首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was conducted to investigate the effect of tryptophan (TRP) supply on the thermoregulatory responses via brain serotonin (5‐HT) in cattle. In period 1, 12 Holstein steers were kept under a constant room temperature (22°C) and were administered the intravenous (i.v.) infusion of saline or TRP (38.5 mg/kg/2 h). Changes in rectal temperature (RT), 5‐HT concentration in the cerebrospinal fluid (CSF), and other factors involved in thermoregulation were measured. In period 2, the steers received the same treatments as in period 1; however, the room temperature was elevated from 22°C to 33°C during i.v. infusion and maintained at 33°C for 3 h. 5‐HT concentration in CSF increased following TRP infusion in both periods, and RT significantly decreased following TRP infusion only in period 2. The effect of TRP on respiration rate and plasma prolactin and total triiodothyronine concentrations was not significant. These results suggest that increase in TRP supply can attenuate increase in RT in response to acute heat stress through the increase in brain 5‐HT, followed by presumable increase in evaporative heat loss from the skin surface in cattle. It is possible that the increase in peripheral blood TRP metabolites could also participate in the hypothermic effect of TRP.  相似文献   

2.
This study was conducted to investigate the possibility of suppression of stress‐induced cortisol (CORT) secretion by tryptophan (TRP) administration and to better understand its regulatory mechanisms by using a noradrenaline (NA) injection into the third ventricle (3V) as a stress model in cattle. A total of 25 Holstein steers with a cannula in the 3V were used. First, the increase in CORT secretion was observed following a NA injection into the 3V in a dose‐dependent manner, verifying the appropriateness of this treatment as a stress model of CORT secretion (Experiment 1). The effect of prior‐administration of TRP into peripheral blood with a dose that has been demonstrated to increase brain 5‐hydroxytryptamine levels on the elevation of plasma CORT induced by NA or corticotropin‐releasing hormone (CRH) was then examined (Experiment 2). The prior administration of TRP suppressed NA‐induced, but not CRH‐induced, CORT elevation. These results suggest that an increase in TRP absorption into peripheral blood could suppress the stress‐induced CORT secretion in cattle via the attenuation of the stimulatory effect of NA on the hypothalamic CRH release.  相似文献   

3.
The effects of melatonin (MEL) injection into the third ventricle (3V) on growth hormone (GH) secretion were investigated in conscious Holstein steers. A stainless steel cannula was stereotaxically implanted in the 3V based on the ventriculogram. In Exp. 1, three doses of MEL (100, 300 or 600 microg) were injected into the 3V through the cannula and the GH concentration after the injection was determined. In Exp. 2, intracerebroventricular (icv) and intravenous (iv) injections of MEL (100 microg) and GH-releasing hormone (GHRH; 0.25 microg/kg body weight), respectively, were performed simultaneously to examine the effect of MEL on GHRH-induced GH release. The icv injection of MEL significantly stimulated GH release at 100 microg. The increase in GH concentrations by 100 microg of MEL was persistent. Intravenous injection of GHRH dramatically increased GH release. The injection of MEL did not alter GHRH-induced GH release. These results suggest that MEL stimulates GH secretion possibly through the hypothalamus in cattle.  相似文献   

4.
To understand the regulatory mechanism of the secretory rhythm of GH and the involvement of melatonin (MEL) in GH regulation in cattle, daytime and nighttime profiles of GH secretion and the effect of a photic stimulation on nocturnal GH and MEL secretion were investigated in Holstein steers. Steers were kept under a constant lighting condition of 12 h of light (LIGHT; 500 lx, 0600 to 1800 h):12 h of dark (DARK; 10 lx, 1800 to 0600 h). In Exp. 1, blood was taken for 4 h at 15-min intervals during LIGHT (1100 to 1500 h) and DARK (2300 to 0300 h), respectively. The sampling was also performed from 0500 to 0900 h, with the usual light transition (light onset at 0600 h; morning sampling). In Exp. 2, steers were exposed to light (500 lx) for 1 h from 0000 to 0100 h. Plasma GH and MEL concentrations were determined by RIA and enzyme immunoassay, respectively. Both GH (P < 0.05) and MEL (P < 0.01) concentrations in plasma for 4 h during DARK were greater than those during LIGHT. On the other hand, although MEL concentrations were decreased after the light onset at 0600 during the morning, GH release was not altered. Increased GH secretion during DARK was suppressed (P < 0.01) by the 1 h of light exposure, as were MEL concentrations (P < 0.05). Pineal MEL, which was affected by the photic condition, may play an important role in the secretory rhythm of GH secretion in cattle.  相似文献   

