首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of cortisol on osmoregulatory parameters was studied in rainbow trout, (Salmo gairdneri), kept in freshwater (FW) and/or transferred to seawater (SW). Repeated injections of 20 μg cortisol/g fish stimulated gill and gut Na+/K+-ATPase activity and reduced plasma Na+ and Cl levels after 2 weeks of treatment in FW-adapted fish. Cortisol doses of 0.05 and 1.0 μg/g were without effect. Repeated injections of 10 μg cortisol/g stimulated gill Na+/K+-ATPase activity and reduced plasma Na+ and Cl levels in fish in FW, and significantly improved ion regulation after their transfer to 28SW. Higher doses of cortisol (10 and 20 μg/g) induced hyperglycemia, whereas low doses (0.05 and 1.0 μg/g were without effect or induced hypoglycemia. Plasma glucose levels decreased in cortisol-treated fish transferred to SW, whereas transient hyperglycemia was seen in the control fish.  相似文献   

2.
The nitrite threshold concentration in rearing water of African catfish (Clarias gariepinus) was assessed. African catfish with an initial mean (SD) weight of 219.7 (57.8) g were exposed to an increasing range of water nitrite from 6 (Control) to 928 μM nitrite for 28 days. Mean (SD) plasma nitrite concentrations increased from 5.0 (3.6) to 32.5 (12.6) μM at 928 μM ambient nitrite. The increase in nitrite was accompanied by gradual increase in plasma nitrate from 41.6 (28.4) μM to 420.2 (106.4) μM. Haematocrit, haemoglobin, methemoglobin, plasma concentrations of cortisol, glucose, lactate, osmolality, gill morphology and branchial Na+/K+‐ATPase activity were not affected. Feed intake, final weight, SGR, FCR and mortality were not affected. We advise not to exceed a water nitrite concentration of 43 μM (0.6 mg L?1 NO2?‐N) to prevent the risk of reduced growth and feed intake in African catfish aquaculture.  相似文献   

3.
The influence of cortisol on oxygen consumption and osmoregulatory variables was examined in coastal cutthroat trout (Oncorhynchus clarki clarki) parr kept in fresh water (FW) and transferred to seawater (SW). Intraperitoneal implants containing cortisol (50 g g–1) in vegetable oil resulted in elevated plasma cortisol titres similar to those observed in fish following a 24h SW exposure. Cortisol treatment significantly increased the oxygen consumption and plasma glucose levels of trout in FW, consistent with the glucocorticoid role of cortisol. Cortisol treatment did not cause any changes in plasma ion concentrations or gill Na+,K+-ATPase activity in FW after 10 days. Cortisol-implanted fish exposed to SW for 24h showed slightly improved ion regulatory ability compare to non-implanted controls. The results of this study suggest that during SW transfer in juvenile salmonids, increases in cortisol may act as both a mineralocorticoid and a glucocorticoid, depending on the developmental state of the fish (e.g., smolt versus parr). Furthermore, the relative energetic costs of osmoregulation and that of the stress associated SW transfer cannot be discerned using whole-animal oxygen consumption rates.  相似文献   

4.
The capacity of cortisol, ovine growth hormone (oGH), recombinant bovine insulin-like growth factor I (rbIGF-I) and 3,3,5-triiodo-l-thyronine (T3) to increase hypoosmoregulatory capacity in the euryhaline teleost Fundulus heteroclitus was examined. Fish acclimated to brackish water (BW, 10 ppt salinity) were injected with a single dose of hormone suspended in oil and transferred to seawater (SW, 35 ppt salinity) 10 days post-injection. Fish were sampled 24 h after transfer and plasma osmolality and gill Na+, K+-ATPase activity were examined. Transfer from BW to SW induced significantly increased plasma osmolality but not gill Na+, K+-ATPase activity. Cortisol (50 g g–1 body weight) improved the ability to maintain plasma osmolality and to increase gill Na+, K+-ATPase activity. oGH (5 g g–1 body weight) also increased hypoosmoregulatory ability and gill Na+, K+-ATPase activity. A cooperation between oGH and cortisol was observed in increasing hypoosmoregulatory ability but not in increasing gill Na+, K+-ATPase activity. rbIGF-I (0.5 g g–1 body weight) alone was without effect in increasing salinity tolerance or gill Na+, K+-ATPase activity. rbIGF-I and oGH showed a positive interaction in increasing salinity tolerance, but not gill Na+, K+-ATPase activity. Treatment with T3 (5 g g–1 body weight) alone did not increase salinity tolerance or gill Na+, K+-ATPase activity, and there was no consistent significant interaction between cortisol and T3 or between GH and T3. The results confirm the classical role of cortisol as a seawater-adapting hormone and indicate an interaction between cortisol and the GH/IGF-I axis during seawater acclimation of Fundulus heteroclitus.  相似文献   

