首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The duality of gonadotropins (GTHs), follicle-stimulating hormone (FSH) and luteinizing hormone (LH), has been confirmed in most teleost species, but very little is known about their biological functions. To elucidate the physiological roles of FSH and LH in fish reproduction, the expression profiles of GTH subunit genes during gonadal development were analyzed in both male and female red seabream. Furthermore, in vitro studies were carried out to examine the effects of GTHs on steroid hormone production and cytochrome P450 aromatase (P450arom) expression in red seabream gonads. In both sexes, LHβ mRNA was maintained at high levels from the early gametogenesis until spawning season, and declined with gonadal regression. Interestingly, FSHβ mRNA levels in males increased in parallel with testicular development, whereas those in female were remained low throughout oocyte development. From in vitro studies using purified red seabream FSH and LH, both GTHs had a similar potency in stimulating 11-ketotestosterone production by testicular slices, while the biological activity of FSH was much lower than that of LH in stimulating production of estradiol-17β by vitellogenic follicles. Moreover, expression of P450arom mRNA was induced by LH, but not FSH, in ovarian follicles in vitro. FSH was also ineffective in inducing maturational competence and final oocyte maturation. These results suggest that, unlike salmonids, FSH may play an important role during gametogenesis in male, but not female, red seabream, whereas LH may be involved in regulation of both early and late gametogenesis in both sexes.  相似文献   

2.
cDNA clones encoding gonadotropin (GTH) α, follicle-stimulating hormone (FSH) β and luteinzing hormone (LH) β were isolated from the pituitaries of maturing Manchurian trout (Brachymystax lenok tsinlingensis) and sequenced. The deduced amino acid sequences of GTH subunits showed high identities to masu salmon, Oncorhynchus masou: GTHα1 (95%), FSHβ (92%) and LHβ (97%), respectively. We are also attempting to produce recombinant FSH and LH using a eukaryotic expression system. In a pilot experiment, LH was secreted to the culture medium at 48 and 60 hrs after transfection. The results will be helpful to develop controlled reproduction of exterminating Manchurian trout.  相似文献   

3.
This study was conducted to identify the possible effect of recombinant vertebrate ancient long (VAL) opsin as a non-visual “photoreceptor” in the deep brain of goldfish, Carassius auratus. In addition, we investigated the effects of green-wavelength light on the predictable reproductive function of VAL-opsin as a green-sensitive pigment in the deep brain. To determine this, we quantified changes in gonadotropin hormone (GTH) [GTHα, follicle stimulating hormone (FSH) and luteinizing hormone (LH)] and estrogen receptor (ER; ERα and ERβ) mRNA expression levels associated with goldfish reproduction as well as changes in plasma FSH, LH, and 17β-estradiol (E2) activities after injection of recombinant VAL-opsin protein in two concentrations (0.1 or 0.5 μg/g body mass) for 4 weeks (injection once weekly) and examined the possible impact of green-wavelength light (500, 520, and 540 nm) on the function of VAL-opsin. As a result, all parameters associated with reproduction significantly increased with time and light-emitting diode (LED) exposure. Based on these results, we suggested that VAL-opsin in the deep brain is involved in goldfish maturation, and it is possible that green-wavelength light improves the ability of VAL-opsin to promote maturation by increasing VAL-opsin expression.  相似文献   

4.
Thyrotropin (thyroid-stimulating hormone, TSH), a heterodimeric glycoprotein hormone produced in the pituitary, stimulates the thyroid gland and release of thyroid hormones. In contrast to a well-known efficacy of recombinant mammalian TSHs, there is no report about the production of teleost recombinant TSH and its biological activity. In this study, we report the production of a single-chain recombinant TSH (mtTSH) of Manchurian trout (Brachymystax lenok), by baculovirus in silkworm (Bombyx mori) larvae. The mtTSH was produced in silkworm larvae and characterized as a form of N-linked glycosylation. The cAMP signaling system in transiently transfected COS-7 cells revealed that the mtTSH was recognized by their cognate receptors, salmon TSHα and TSHβ receptors, but not LH receptor. The thyrotropic potency of the mtTSH was examined by rainbow trout basibranchial tissues containing thyroid follicles. The height of follicle epithelial cells was significantly increased by treatments of mtTSH in vivo and in vitro. In conclusion, the present study suggests that the mtTSH produced by baculovirus–silkworm larvae is a biologically active recombinant TSH.  相似文献   

