,多数性状为加性基因效应占主导.亲本85G63、81-18、82-14为最佳配合者,其主要经济性状一般配合力好.杂交F_1各性状均有明显杂种优势,组合间和性状间的优势具有显著差异,以单株籽粒产量优势最强,其余依次为实粒数、穗长、株高、小穗粒数和千粒重.  相似文献   

5.
粒用高粱F2群体农艺性状数量遗传分析   总被引:1,自引:0,他引:1  
通过对高粱F_2群体农艺性状进行数量遗传分析,确定各性状的最适遗传模型并掌握其遗传规律,为田间选育遗传稳定的农艺性状提供参考。以粒用高粱品种忻粱52和美引-20的杂交F_2分离群体为试验材料,根据单个分离世代群体的遗传模型方法 -主-多基因遗传分析模型对F_2世代6个数量性状进行遗传分析。结果表明,6个农艺性状中株高、穗柄长、主茎茎节数、平均茎节长符合遗传模型,受主效基因控制;而穗长和旗叶鞘长不存在主基因,受微效多基因遗传。株高符合Model B_1,受2对主基因控制,为加性-显性-上位性混合遗传模型,主基因遗传率为88. 65%;穗柄长和主茎茎节数符合Model A_1,为受1对主基因控制的加性-显性混合遗传模型,遗传率分别为61. 58%和68. 94%;平均茎节长符合Model A_4,受1对主基因控制,符合负向完全显性遗传模型,主基因遗传率为49. 24%。株高、穗柄长和主茎茎节数的主基因遗传率较高,说明这3个性状在后代遗传中受环境影响较小,遗传较稳定,可以在育种早代直接进行选择;而平均茎节长的遗传率较低,说明该性状在后代中遗传不稳定,受环境影响较大,需在育种高代进行选择。  相似文献   

6.
高粱株型性状数量遗传分析   总被引:3,自引:0,他引:3  
株型性状的遗传分析对高粱育种的理论、方法和策略至关重要。通过对高粱株型性状的遗传规律和基因的作用方式进行分析,旨在为田间选择稳定遗传的优良株型性状提供理论基础。以粒用高粱引-20和忻梁52杂交所构建的F2遗传群体为试验材料,利用植物数量性状主+多基因混合遗传模型分析方法,对高粱叶夹角、株高、穗长、平均茎节长度、叶长及叶宽6个株型性状进行遗传分析。结果表明,高粱叶夹角遗传符合B_1模型,即加性-显性-上位性的混合遗传模型,其主基因遗传率为70.15%;株高遗传符合B_2模型,即加性-显性混合遗传模型,主基因遗传率为74.26%;穗长遗传符合B_6模型,即等显性遗传模型,主基因遗传率为58.67%;平均茎节长度遗传符合A_1模型,即加性-显性的混合遗传模型,主基因遗传率为68.69%;叶长遗传符合B_1模型,即加性-显性-上位性的混合遗传模型,主基因遗传率为47.92%;叶宽遗传符合B_6模型,即等显性遗传模型,主基因遗传率为61.60%。叶夹角和株高是构成高粱株型的主要性状,并具有较高的遗传力,在早期时进行选择,容易获得具有理想株型的育种材料。  相似文献   

7.
本文提出利用亲本P_1和P_2、杂种F_1,F_2和F_(2∶3)五世代联合分析数量性状主基因和多基因遗传的统计方法,共建立可供选择的单基因遗传、多基因遗传以及一个主基因 多基因混合遗传三类11个遗传模型;AIC信息准则用于选择最适遗传模型,通过适合性检验对所选择的遗传模型做进一步检验;以D类模型为例,给出参数估计EM过程的一般步骤。以邳县天鹅蛋(P_1)和1138—2(P_2)杂交组合为例,分析了大豆抗豆秆黑潜蝇性状的遗传,发现该性状符合主基因 多基因混合遗传模式,主基因的加显性效应分别为-1.86和-1.64,F_2世代主基因的遗传率为43.84%,F_(2∶3)家系世代主基因的遗传率为88.59%,F_2群体的抗感分界线为11≤x≤12,F_(2∶3)群体的抗感分界线为10.6≤x≤11.0。  相似文献   