5.
A growth trial lasting for 12 weeks was conducted in 21 net cages to determine the dietary potassium (K) requirement of subadult grass carp (Ctenopharyngodon idellus) (Average weight: 331.3 g). Seven isonitrogenous and isoenergetic semi‐purified diets were compounded with different dietary K level. The specific growth rate (SGR) of fish was significantly (< 0.05) improved by dietary K supplementation, SGR and the gill Na+‐K+ ATPase activity increased first and then decreased (< 0.05) as dietary K level increased. The highest SGR and gill Na+‐K+ ATPase activity values were both observed at 6.38 g kg?1 group. Dietary K level showed significant (< 0.05) effect on serum superoxide dismutase (SOD) and glucose (GLU), the maximum values of SOD and GLU were in 8.42 and 6.38 g kg?1 group, respectively. The body lipid content of the 6.38 g kg?1 group was significantly (< 0.05) lower than that of the control. However, the ash content in the 8.42 g kg?1 group was significantly higher than those in the 1.21, 2.21, 4.41 and 6.38 g kg?1 group. When dietary protein was 320 g kg?1 and the waterborne potassium ranged from 6.86 to 9.10 mg L?1, the dietary K requirement for subadult grass carp judged from SGR and gill Na+‐K+ ATPase activity is 5.38 and 7.41 g kg?1 diet, respectively.  相似文献   

6.
A growth trial was conducted to estimate the optimum concentration of dietary potassium (K) for grass carp (Ctenopharyngodon idella). Triplicate groups of grass carp (3.96 ± 0.06 g) were fed diets containing graded levels (0.87, 2.90, 5.37, 7.54, 9.87 and 12.4 g kg?1) of K for 8 weeks. Final body weight, weight gain and feed efficiency and gill Na+‐K+ ATPase activity were highest in fish fed with 9.87 g kg?1 dietary K and lowest in fish fed the basal diet (P < 0.05). The K contents in whole body and muscle were linearly increased up to the 9.87 g kg?1 dietary K and then levelled off beyond this level, whereas in scales and vertebrae up to the 7.54 g kg?1 dietary K (P < 0.05). However, dietary K levels had no significant effect on ash, Ca, P and Mg contents in whole body, scales, vertebrae or muscle. Analysis using polynomial regression of weight gain and gill Na+‐K+ ATPase activity and using the broken‐line regression of whole body K concentrations indicated that the adequate dietary K concentration for grass carp is about 9.45–9.99 g kg?1 diet.  相似文献   

7.
The physiological responses of Senegalese sole to a sudden salinity change were investigated. The fish were first acclimated to an initial salinity of 37.5?ppt for 4?h. Then, one group was subjected to increased salinity (55?ppt) while another group was subjected to decreased salinity (5?ppt). The third group (control group) remained at 37.5?ppt. We measured the oxygen consumption rate, osmoregulatory (plasma osmolality, gill and kidney Na+,K+-ATPase activities) and stress (plasma cortisol and metabolites) parameters 0.5 and 3?h after transfer. Oxygen consumption at both salinities was higher than for the control at both sampling times. Gill Na+,K+-ATPase activity was significantly higher for the 55?ppt salinity at 0.5?h. Plasma osmolality decreased in the fish exposed to 5?ppt at the two sampling times but no changes were detected for high salinities. Plasma cortisol levels significantly increased at both salinities, although these values declined in the low-salinity group 3?h after transfer. Plasma glucose at 5?ppt salinity did not vary significantly at 0.5?h but decreased at 3?h, while lactate increased for both treatments at the first sampling time and returned to the control levels at 3?h. Overall, the physiological response of S. senegalensis was immediate and involved a rise in oxygen consumption and plasma cortisol values as well as greater metabolite mobilization at both salinities.  相似文献   