5.
The feasibility of using rainbow trout Oncorhynchus mykiss embryos as an expression system for proteins was investigated. For model proteins, we selected two goldfish gonadotropins (GTHs), follicle-stimulating hormone (FSH) and luteinizing hormone (LH). To produce single-chain goldfish FSH (scgfFSH) and LH (scgfLH), cDNAs encoding glycoprotein hormone (GP) α and FSHβ were fused in tandem, and cDNAs encoding GPα and LHβ were fused in tandem. The fused cDNAs were ligated with β-actin promoter, and microinjected into fertilized rainbow trout eggs. After 4-days incubation, the embryos were subjected to western blotting and in vitro bioassays. The recombinant proteins produced by the embryos were immunoreactive to antisera against goldfish GPα, N-glycosylated, and biologically active. We conclude that scgfFSH and scgfLH were successfully produced in transgenic rainbow trout.  相似文献   

6.
The S2 cell system was utilized for the production of recombinant luteinizing hormone (LH) and follicle stimulating hormone (FSH) of the channel catfish (Ictalurus punctatus) as C-terminal His-tagged proteins. When expressed individually, the common α-subunit was secreted in abundance but both β-LH and β-FSH were poorly expressed. However, co-expression of the α-subunit with each of the β subunits using a duel promoter vector resulted in the abundant secretion of LH and FSH α/β heterodimers. These recombinant gonadotropins (GtH) were able to stimulate estradiol secretion in an ovarian follicle bioassay and activate recombinant gonadotropin receptors.  相似文献   

7.
We previously demonstrated the biological activities of single-chain recombinant gonadotropins (scGTHs) of goldfish Carrassius auratus follicle-stimulating hormone (scFSH) and luteinizing hormone (scLH), produced by a baculovirus–silkworm larvae system, by using in vivo bioassays with some fishes including Japanese eel Anguilla japonica. Among the bioassays, we succeeded in induction of spermatogenesis of sexually immature male Japanese eels by both scFSH and scLH, especially resulting in the occurrence of spermatozoa in scLH-administered males. However, those recombinant hormones did not induce enlargement of testes. In order to further confirm the potency of recombinant GTHs for use in aquaculture species, we administered scFSH and scLH to males of Japanese eel at higher dosage and frequency (eight times with 2–5 days interval) than those of the previous study (five or six times with 7 days intervals), including combination of scFSH and scLH administration (scFSH–scLH). Gonadosomatic indices (GSI) of scLH- and scFSH–scLH-administered males were larger than those of initial control males and of control males that were injected with saline. Enlargement of testes was also confirmed by measurement of testicular lobe size in scFSH-, scLH-, and scFSH–scLH-administered males. By histological observation, occurrence of spermatozoa was confirmed in scLH- and scFSH–scLH-administered eels. Although milt production was not induced, higher dosage and frequency of scGTH administration was effective in promoting testicular development of immature eels. Thus, single-chain fish GTHs produced by the baculovirus–silkworm larvae system could be a useful tool for promotion of gonadal maturation in aquaculture fishes.  相似文献   

8.
Follicle-stimulating hormone (FSH) and luteinizing hormone (LH) play critical roles in controlling vertebrate gonadal development and function. Activin, a dimeric growth factor initially identified in the gonads, is important in the differential regulation of the two gonadotropins in mammals. Using goldfish as a model, we have demonstrated that activin stimulates FSHβ but suppresses LHβ expression. The present study demonstrated that the 5′-flanking region of goldfish FSHβ gene is functional in the mouse gonadotrope cell line, LβT2 cells. Similar to its effect on the cultured pituitary cells, activin stimulated FSHβ promoter activity in the LβT2 cells and the effect could be blocked by its binding protein follistatin. Follistatin also significantly suppressed the basal FSHβ promoter activity, suggesting secretion of endogenous activin by the LβT2 cells. Further characterization of the cis-regulatory elements responsible for activin stimulation is now under way in our laboratory.  相似文献   

