首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
The roles of salmon GnRH (sGnRH) and gonadal steroid hormones in regulation of LH synthesis and release were examined in primary pituitary cell cultures of masu salmon (Oncorhynchus masou). Pituitaries were taken from fish at four reproductive stages: in March (initiation of sexual maturation); May (early maturation); July (pre-spawning); and September (spawning period). Amounts of LHβ subunit mRNA in the pituitary cells were determined by real-time PCR, and LH levels in the medium were determined by RIA. sGnRH and gonadal steroids including estradiol-17β (E2), testosterone (T) and 11-ketotestosterone (11-KT) were added to the cultures to examine their direct effects on LH response. sGnRH had no significant effect on LHβ mRNA levels at any stages, although a stimulatory trend was noted in March. In contrast, E2 and T considerably increased LHβ subunit mRNA levels in March and May during initial stages of maturation, and the effects were less pronounced in July and September. On the other hand, sGnRH stimulated LH release at all stages in the males and the effects were most prominent in July and September. E2 and T also stimulated LH release in July and September, but their effects were weaker than that of sGnRH. The present results indicate that sGnRH and gonadal steroids directly regulate LH synthesis and release in masu salmon pituitary cells: sGnRH mainly stimulates LH release in the late stage of sexual maturation; whereas, E2 and T are effective in stimulating LH synthesis at earlier stages of maturation.  相似文献   

3.
The endocrine regulation of reproduction in a multiple spawning fish with an asynchronous-type ovary remains largely unknown. The objectives of this study were to monitor changes in the mRNA expression of three gonadotropin (GtH) subunits (GPα, FSHβ, and LHβ) during the reproductive cycle of the female chub mackerel Scomber japonicus. Cloning and subsequent sequence analysis revealed that the cDNAs of chub mackerel GPα, FSHβ, and LHβ were 658, 535, and 599 nucleotides in length and encoded 117, 115, and 147 amino acids, respectively. We applied a quantitative real-time PCR assay to quantify the mRNA expression levels of these GtH subunits. During the seasonal reproductive cycle, FSHβ mRNA levels remained high during the vitellogenic stages, while GPα and LHβ mRNA levels peaked at the end of vitellogenesis. The expression of all three GtH subunits decreased during the post-spawning period. These results suggest that follicle-stimulating hormone (FSH) is involved in vitellogenesis, while luteinizing hormone (LH) functions during final oocyte maturation (FOM). Both GPα and FSHβ mRNA levels remained high during the FOM stages of the spawning cycle and increased further just after spawning. Thus, FSH synthesis may be strongly activated just after spawning to accelerate vitellogenesis in preparation for the next spawning. Alternatively, LHβ mRNA levels declined during hydration and then increased after ovulation. This study demonstrates that chub mackerel are a good model for investigating GtH functions in multiple spawning fish.  相似文献   

4.
To examine the roles of gonadal steroids in the regulation of expression of gonadotropin subunit genes, male red seabream were gonadectomized and a sub-group was treated with 11-ketotestosterone (11-KT). Castration of males during the early stage of spermatogenesis elicited a significant increase in FSHβ mRNA levels, which was prevented by 11-KT replacement. By contrast, LHβ mRNA levels were not changed by castration or 11-KT replacement. In addition, administration of 11-KT to sham-operated males suppressed the steady-state FSHβ and LHβ mRNA levels. These results indicate that 11-KT may function as a negative feedback regulator of FSHβ gene expression, and may act through the testis to down-regulate LHβ mRNA levels in male red seabream during this period.  相似文献   