8.
The growth-independent effect of ovine growth hormone (oGH) and oGH + cortisol treatment on seawater (SW) adaptation in immature rainbow trout, Salmo gairdneri was investigated. Fish were injected every second day with saline, 2.0 μg oGH/g or 2.0 μg oGH + 8.0 μg cortisol/g for a maximum of 8 injections in freshwater (FW). Subgroups were transferred to 28‰ SW after 4 or 8 injections, and changes in plasma Na+ and Cl, muscle water content and gill Na+/K+-ATPase activity were measured. In both of the hormone-treated groups retained in FW, gill Na+/K+-ATPase activity and interlamellar chloride cell density increased. The effects were most pronounced in the oGH + cortisol group after 2 weeks of treatment. After transfer to SW most of the control fish died due to the osmotic stress, whereas in the hormone-treated groups, mortality was low and there was a positive correlation between pretransfer gill Na+/K+-ATPase and the ability to maintain ionic-osmotic homeostasis after SW transfer. After two weeks of oGH + cortisol treatment, gill Na+/K+-ATPase activity was maximal. In contrast, after SW transfer, Na+/K+-ATPase activity increased further in the oGH-treated group. This group regulated ionic-osmotic parameters less effectively than the oGH + cortisol-treated group. The data indicate that GH and cortisol are important hormones in the regulation of hypoosmoregulatory mechanisms in S. gairdneri.  相似文献   

9.
The aim of this work was to determine the effects of supplemental dietary sodium chloride on salt water acclimation of tilapia Oreochromis niloticus. Fish were fed a basal diet supplemented with NaCl (8%) during three weeks in fresh water (FW) and then transferred to salt water (SW) at 15 and 20. Changes in plasma osmolality, chloride ion concentration (Cl), plasma level of cortisol and gill Na+, K+-ATPase activity were measured at 6, 12, 24, 48, 72 and 168 h after transfer to 15SW, while the higher strength SW group (20) was only monitored up to 24 h. Morphological changes in the gill mitochondria-rich (MR) cells were examined in relation to environmental salinity. The changes associated with dietary NaCl were sporadic and of small magnitude. The plasma osmolality and Cl increased immediately after transfer up to 12–24 h, but fish fed dietary salt (S) showed lower values than the control group (C). The S group showed higher plasma levels of cortisol than the control, which maintained its initial levels during the experiment. Gill Na+, K+-ATPase activity of the S group began to increase in the first hours after transfer, reaching maximum at 12 h and returned to basal level at 24 h, while the control group maintained basal levels. The differences between gill Na+, K+-ATPase activity of S and C fish were significant (p < 0.05) at 12 h. Transmission electron microscopy (TEM) revealed that MR cells in SW show more mitochondria and a more developed tubular system arising from the basolateral membrane. The MR cells of both groups frequently formed a multicellular complex in SW, consisting of a main MR and one or more accessory cells. Such complexes are rarely observed in FW. Some MR cells of fish fed supplemented dietary salt displayed convex apical membrane in FW.  相似文献   

10.
We examined the effects of dietary supplementation for 21 days with different levels (0, 0.25 and 2.0 ml/kg) of the Aloysia triphylla essential oil (EOAT) on silver catfish (Rhamdia quelen). Cortisol levels were lower in fish fed EOAT at 2.0 ml/kg diet, and lactate levels were lower in those fed at both doses. Glucose, alanine aminotransferase, aspartate aminotransferase and triglyceride levels did not vary between groups. The biomarkers of oxidative stress, thiobarbituric acid‐reactive substances, lipid hydroperoxide, superoxide dismutase, catalase and non‐protein thiols, were lower in the brain, liver and muscle of fish fed EOAT at 2.0 ml EO/kg diet. Glutathione‐S‐transferase, reduced glutathione, plasma Na+, Cl?, and K+, and gill Na+/K+‐ATPase and H+‐ATPase did not vary between groups. Taken together, our results clearly indicate that the addition of EOAT at 2.0 ml/kg diet improves oxidative status and lowers the stress response in silver catfish.  相似文献   