9.
10.
In vivo andin vitro techniques were used to examine the influence of various vertebrate peptides on growth hormone (GH) secretion in the goldfish. Tetradecapeptide somatostatin (SRIF-14) was found to inhibit GH secretionin vitro from perifused pituitary fragments, whereas similar concentrations of a salmonid SRIF peptide (sSRIF-25) did not affect GH secretion from the goldfish pituitary fragments. This indicates that SRIF receptors on the goldfish pituitary are very specific for SRIF-14-like peptides. Salmon gonadotropin (GTH)-releasing hormone (sGnRH) was found to elevate serum GH levels in male goldfish. The dopamine antagonist pimozide alone or injected in combination with sGnRH did not influence serum GH levels, although injection of pimozide alone significantly elevated serum GTH levels, in addition to potentiating the effects of sGnRH on GTH secretion. sGnRH stimulated GH secretion from goldfish pituitary fragmentsin vitro, indicating that sGnRH acts directly at the level of the pituitary to stimulate GH secretion in the goldfish. These results suggest that GnRH may also function as a GH-releasing factor in the goldfish, although the release-inhibitory factors for GH and GTH secretion do appear to be separate and distinct. Two human GH-releasing hormone (hGHRH) peptides were found to be ineffective in altering GH secretionin vitro from the perifused pituitary fragments. Consequently, a role for a mammalian GHRH-like peptide in the hypothalamic regulation of GH secretion in the goldfish remains questionable.  相似文献   

11.
Gonadotropin (GTH) hormones are glycoprotein which stimulates gonadal maturation in vertebrates. Follicle stimulating hormone is involved in initiation of gametogenesis and regulation of gonadal growth. FSHβ has been cloned and characterized from the brain of Catla catla. The FSHβ full‐length of cDNA sequence of 523 bp comprised 3, 394 and 128 bp of 5′‐UTR, open reading frame (ORF) 3′‐UTR respectively. The coding region of C. catla FSHβ encoded a peptide of 130 amino acids. Phylogenetic analysis of C. catla FSHβ deduced amino acid sequence showed high similarity with Gobiocypris rarus followed by goldfish, Carassius auratus. The qPCR result shows that FSHβ mRNA is mainly expressed in pituitary while moderate and low expression was observed in testis and ovary respectively. Chitosan‐nanoconjugated kisspeptin‐10 (CK‐10) of particle size 125 nm, polydispersity index of 0.335 to 0.65 and zeta potential of ?34.95 mV were synthesized and evaluated at against naked kisspeptin‐10 for their reproductive hormonal profile. Treatment of fish with CK‐10 showed controlled and sustained surge of the reproductive hormones (FSH & LH) with peak at 12 h. The hormone levels of naked kisspeptin‐10 treated fish decline after 6 h. The sustained release of this CK‐10 will help in reducing maturation age, synchronization of ovulation and spawning in fish. This is the first report on use of chitosan‐nanoconjugated kisspeptin‐10 (CK‐10) for reproduction in fish.  相似文献   

12.
ABSTRACT:   In order to clarify the roles of androgen and gonadotropin-releasing hormone (GnRH) on gonadotropin (GTH; luteinizing hormone [LH] and follicle stimulating hormone [FSH]) synthesis, effects of castration and implantation of GnRH analog (GnRHa) or 11-ketotestosterone (11-KT) on expression of GTH subunit, α-glycoprotein subunit (αGSU), FSHβ, and LHβ genes, during the early spermatogenic stage in male red seabream Pagrus major were examined. Male red seabream underwent castration or sham-operation and were subsequently implanted with cholesterol pellets containing GnRHa, silicone capsules filled with 11-KT, or blank capsules (control). FSHβ mRNA levels increased due to castration, and it was reversed by treatment with 11-KT. 11-ketotestosterone treatment also decreased FSHβ mRNA levels in sham-operated fish. These results suggest that 11-KT acts on the pituitary to suppress FSH synthesis in male red seabream. On the other hand, neither castration nor replacement of 11-KT in castrated fish had effects on LHβ mRNA levels, whereas 11-KT treatment had slightly but significantly decreased LHβ mRNA in sham-operated fish. αGSU mRNA levels were not changed by castration or 11-KT treatment in both sham-operated and castrated fish. Meanwhile, treatment with GnRHa significantly decreased FSHβ mRNA levels in sham-operated fish, but not in castrated fish. This suggests that GnRHa may down-regulate expression of FSHβ mRNA through the production of 11-KT in testis. LHβ and αGSU mRNA levels in sham-operated fish, but not in castrated fish, were significantly elevated by treatment with GnRHa.  相似文献   