8.
为了培育果穗不露顶玉米品种,以长露顶玉米自交系WZ06X97和不露顶玉米自交系WZ098杂交获得的6个世代(P_1、P_2、F_1、B_1、B_2和F_2)株系为材料,运用植物数量性状主基因+多基因遗传模型,对玉米果穗露顶进行遗传分析。结果显示,玉米果穗露顶的最适遗传模型是E-0,即2对加性-显性-上位性主基因+加性-显性-上位性多基因。2对主基因加性效应值均为4. 615,显性效应值分别是-0. 680和-0. 742,主基因遗传率在B_1、B_2和F_2中分别是60. 41%,81. 28%和83. 99%,多基因遗传率分别为16. 74%,5. 90%和5. 04%,环境方差占表型方差的比例分别为22. 85%,12. 82%和10. 97%;上述结果表明,玉米果穗露顶受环境影响较小,主要受2对主基因和多基因控制,F_2世代主基因遗传率较高,因此育种上可在早期世代对果穗露顶性状进行选择。  相似文献   

9.
中植棉2号抗黄萎病的主基因+多基因遗传特性分析   总被引:2,自引:1,他引:1  
以感病品种861为父本、抗病品种中植棉2号为母本配制杂交组合,构建6个世代群体(P_1、P_2、F_1、B_1、B_2和F_2),并在田间病圃进行抗病性鉴定,利用主基因 ̄多基因混合遗传模型的多世代联合分析法研究陆地棉抗黄萎病遗传特性。结果表明,中植棉2号抗性遗传符合E-1遗传模型,即2对加性 ̄显性 ̄上位性主基因+加性 ̄显性多基因遗传模型。2对主基因遗传以显性效应为主,且第2对主基因的显性效应比第1对主基因的显性效应大,多基因遗传以加性效应为主。B_1、B_2和F_2的主基因遗传率分别为68.24%、30.71%和82.09%,多基因遗传率分别为0、24.96%和0,环境方差占总表型方差的17.01%~44.33%。  相似文献   

10.
陆地棉早熟性状多世代联合遗传分析   总被引:4,自引:2,他引:2  
【目的】旨在探讨连续世代陆地棉早熟性状遗传规律。【方法】以陆地棉中751213和鲁棉研28为亲本,通过对P_1,P_2,F_1,F_2和F_(2:3)5个世代联合分析,研究株高、果枝始节、始节高度、花铃期、播种至开花和全生育期等早熟性状的遗传模型。【结果】株高和果枝始节的最佳模型为1对加性-显性主基因+加性-显性-上位性多基因混合模型(D);播种至开花时间最佳模型为1对完全显性主基因+加性-显性多基因模型(D-3);全生育期最佳模型为2对加性-显性-上位性主基因+加性-显性-上位性多基因模型(E);花铃期和始节高度最佳模型均为1对负向完全显性主基因+加性-显性多基因模型(D-4)。【结论】上述对陆地棉早熟性状的混合遗传模型分析结果,有助于阐明陆地棉早熟性状遗传规律。  相似文献   

11.
以耐寒性存在明显差异的6份自交系为材料,采用完全双列杂交法对砧用南瓜耐寒性的配合力进行研究。结果表明,配合力呈现正向效应时,能够提高砧用南瓜的耐寒性。结合配合力效应值,确定可在南瓜耐寒性育种中加以利用的杂交组合为18C0109×18C0025和18C0025×18C0109。同时,以耐寒性强的南瓜自交系18C0025 (P_1)和耐寒性弱的南瓜自交系18C0065 (P_2)获得的六个世代(P_1, P_2, F_1, B_1, B_2, F_2)为材料,采用数量性状主基因+多基因的世代联合分析法,对砧用南瓜耐寒性的遗传特性进行了研究。结果表明,砧用南瓜的耐寒性遗传以主基因遗传为主,遗传率在F_2中最大,且F_2代受环境影响较小,适合于晚期世代进行选择,同时,表明南瓜耐寒性的遗传符合"两对加性-显性主基因+加性-显性-上位性多基因"模型。  相似文献   