11.
An eventual improvement in salmonid production in sea water will depend on a fundamental understanding of the natural osmotic behaviour, which demands, in turn, the seaward migration of young salmonids and the development of osmoregulatory processes. Seasonal changes in the gill Na+K+ ATPase of coho salmon, Oncorhynchus kisutch, were studied between February 1976 and August 1977, on two successive broods, O+-age and yearling, of the same origin and reared under natural conditions in a freshwater hatchery off the Brittany coast (France).The gill ATPase changes are of a rhythmical nature. The data show that a seasonal activation of the branchial Na+K+ ATPase affects one part of the population only. Both age groups, O+-age and yearlings, present two peaks of Na+K+ ATPase activity during the year, in the spring and in the fall, separated by a low activity period in summer and in winter. The peaks of ATPase activity in the fall (both groups) and spring (yearlings) correspond, roughly, with the equinox, whereas the spring rise of O+-age fish starts later on.The levels of gill ATPase activity are, probably, a function of the fish size for a given season, and the duration of Na+K+ ATPase activation may be affected by high temperatures of the late spring and thus may fluctuate from year to year. Yearly variations in branchial Mg2+ ATPase were evidenced in both groups; for the moment, these variations are impossible to correlate with the smolting process.Spring and autumn rises in the gill Na+K+ ATPase of coho salmon, in fresh water, indicate changes in the osmoregulatory physiology, that are preparatory to seaward migration.As a consequence, assays of gill ATPase activity can give aquaculturists some precise indications of the migratory tendencies in young fresh water salmon and thus the euryhalinity possibilities of the species at a given time.  相似文献   

12.
The effects of NaCl supplementation (0.0%, 2.5%, 5.0%, 7.5% and 10.0% dry weight of a basal diet) on growth, gill histological alterations and osmoregulation of juvenile cobia reared in low‐salinity water (5 g L?1) were assessed. At the end of the experiment, gills were sampled for Na+, K+‐ATPase activity determination and histological evaluation. In all treatments, no mortality was observed. Results showed that dietary NaCl supplementation did not alter growth. At the highest supplementations (7.5% and 10.0%), juvenile cobia showed higher feed intake and feed conversion ratio. Na+, K+‐ATPase activity was higher in fish fed the diet without salt supplementation than in those fed with NaCl‐supplemented diets. The number of chloride cells significantly increased with increasing dietary salt level, being 2.5‐fold higher in fish fed with 10.0% NaCl supplementation (41 cells mm?2) than in those from the non‐supplemented fed group (16 cells mm?2). These findings indicate that dietary salt supplementation stimulated chloride cell proliferation paralleled with a reduction in the gill Na+, K+‐ATPase activity, suggesting a possible decrease in energy consumption associated with osmoregulation. However, the suggested energy sparing did not have a significant impact on juvenile cobia growth.  相似文献   

13.
The purpose of this work was to determine the tissue accumulation of lead (Pb) and its effects on osmoregulatory processes of the freshwater fish Prochilodus lineatus. Juvenile fish were exposed to Pb (from 1.7 to 0.7 mg of dissolved Pb L?1) for 6, 24 and 96 h and Pb accumulation was analyzed in the gills, liver, kidneys, blood cells and muscle. The following parameters were also analyzed: hematologic (hemoglobin content, hematocrit and number of red blood cells), metabolic (blood glucose), endocrine (blood cortisol), osmo ionic (plasma osmolality and Na+, K+, Cl? and Ca+2 concentrations), gill enzymes (Na+/K+-ATPase and carbonic anhydrase), chloride cell (CC) density and CC location in the gills. Pb accumulated in all the analyzed tissues, with the kidneys showing the highest concentration, followed by the gills and liver. The lowest Pb concentrations were found in blood cells and muscle. Pb promoted an increase in blood glucose after 6 and 24 h exposure. Gill Na+/K+-ATPase was inhibited after 24 h of exposure, but its activity was restored at 96 h, probably due to the increase in CC in gill lamellae. Plasma Na+ was reduced after 6 and 96 h, while K+ concentrations increased at all the experimental times. Fish exposed to Pb showed reduced plasma Ca+2 at all experimental periods. Hematologic parameters remained unchanged. Overall, this study demonstrated that Pb interferes in osmoregulatory processes of P. lineatus and the proliferation of CC in the gills is a response in order to reestablish adequate ion concentrations.  相似文献   