5.
To study the physiological roles of gonadotropins (GtHs) in the yellowtail, the cDNAs encoding each GtH subunit (GPHα, FSHβ and LHβ) and their receptors (FSHR and LHR) were isolated from the pituitary gland and gonads using the polymerase chain reaction (PCR). In addition, thyrotropin (TSH) and its receptor (TSHR) cDNAs, were isolated from the pituitary gland, ovary and testis. The changes in the mRNA levels of each subunit were determined at different stages of maturation. The isolated cDNAs of GPHα, FSHβ, LHβ and TSHβ were 662, 545, 595 and 879 bp long, respectively. The amino acid sequence identity of the yellowtail GPHα, FSHβ, LHβ and TSHβ subunits was 85–63, 68–33, 93–65 and 74–46%, respectively, as compared with other fish species. Northern blot analysis showed that GPHα and FSHβ were strongly expressed in pituitary at the early vitellogenic stage and during spermatogenesis, whereas LHβ was expressed significantly in the late vitellogenic stage, and in both spermatogenesis and spermiation. Full-length cDNAs encoding FSHR, LHR, and TSHR were obtained from the testes and ovaries. The FSHR, LHR and TSHR cDNA encoded a protein of 680, 702 and 778 amino acids, and showed the highest identity with tilapia FSHR (76%), tilapia LHR (84%) and striped bass TSHR (94%), respectively. Northern blot analyses indicated that all of these receptors are expressed differently at different stages in the ovaries and testes.  相似文献   

6.
7.
We examined the effects of gonadotropin-releasing hormone agonist (GnRHa) and testosterone (T) on the level of gonadotropin subunit mRNAs in the pituitary of ovariectomized or intact female red seabream. Ovariectomy induced increase of seabream (sb) GnRH, glycoprotein (GP) α and luteinizing hormone (LH) β mRNA levels. GnRHa treatment also stimulated GPα and LHβ mRNA levels. T treatment reduced GPα and LHβ mRNA expression probably via negative feedback action on sbGnRH. Both GnRHa and T treatment had no effect on follicle-stimulating hormone (FSH) β mRNA levels. These results suggest that the regulatory mechanisms of GPα and LHβ gene expression differ from those of FSHβ gene.  相似文献   

8.
The duality of gonadotropins (GTHs), follicle-stimulating hormone (FSH) and luteinizing hormone (LH), has been confirmed in most teleost species, but very little is known about their biological functions. To elucidate the physiological roles of FSH and LH in fish reproduction, the expression profiles of GTH subunit genes during gonadal development were analyzed in both male and female red seabream. Furthermore, in vitro studies were carried out to examine the effects of GTHs on steroid hormone production and cytochrome P450 aromatase (P450arom) expression in red seabream gonads. In both sexes, LHβ mRNA was maintained at high levels from the early gametogenesis until spawning season, and declined with gonadal regression. Interestingly, FSHβ mRNA levels in males increased in parallel with testicular development, whereas those in female were remained low throughout oocyte development. From in vitro studies using purified red seabream FSH and LH, both GTHs had a similar potency in stimulating 11-ketotestosterone production by testicular slices, while the biological activity of FSH was much lower than that of LH in stimulating production of estradiol-17β by vitellogenic follicles. Moreover, expression of P450arom mRNA was induced by LH, but not FSH, in ovarian follicles in vitro. FSH was also ineffective in inducing maturational competence and final oocyte maturation. These results suggest that, unlike salmonids, FSH may play an important role during gametogenesis in male, but not female, red seabream, whereas LH may be involved in regulation of both early and late gametogenesis in both sexes.  相似文献   

9.
The role of gonadotropin (GTH) in the reproduction of the Japanese flounder, Paralichthys olivaceus, was studied by assessing the changes in the apparent activity of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in the pituitary gland during gonadal maturation by immunohistochemical analyses. Corresponding changes in plasma levels of testosterone (T), estradiol-17β (E2), and 17α,20β-dihydroxy-4–pregnen-3-one (DHP) were also studied. Reared fish at the early spawning to termination stages were sampled from May to August and wild fish at the previtellogenic to termination stages were caught at 3- to 4-week intervals between April and September offshore from the northern mainland of Japan by gill nets. The gonadosomatic index of the reared fish decreased from the early spawning stage to the termination stage, while that of the wild fish increased significantly from the previtellogenic stage to the early spawning stage and decreased thereafter. In the reared fish, the immunostaining intensities of FSH and LH were high during the spawning period, accompanied by high plasma levels of T, E2, and DHP. In the wild fish, the immunostaining intensities of FSH and LH were low during the previtellogenic stage but increased during the maturing and spawning stages. These results indicate that both FSH and LH are likely associated with oocyte maturation in the Japanese flounder.  相似文献   