12.
《分子植物育种》2021,19(9):2993-2998
果皮着色深度是紫茄品种重要的商品性状。本试验选取果皮着色深度差异明显的高代自交系EP26和EP28为材料,构建6个世代群体P_1、P_2、F_1、F_2、B_1、B_2,采用主+多基因混合模型遗传分析方法开展多世代联合分析,从而探明紫茄果皮着色深度的遗传特性。结果表明:紫茄果皮着色深度的遗传表现符合两对加性-显性-上位性主基因+加性-显性多基因遗传的E-1模型。主基因加性效应值均等,主基因遗传以显性效应为主。6世代群体中F_2、B_1和B_2主基因遗传率分别为70.25%、3.46%、47.41%,而多基因遗传率分别为18.26%、55.61%、38.60%。F_2群体中主基因+多基因的遗传率为88.51%,环境因素占11.49%。研究结果有助于紫茄果皮着色深度的遗传改良的研究。  相似文献   

13.
研究了8个籼稻抗病品种川植4号、川植5号、三黄占2号、二九丰、扬稻1号、75—34、83007、NT02和1个粳稻抗病品种湘虎25对水稻白叶枯病菌系P1、HB84-17或T_1的抗性遗传.这些抗病品种分别与感病品种沈农1033或金刚30杂交,所得的F_1、F_2和B_1F_1群体的抗性反应,表明8个籼稻品种对P_1和HB84-l7的全生育期抗性均由一对不完全显性的基因控制,该抗性基因与Xa-4是等位的;粳稻品种湘虎25的成株抗性则由一对显性基因控制,该基因与Xa-3相等位.  相似文献   

14.
孙灿慧  禹锡刚 《种子》1997,(3):72-73,80
本文主要就紫稻的紫节性状进行遗传和利用研究。结果表明:这种特殊紫色水稻的紫节遗传是受一对独立的显性标志基因控制的显性遗传。此基因不受任何基因的抑制,并且对光照表现钝感。因而其与一般绿节稻品种杂交,F1皆表现为紫节株。通过杂交转育的紫节恢复系与两系、三系不育系杂交结果,单株产量、单株穗数、每穗粒数、结实率(%)都接近和超过绿节稻恢复系。  相似文献   

15.
《分子植物育种》2021,19(10):3392-3399
随着中国农村产业结构和种植模式调整,早熟油菜在油菜产业链中的重要地位日益凸显;但油菜早熟性与丰产性和抗逆性存在较大矛盾,使得早熟品种的选育受到极大制约,挖掘早熟种质资源对早熟品种的选育具有重要意义。本研究前期获得一个丰产性好的早熟甘蓝型油菜品系GRG177,以GRG177 (P_1)与甘蓝型油菜品系GRD328 (P_2)为亲本,构建六世代遗传群体(P_1, P_2, F_1, B_1, B_2和F_2),利用主基因+多基因混合遗传模型完成了花期性状的多世代联合分析。结果表明,初花期受2对加性-显性-上位性主基因+加性-显性多基因控制,花期受2对加性-显性-上位性主基因+加性-显性-上位性多基因控制,终花期受1对加性-显性主基因+加性-显性-上位性多基因控制。花期性状在分离世代中具有较高的遗传率(51.79%~96.80%)。本研究为早熟油菜品种选育、GRG177花期性状基因定位与克隆提供较好基础。  相似文献   

16.
玉米品种先玉335苗期叶绿素SPAD值的遗传分析   总被引:1,自引:1,他引:0  
利用先玉335玉米品种(PH6WC×PH4CV)的P_1、P_2、F_1、B_1、B_2、F_2 6个世代,运用主基因+多基因遗传模型和6世代联合分析方法,对先玉335进行了苗期叶片叶绿素SPAD值的遗传分析。结果表明,苗期叶片叶绿素SPAD值为2对主基因加性+多基因加、显混合遗传模型,以多基因遗传为主、主基因遗传为辅。F_1具有超高亲优势。3分离世代主多基因遗传力大而差异小,说明该性状遗传比较稳定。  相似文献   