14.
The aim of the present study was to investigate cataract development in diploid (2N) and triploid (3N) Atlantic salmon smolts and post‐smolts at two water temperatures (10 and 16 °C) given diets with different histidine supplementation (LH, 10.4 and HH, 13.1 g kg?1) before and after seawater transfer. In freshwater, a severe cataract outbreak was recorded in both ploidies reared at 16 °C. The cataract score was significantly higher in triploids compared to diploids, and the severity was lower in both ploidies fed the HH diet. The cataract development at 10 °C was minor. Low gill Na+, K+‐ATPase activity in fish reared at 16 °C before seawater transfer was followed by osmoregulatory stress with elevated plasma electrolyte concentrations and high mortality in sea water. Both diploids and triploids reared at 10 °C developed cataracts during the seawater period, with higher severities in triploids than diploids and a reduced severity in the fish fed the HH diet. The findings of this study demonstrate the importance of environmental conditions in the husbandry of Atlantic salmon, and particularly triploids, with regard to smoltification and adjusted diets to mitigate cataract development in fresh and sea water.  相似文献   

15.
The nitrate threshold concentration in rearing water of African catfish (Clarias gariepinus) was assessed. Female African catfish with an initial mean (SD) weight of 154.3 (7.5) g were exposed to 0.4 (Control), 1.5, 4.2, 9.7 and 27.0 mM nitrate for 42 days. Mean (SD) plasma concentrations of nitrate increased from 71 (29) to 6623 (921) μM at the highest ambient nitrate level. Mean (SD) plasma nitrite concentration ranged from 1.2 (0.5) to 7.9 (9.0) μM. Haematocrit, plasma concentrations of non‐esterified fatty acids (NEFA), cortisol, glucose, lactate, osmolality, gill morphology and branchial Na+/K+‐ATPase activity were not affected. Feed intake and specific growth rate were significantly reduced at the highest nitrate concentration. We advise not to exceed a water nitrate concentration of 10 mM (140 mg L?1 NO3‐N) to prevent the risk of reduced growth and feed intake in African catfish aquaculture.  相似文献   

16.
The mosquitofish (Gambusia affinis) naturally inhabits freshwater (FW; 1–3‰) and seawater (SW; 28–33‰) ponds in constructed wetland. To explore the physiological status and molecular mechanisms for salinity adaptation of the mosquitofish, cytoprotective responses and osmoregulation were examined. In the field study, activation of protein quality control (PQC) mechanism through upregulation of the abundance of heat shock protein (HSP) 90 and 70 and ubiquitin-conjugated proteins was found in the mosquitofish gills from SW pond compared to the individuals of FW pond. The levels of aggregated proteins in mosquitofish gills had no significant difference between FW and SW ponds. Furthermore, the osmoregulatory responses revealed that the body fluid osmolality and muscle water contents of the mosquitofish from two ponds were maintained within a physiological range while branchial Na+/K+-ATPase (NKA) expression was higher in the individuals from SW than FW ponds. Subsequently, to further clarify whether the cellular stress responses and osmoregulation were mainly induced by hypertonicity, a laboratory salinity acclimation experiment was conducted. The results from the laboratory experiment were similar to the field study. Branchial PQC as well as NKA responses were induced by SW acclimation compared to FW-acclimated individuals. Taken together, induction of gill PQC and NKA responses implied that SW represents an osmotic stress for mosquitofish. Activation of PQC was suggested to provide an osmoprotection to prevent the accumulation of aggregated proteins. Moreover, an increase in branchial NKA responses for osmoregulatory adjustment was required for the physiological homeostasis of body fluid osmolality and muscle water content.  相似文献   