10.
Two gonadotropins (GtH; Qa and Qb) were purified by gel filtration and ion exchange chromatography from the pituitaries of Indian walking catfish (Clarias batrachus). The presence of GtH during purification was assessed by in vitro oocyte maturation and in vivo steroidogenic activity, and their identities were determined by elution profiles, molecular weight, biological activities and yield. The molecular weights of Qa and Qb were 37 and 42 kDa, respectively, and composed of distinct subunits (Qa: 20 and 14 kDa and Qb: 26 and 18 kDa). Polyclonal antibodies raised against Qa immunostained Qa, Qb and pituitary GtH cells. A competitive Qa‐ELISA was developed whose sensitivity was 6.25 ng mL?1 (1.25 ng well?1) with intra‐ (3.5%) and inter‐ (12.4%) assay coefficients of variation. Displacement curves parallel to the standard were obtained with plasma and pituitary extracts of catfish, Qb and carp GtHII. The assay was validated by measuring the plasma Qa levels after LHRH treatment and in relation to ovarian growth in the female catfish during different reproductive phases. Based on the results, Qa and Qb corresponded to fish LH and FSH respectively. The findings will increase the knowledge of the mechanisms controlling fish reproduction and identification of sensitive phases in fish in captivity for hormonal manipulation.  相似文献   

11.
In this study we examined the endocrine mediation between environmental factors (temperature and photoperiod) and the brain–pituitary–gonadal axis in females of pejerrey Odontesthes bonariensis. Changes in the expression of brain gonadotropin-releasing hormones (GnRHs) and gonadotropin (GtH) subunit [follicle stimulating-β (FSH-β), luteinizing hormone-β (LH-β), glycoprotein hormone-α (GPH-α)] genes, plasma gonadal steroids [estradiol (E2) and testosterone (T)], gonadal histology, and gonadosomatic index (GSI) in adult females exposed to combinations of short-day (8 h) or long-day (16 h) photoperiods and low (12°C) or high (20°C) temperatures after winter conditions (8 h light, 12°C) were analyzed. Pejerrey females kept under the short photoperiod had low GSIs, and their ovaries contained only previtellogenic oocytes regardless of the experimental temperature. In contrast, females exposed to the long photoperiod had high GSIs and ovaries with vitellogenic oocytes at both temperatures. These fish also showed a significantly higher expression of sGnRH, pjGnRH, cGnRH-II (the three different GnRH variants found to date in the pejerrey brain), FSH-β, LH-β and GPH-α genes and plasma E2 levels than those at the shorter photoperiod. No significant changes were observed in plasma T levels. Based on these results, we concluded that the increase in day length but not that of temperature triggers the maturation of pejerrey females after the winter period of gonadal rest and that this occurs by an integrated stimulation of the various components of the brain–pituitary–gonad axis.  相似文献   

12.
GnRH_A和紫萁抑制大黄鱼性腺早熟的机制   总被引:5,自引:0,他引:5  
翁幼竹 《水产学报》2001,25(6):518-521,T001
应用脑垂体组织生理学和免疫组织化学方法,对GnRH-A和紫萁抑制大黄鱼性早熟的作用机制进行了研究。结果表明,性早熟大黄鱼脑垂体许多促性腺激素分泌细胞的胞质出现空泡,提示性早熟的原因可能是由于GtH细胞提早进入分泌活动所致。长期服用促性腺激素释放激素类似物的养殖大黄鱼(没有性早熟),它的脑垂体GtH细胞对GnRH抗独特型发生弱的免疫阳性反应,而对照组性早熟鱼仍出现强的反应,表明实验组大黄鱼脑垂体GtH细胞对GnRH-A的应答能力下降,出现脱敏效应,这可能与GnRH-A抑制大黄鱼性早熟有关。养殖大黄鱼长期服用紫萁,它的脑垂体GtH细胞膜上GnRH受体则没有出现脱敏现象,提示紫萁抑制大黄鱼性早熟的机制不同于GnRH类似物,确切机制有待进一步研究。  相似文献   