13.
The role of gonadotropin (GTH) in the reproduction of the Japanese flounder, Paralichthys olivaceus, was studied by assessing the changes in the apparent activity of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in the pituitary gland during gonadal maturation by immunohistochemical analyses. Corresponding changes in plasma levels of testosterone (T), estradiol-17β (E2), and 17α,20β-dihydroxy-4–pregnen-3-one (DHP) were also studied. Reared fish at the early spawning to termination stages were sampled from May to August and wild fish at the previtellogenic to termination stages were caught at 3- to 4-week intervals between April and September offshore from the northern mainland of Japan by gill nets. The gonadosomatic index of the reared fish decreased from the early spawning stage to the termination stage, while that of the wild fish increased significantly from the previtellogenic stage to the early spawning stage and decreased thereafter. In the reared fish, the immunostaining intensities of FSH and LH were high during the spawning period, accompanied by high plasma levels of T, E2, and DHP. In the wild fish, the immunostaining intensities of FSH and LH were low during the previtellogenic stage but increased during the maturing and spawning stages. These results indicate that both FSH and LH are likely associated with oocyte maturation in the Japanese flounder.  相似文献   

14.
Recombinant Japanese eel follicle-stimulating hormone (rjeFSH) produced by methylotrophic yeast was subjected to in vivo bioassay to assess its gonadotropic activities and availability to artificially induce maturation of this species. Intramuscular injections of rjeFSH into male eels at doses of 0.1 and 1.0 U/g body weight were repeated 3 times during 12 days. The rjeFSH significantly increased plasma 11-ketotestosterone levels, and induced both testicular growth and spermatogenesis in a dose-dependent manner. These results demonstrate that rjeFSH is effective in promoting male eel gamatogenesis in vivo. Instead of scarce native eel FSH, abundant recombinant eel FSH is now ready for future application to maturation induction of Japanese eel.  相似文献   

15.
Hormonal and pheromonal control of spawning behavior in the goldfish   总被引:6,自引:0,他引:6  
Species that employ sexual reproduction must synchronize gamete maturity with behavior within and between genders. Teleost fishes solve this challenge by using reproductive hormones both as endogenous signals to synchronize sexual behavior with gamete maturation, and as exogenous signals (pheromones) to synchronize spawning interactions between fish. This dual role of hormonal products is best understood in the goldfish, an external fertilizer with a promiscuous mating system. Female gonadal growth and vitellogenesis is stimulated by 17β-estradiol (E2) which also evokes release of a recrudescent pheromone. At the completion of vitellogenesis, ovarian E2 production drops and plasma testosterone increases, sensitizing the female gonadotropin II (luteinizing hormone; LH) system to environmental cues (temperature, spawning substrate, pheromones). These cues eventually trigger a LH surge that alters steroidogenesic pathways to favor the production of progestins including 17,20β-dihydroxy-4-pregnen-3-one (17,20β-P). Plasma 17,20β-P stimulates oocyte maturation but is also released to the water along with sulfated 17,20β-P and androstenedione to serve as a preovulatory pheromone. This pheromone stimulates male behavior, LH release, and sperm production. At the time of ovulation, females become sexually active in response to prostaglandin F2α (PGF2α) synthesized in the oviduct. PGF2α and its metabolites are released as a postovulatory pheromone that induces male spawning behavior which further increases male LH and sperm production. Androgenic hormones are required for male behavior and LH release. Although goldfish are gonochorists, hormone treatments can induce heterotypical functions in adults. Similar findings in other fish demonstrate that a sexually bipotential brain is not restricted to hermaphroditic fishes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
ABSTRACT:   In order to investigate the influence of estrogen and androgen on reproductive activities of male teleosts, male red sea bream were implanted with silicone capsules containing estradiol-17β (E2), testosterone (T) or 11-ketotestosterone (11-KT) in immature and early spermatogenic stages. One month after implantation of either E2 or T, the gonadosomatic index decreased in accordance with testicular regression in both stages. Implantation of E2 decreased circulating 11-KT levels but did not affect gonadotropin (GTH) subunits, follicle stimulating hormone-β (FSHβ), luteinizing hormone-β (LHβ), α glycoprotein subunit (αGSU) gene expression, and serum LH levels in both stages. Alternatively, T decreased serum 11-KT and LH levels, and FSHβ and LHβ mRNA levels in the early spermatogenic stage but not in the immature stage. These results suggest E2 may directly inhibit testicular development through the suppression of 11-KT production. Meanwhile, T may decrease serum 11-KT levels through the suppression of FSH and LH secretion, resulting to inhibition of testicular development in the early spermatogenic stage. Treatment with 11-KT did not affect the testis in either stage, whereas 11-KT increased LHβ and αGSU mRNA levels in immature, and decreased FSHβ mRNA levels in the early spermatogenic stage. These results suggest that 11-KT may have different effects on GTH subunit gene expression in each reproductive stage.  相似文献   