17.
18.
The present study was conducted to elucidate the osmoregulatory ability of the fish pearl spot (Etroplus suratensis) to know the scope of this species for aquaculture under various salinities. Juvenile pearl spot were divided into three groups and acclimated to freshwater (FW), brackish water (BW) or seawater (SW) for 15 days. The fish exhibited effective salinity tolerance under osmotic challenges. Although the plasma osmolality and Na+, K+ and Cl? levels increased with the increasing salinities, the parameters remained within the physiological range. The muscle water contents were constant among FW-, BW- and SW-acclimated fish. Two Na+/K+-ATPase α-isoforms (NKA α) were expressed in gills during acclimation in FW, BW and SW. Abundance of one isoform was up-regulated in response to seawater acclimation, suggesting its role in ion secretion similar to NKA α1b, while expression of another isoform was simultaneously up-regulated in response to both FW and SW acclimation, suggesting the presence of isoforms switching phenomenon during acclimation to different salinities. Nevertheless, NKA enzyme activities in the gills of the SW and FW individuals were higher (p < 0.05) than in BW counterparts. Immunohistochemistry revealed that Na+/K+-ATPase immunoreactive (NKA-IR) cells were mainly distributed in the interlamellar region of the gill filaments in FW groups and in the apical portion of the filaments in BW and SW groups. The number of NKA-IR cells in the gills of the FW-acclimated fish was almost similar to that of SW individuals, which exceeded that of the BW individuals. The NKA-IR cells of BW and SW were bigger in size than their FW counterparts. Besides, the relative abundance of branchial Na+/K+/2Cl? co-transporter showed stronger evidence in favor of involvement of this protein in hypo-osmoregulation, requiring ion secretion by the chloride cells. To the best of our knowledge, this is the first study reporting the wide salinity tolerance of E. suratensis involving differential activation of ion transporters and thereby suggesting its potential as candidate for fish farming under different external salinities.  相似文献   

19.
Several experiments were performed to investigate the physiology of seawater acclimation in the striped bass, Morone saxatilis. Transfer of fish from fresh water (FW) to seawater (SW; 31–32 ppt) induced only a minimal disturbance of osmotic homeostasis. Ambient salinity did not affect plasma thyroxine, but plasma cortisol remained elevated for 24h after SW transfer. Gill and opercular membrane chloride cell density and Na+,K+-ATPase activity were relatively high and unaffected by salinity. Average chloride cell size, however, was slightly increased (16%) in SW-acclimated fish. Gill succinate dehydrogenase activity was higher in SW-acclimated fish than in FW fish. Kidney Na+, K+-ATPase activity was slightly lower (16%) in SW fish than in FW fish. Posterior intestinal Na+,K+-ATPase activity and water transport capacity (Jv) did not change upon SW transfer, whereas middle intestinal Na+,K+-ATPase activity increased 35% after transfer and was correlated with an increase in Jv (110%). As salinity induced only minor changes in the osmoregulatory organs examined, it is proposed that the intrinsic euryhalinity of the striped bass may be related to a high degree of “preparedness” for hypoosmoregulation that is uncommon among teleosts studied to data.  相似文献   

20.
Red drum (Sciaenops ocellatus) is a euryhaline fish commonly found in the Gulf of Mexico and along the Atlantic coast of North America. Because of high commercial demand and its euryhaline characteristics, aquaculture of this species has diversified from marine to low-salinity aquaculture systems. In recent years, interest in the feasibility of producing red drum in inland freshwater systems has grown and this prompted us to investigate its osmoregulatory capacity after rearing for 8 months in a freshwater aquaculture system. We compared the activities of several genes and enzymes involved in the osmoregulatory process in freshwater-acclimatized (FW) and seawater (SW) red drum. The gene expression profiles were variable: the expression of genes encoding Na+/K+-ATPase (NKA) and the cystic fibrosis transmembrane regulator (CFTR) was slightly higher in SW than FW fish, while phosphoenolpyruvate carboxykinase (PEPCK) and the glucocorticoid receptor messenger RNA (mRNA) levels were higher in FW red drum. The total plasma K concentration was 60.3% lower, and gill NKA activity was 63.5% lower in FW than in SW fish. PEPCK activity was twofold higher in FW than in SW red drum. Similarly, liver glycogen was 60% higher in FW fish. In summary, both gene expression and the enzyme activity data support the phenotypic plasticity of red drum and suggest that the limited capacity for ion homeostasis observed, in particular the low plasma K concentration, was due to the composition of freshwater and does not necessarily reflect a physiological inability to osmoregulate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号