13.
Gonadotropin (GTH) hormones are glycoprotein which stimulates gonadal maturation in vertebrates. Follicle stimulating hormone is involved in initiation of gametogenesis and regulation of gonadal growth. FSHβ has been cloned and characterized from the brain of Catla catla. The FSHβ full‐length of cDNA sequence of 523 bp comprised 3, 394 and 128 bp of 5′‐UTR, open reading frame (ORF) 3′‐UTR respectively. The coding region of C. catla FSHβ encoded a peptide of 130 amino acids. Phylogenetic analysis of C. catla FSHβ deduced amino acid sequence showed high similarity with Gobiocypris rarus followed by goldfish, Carassius auratus. The qPCR result shows that FSHβ mRNA is mainly expressed in pituitary while moderate and low expression was observed in testis and ovary respectively. Chitosan‐nanoconjugated kisspeptin‐10 (CK‐10) of particle size 125 nm, polydispersity index of 0.335 to 0.65 and zeta potential of ?34.95 mV were synthesized and evaluated at against naked kisspeptin‐10 for their reproductive hormonal profile. Treatment of fish with CK‐10 showed controlled and sustained surge of the reproductive hormones (FSH & LH) with peak at 12 h. The hormone levels of naked kisspeptin‐10 treated fish decline after 6 h. The sustained release of this CK‐10 will help in reducing maturation age, synchronization of ovulation and spawning in fish. This is the first report on use of chitosan‐nanoconjugated kisspeptin‐10 (CK‐10) for reproduction in fish.  相似文献   

14.
The immunological specificity of fish gonadotropin does not generally allow the use of the homologous RIA systems prepared for salmon and carp GtH for the determination of gonadotropin in other species. Recently, an RIA using an antibody directed against the β c-GtH subunit has enabled GtH measurement in the eel. A similar approach using the s-GtH β subunit in homologous salmon systems and combinations between carp and salmon β systems has been developed. α and β subunits and the corresponding antibodies have been prepared from carp and salmon GtH. A study of the binding of the six antigens to each of the six antibodies confirms the species specificity of the α subunits. On the other hand, all the systems in which a β component is included, homologous or heterologous, for carp and salmon, are less specific and recognized c-GtH as well as s-GtH. The competition by pure antigens, partially purified pike and gilthead sea bream GtH, tilapia, milkfish and eel pituitary extracts, for the binding of s and β s-GtH, c and β c-GtH to the anti-serum directed against these four components has been studied. It was always possible to find one or several antigen-antibody combinations which were specifically competed for by each of the gonadotropic preparations. The assay has been validated for gilthead sea bream GtH by comparison of the results obtained after RIA determination and biological assay. Assays performed with perch show that it is also possible to use these systems for the GtH estimation in the plasma of this species.

Résumé

La spécificité immunologique des gonadotropines de poissons, n'autorise généralement pas l'utilisation des systèmes de dosage radioimmunologique (RIA) homologues existant pour les GtH Carpe et Saumon, à la mesure des concentrations de GtH hypophysaire et plasmatique d'autres espèces. L'emploi d'un système de dosage utilisant un anticorps  相似文献   

15.
16.
综述促性腺素释放激素类似物(GnRH-a)缓释制剂(SRDS),人绒毛膜促性腺激素(HCG)SRDS,类固醇激素SRDS;雄烯二酮(ADSD)和17a-甲基睾丸酮(MT),以及鲤垂体匀浆(CPE)混合SRDS诱导海水养殖鱼类性腺发育成熟和生殖行为的效果,认为采用GnRH-a SRDS处理性腺发育良好的鲈形目鱼类和鲆鲽鱼类,可以显著提高血液促性腺激素(GtH)水平,且持续时间长,诱导排卵成功,HCG乳胶SRDS可诱导日本鳗鲡(Anguila japonicus)血液GtH持续 升高,性成熟系数明显升高并且性腺发育成熟;HCG和CPE水/油/水(W/O/W)复乳SRDS对日本鳗鲡的催熟效果显著,采用ADSD和MT SRDS SRDS可成功诱导日本鳗鲡性腺成熟与排卵。  相似文献   