17.
We examined the effects of gonadotropin-releasing hormone agonist (GnRHa) and testosterone (T) on the level of gonadotropin subunit mRNAs in the pituitary of ovariectomized or intact female red seabream. Ovariectomy induced increase of seabream (sb) GnRH, glycoprotein (GP) α and luteinizing hormone (LH) β mRNA levels. GnRHa treatment also stimulated GPα and LHβ mRNA levels. T treatment reduced GPα and LHβ mRNA expression probably via negative feedback action on sbGnRH. Both GnRHa and T treatment had no effect on follicle-stimulating hormone (FSH) β mRNA levels. These results suggest that the regulatory mechanisms of GPα and LHβ gene expression differ from those of FSHβ gene.  相似文献   

18.
Evidence for the involvement of Ca2+, protein kinase C, cAMP, and arachidonic acid metabolism in mediating gonadotropin (GTH) and growth hormone (GH) release in the goldfish is reviewed. Models for the signal transduction pathways mediating GTH-releasing hormone (GnRH) and dopamine actions on GTH and GH secretion are postulated. A novel hypothesis that two GnRHs which bind to the same receptor type activate different transduction cascade in two different cell types (GTH vs. GH) as well as within the same cell type (GTH) is presented.
Résumé Cette revue présente les données expérimentales démontrant l'implication de Ca++, de la protéine kinase C et du métabolismes de l'acide arachidonique dans les mécanismes régulant la sécrétion des hormones gonadotrope (GTH) et de croissance (GH). Des modèles de signaux de transduction de l'action de la gonadolibérine (GnRH) et de la dopamine sur la sécrétion de GTH et de GH sont proposés. Les deux GnRHs existant chez le poisson rouge pourraient se lier au même type de récepteur et activer différentes voies de transduction dans deux différents types cellulaires (GTH vs. GH) ou dans un seul type (GTH).
  相似文献   

19.
The physiological functions of pituitary gonadotropins (GtHs) are well established in higher vertebrates, whereas those in teleosts are still poorly understood. To describe the role of GtHs during gonadal development of female chub mackerel Scomber japonicus, changes in follicle-stimulating hormone (FSH) and luteinizing hormone (LH) cells were investigated immunohistochemically during the seasonal reproductive and spawning cycles. FSH and LH cells were identified in the different cell types of the proximal pars distalis (PPD); FSH cells were located in the central PPD, whereas LH cells were localized along the border of the pars intermedia. To examine changes in FSH and LH cells, the percentage of FSH or LH cell-occupying area in the PPD was evaluated and represented as FSHβ-immunoreactive (ir) or LHβ-ir levels, respectively. FSHβ-ir levels increased significantly from immature to the completion of vitellogenesis, whereas LHβ-ir levels were maintained at high levels from early vitellogenesis to post-spawning. During the spawning cycle, which consisted of four stages from just after spawning to the next oocyte maturation, both FSHβ-ir and LHβ-ir levels showed no significant changes among different stages; however, LHβ-ir levels remained relatively high, and FSHβ-ir levels were constantly low. These results suggest that both FSH and LH may be involved in vitellogenesis and LH may act at final oocyte maturation in female chub mackerel, although the role of FSH during the spawning cycle is still unclear.  相似文献   

20.
Blood and ovarian samples were collected at intervals of 4h prior to spawning time from medaka (Oryzias latipes) that were maturationally synchronized with artificial photoperiod (14h light: 10h dark). Plasma estradiol-17β (E2) levels increased rapidly from 16h before spawning and peaked at 8h before spawning. Follicle-enclosed oocytes (ovarian follicles) at different stages of development were isolated from the ovaries and used to study the in vitro effects of thyroid hormone (triiodothyronine; T3) on pregnant mare serum gonadotropin (GTH)-induced E2 production. GTH at a concentration of 100 IU/ml stimulated E2 production by ovarian follicles collected between 32 and 16h before spawning. At 32h before spawning, T3 (5 ng/ml) administered along with GTH (100 IU/ml) resulted in a 3.5 fold increase in E2 production, compared with GTH administered alone. These results suggest that T3 can act on ovarian follicles directly to modulate GTH-stimulated E2 production in the medaka.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号