17.
在阿子营低温冷害条件下,以十和田×(十和田和丽江新团黑谷BC3 F9)配制的BC4F1、BC4F2及亲本为材料,采用主基因+多基因混合遗传模型,对粳稻丽江新团黑谷作耐冷基因供体培育的近等基因系孕穗期耐冷性8个指标性状进行遗传研究.结果表明,结实率和穗颈长均属于2对加性-显性-上位性主基因+加性-显性多基因遗传,主基因遗传率分别为80.11%和75.06%;株高为2对加性-显性主基因+加性-显性多基因遗传,主基因遗传率为44.39%;穗下节长属于2对加性-显性-上位性主基因+加性-显性-上位性多基因遗传,主基因遗传率为57.36%;穗长为2对主基因加性-显性-上位性遗传;每穗实粒数为2对主基因加性-显性遗传;每穗秕粒数为2对加性主基因+加性-显性多基因遗传;总粒数为1对加性-显性主基因+加性-显性-上位性多基因遗传.  相似文献   

18.
春小麦穗部性状的主基因+多基因遗传分析   总被引:1,自引:1,他引:0  
穗部性状直接影响着作物的经济产量,研究春小麦穗部性状的遗传组成,为遗传育种中通过进一步改良穗部性状提高产量提供参考和策略。以‘宁春4号’和‘Drysdale’及其构建的F2群体为材料,采用P1、P2、F1、F2四世代联合分离分析法研究了春小麦几个穗部性状:穗长、结实小穗数、不实小穗数、穗粒数的遗传模型。结果表明:穗长符合加性-显性-上位性多基因混合遗传模型,无主基因存在;结实小穗数由2对等加性主基因+加性-显性多基因控制;不实小穗数符合2对加性-显性-上位性主基因+加性-显性多基因混合遗传模型;穗粒数符合2对加性-显性-上位性主基因+加性-显性多基因混合遗传模型。  相似文献   

19.
甘蓝型油菜开花时间的遗传分析及相关分子标记   总被引:1,自引:0,他引:1  
为进一步明确甘蓝型油菜开花时间的遗传规律,指导早熟品种选育。以晚开花甘蓝型油菜YG-1和早开花甘蓝型油菜72-27-1-2为亲本,杂交构建6世代遗传群体(P_1、P_2、F_1、B_1、B_2和F_2),分别种植于杨凌和三原两地,记录6世代群体单株开花时间,应用植物数量性状主基因+多基因遗传模型进行遗传分析;借助SSR分子标记技术,利用F_2群体开发与开花时间相关的分子标记。结果表明:开花时间最适遗传模型在杨凌和三原分别为E-0(2对加性-显性-上位性主基因+加性-显性-上位性多基因模型)和E-1(2对加性-显性-上位性主基因+加性-显性多基因模型)。杨凌和三原两地分离世代(B_1、B_2和F_2)开花时间的主基因遗传率分别为57.12%,79.44%,66.37%和54.51%,65.43%,43.21%,多基因遗传率分别为33.80%,8.47%,25.62%和25.42%,4.70%,37.65%,环境引起变异为9.73%和23.03%。两地各分离世代(尤其B_2世代)主基因遗传率都明显大于相应多基因遗传率,表明甘蓝型油菜开花时间主要受2对主基因控制,在早期世代对理想开花时间选择有效,同时也要注意多基因和环境因素的影响。获得7个与开花时间位点相关的SSR分子标记,呈显著或极显著相关。标记引物序列在甘蓝型油菜数据库进行比对,BrgMS351和BnGMS148位于A7上,cnu_m157a、BnGMS256-1、BnGMS256-2、BnGMS327和BnGMS370-2位于A9上。表明本研究中控制开花相关的位点可能位于A7和A9上,且可能由2个QTLs共同控制,与数量模型遗传分析开花时间由2对主基因控制结果一致。  相似文献   

20.
《种子》2020,(5)
利用超强休眠冬瓜自交系(KF-4-3)和浅休眠节瓜自交系(GF-7-1-1)进行杂交和回交,得到P_1、P_2、F_1、F_2、BC_1、BC_2共6个世代,并在同一隔离网室中进行常规田间栽培。雌花授粉后45 d采收老熟果实,后熟60 d取种子进行标准发芽试验。P_1、P_2、F_1的发芽率分别为71.77%、7.48%、45.18%,F_1遗传偏向于P_1,F_2、BC_1、BC_2等4个世代表现为偏正态多峰分布,表明节瓜种子休眠属于数量性状遗传;通过遗传模型的检验得出节瓜种子休眠性状符合加性-显性的遗传模型,中亲值[m]=39.63,加性效应[d]=20.03,显性效应[h]=19.55。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号