17.
The effect of endocrine-disrupting chemicals (EDCs) on the expression of ubiquitin C-terminal hydrolase (UCH) mRNA in the Japanese common goby, Acanthogobius flavimanus, was investigated by competitive PCR assay. Exposure of fish to estradiol-17β (E2) induced significant increase in the UCH mRNA in testis and brain, but exposure to bisphenol A and nonylphenol did not. This result suggests that expression of the UCH gene is E2-inducible.  相似文献   

18.
In order to investigate the effects of dietary fish oil replacement, the turtles (Mauremys sinensis) were fed four experimental diets for 10 months: FO (100% fish oil), FSO (70% fish oil and 30% soybean oil), SFO (30% fish oil and 70% soybean oil) and SO (100% soybean oil), sampled at pre‐vitellogenesis, vitellogenesis and post‐vitellogenesis. The results showed that plasma gonadotropin‐releasing hormone (GnRH) levels were the highest at pre‐vitellogenesis, which promoted the secretion of gonadotropin and sex steroids. Therefore, plasma luteinizing hormone (LH) and estrogen (E2) levels were significantly increased at post‐vitellogenesis (< 0.05), while follicle‐stimulating hormone (FSH) levels increased at vitellogenesis (< 0.05). The FO and FSO groups had significantly higher GnRH and E2 levels than the other two groups (< 0.05). In addition, plasma vitellogenin (Vtg) levels significantly increased at vitellogenesis and post‐vitellogenesis (< 0.05), which were significantly higher in the groups of FO and FSO than SO (< 0.05). Moreover, the expression levels of hepatic estrogen receptor α (Erα) mRNA were significantly increased at vitellogenesis and post‐vitellogenesis while ovarian Cyp19α1α mRNA were significantly increased at post‐vitellogenesis (< 0.05), and both were the lowest in SO. Taken together, the replacement of fish oil with 66.7% soybean oil is feasible.  相似文献   

19.
The S2 cell system was utilized for the production of recombinant luteinizing hormone (LH) and follicle stimulating hormone (FSH) of the channel catfish (Ictalurus punctatus) as C-terminal His-tagged proteins. When expressed individually, the common α-subunit was secreted in abundance but both β-LH and β-FSH were poorly expressed. However, co-expression of the α-subunit with each of the β subunits using a duel promoter vector resulted in the abundant secretion of LH and FSH α/β heterodimers. These recombinant gonadotropins (GtH) were able to stimulate estradiol secretion in an ovarian follicle bioassay and activate recombinant gonadotropin receptors.  相似文献   

20.
ABSTRACT:   In order to clarify the roles of androgen and gonadotropin-releasing hormone (GnRH) on gonadotropin (GTH; luteinizing hormone [LH] and follicle stimulating hormone [FSH]) synthesis, effects of castration and implantation of GnRH analog (GnRHa) or 11-ketotestosterone (11-KT) on expression of GTH subunit, α-glycoprotein subunit (αGSU), FSHβ, and LHβ genes, during the early spermatogenic stage in male red seabream Pagrus major were examined. Male red seabream underwent castration or sham-operation and were subsequently implanted with cholesterol pellets containing GnRHa, silicone capsules filled with 11-KT, or blank capsules (control). FSHβ mRNA levels increased due to castration, and it was reversed by treatment with 11-KT. 11-ketotestosterone treatment also decreased FSHβ mRNA levels in sham-operated fish. These results suggest that 11-KT acts on the pituitary to suppress FSH synthesis in male red seabream. On the other hand, neither castration nor replacement of 11-KT in castrated fish had effects on LHβ mRNA levels, whereas 11-KT treatment had slightly but significantly decreased LHβ mRNA in sham-operated fish. αGSU mRNA levels were not changed by castration or 11-KT treatment in both sham-operated and castrated fish. Meanwhile, treatment with GnRHa significantly decreased FSHβ mRNA levels in sham-operated fish, but not in castrated fish. This suggests that GnRHa may down-regulate expression of FSHβ mRNA through the production of 11-KT in testis. LHβ and αGSU mRNA levels in sham-operated fish, but not in castrated fish, were significantly elevated by treatment with GnRHa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号