5.
To clarify endocrine responses to psychological stressors in cattle, the effects of isolation from familiar peers on plasma prolactin (PRL) and cortisol (CORT) concentrations, and the effect of 3,4‐dihydroxy‐L‐phenylalanine (L‐DOPA), a precursor of dopamine (DA), on stress‐induced PRL secretion were determined in Holstein steers. First, the potency of peripheral L‐DOPA administration on attenuation of central DA levels was confirmed. Cerebrospinal fluid (CSF) collected from a chronic cannula in the third ventricle and plasma were sampled 1 h before and 3 h after intravenous injection of L‐DOPA (100 mg/head). DA concentrations in CSF increased just after L‐DOPA injection with subsequent decrease in PRL secretion. Injection of L‐DOPA increased CORT secretion. Second, one experimental steer was isolated in its stall by removing its peers for 2 h with or without‐ pre‐injection of L‐DOPA. The concentration of PRL was elevated by isolation treatment, whereas the effect of isolation on CORT concentration could not be detected. The increase in PRL concentration after isolation was abolished by pre‐injection of L‐DOPA. These results suggest that PRL responds to isolation and that DA neurons in the central nervous system may regulate stress‐induced PRL secretion in steers.  相似文献   

6.
Some evidence suggests that there might be a species difference in the effect of intracerebroventricularly administered (ICV) prolactin‐releasing peptide (PrRP) between rodents and sheep. We compared the levels of cortisol (CORT) and prolactin (PRL), rectal temperature (RT) and behavioral responses to ICV bovine PrRP (bPrRP) in steers. ICV bPrRP (0.2, 2 and 20 nmol/200 µL) tended to evoke a dose‐related increase in CORT concentrations and 0.2 nmol of bPrRP induced transient increase in PRL concentrations. A significant time–treatment interaction was observed for the percent change of CORT (P < 0.05) and PRL (P < 0.05) from pre‐injection value. The time–treatment interaction for changes in RT was not significant (P = 0.50). There tended to be a difference among the four treatments in terms of maximum change in RT from the pre‐injection value between 0 and 90 min (P < 0.1). Stress‐related behavioral signs were not observed in the present experiment. These findings indicate that ICV bPrRP increased CORT and PRL levels, suggesting that central PrRP might participate in controlling the hypothalamo‐pituitary‐adrenal axis and PRL release in cattle, unlike sheep. In contrast, central PrRP is unlikely to be involved in controlling the behavior of this species because ICV bPrRP did not induce marked changes in their behavior.  相似文献   

7.
In order to clarify the role of serotonin (5-HT) in the regulation of pituitary hormones, the effects of 5-HT injected into the third ventricle (3V) on prolactin (PRL) and growth hormone (GH) release were investigated in Holstein steers. A chronic cannula was implanted in 3V by stereotaxic surgery under general anesthesia. After sufficient recovery from surgery, 5-HT (0, 0.1, 1.0, 2.0 mg) was injected into via the cannula and blood samples were collected over 4 h. Plasma PRL and GH concentrations were determined by radioimmunoassay. PRL release was significantly stimulated by the injection of 5-HT. The increase in PRL was observed at 20 min after the injection at three doses and the highest dose (2.0 mg) was the most effective in stimulating PRL release. The injection of 5-HT into 3V, at all doses tested, did not alter GH release significantly. Our results suggest that 5-HT is involved in the regulation of PRL release partly through the hypothalamus in cattle.  相似文献   

8.
The effects of l ‐DOPA, a precursor of dopamine (DA), and sulpiride, a D2‐type DA receptor blocker, on growth hormone (GH) and prolactin (PRL) secretion were investigated in steers. Eight Holstein steers (212.8 ± 7.8 kg body weight) were used. Lighting conditions were 12:12 L:D (lights on: 06.00–18.00 hours). Blood samplings were performed during the daytime (11.00–15.00 hours) and nighttime (23.00–03.00 hours). Intravenous injections of drugs or saline were performed at 12.00 hour for the daytime and 00.00 hour for the nighttime, respectively. Plasma GH and PRL concentrations were determined by radioimmunoassay. l ‐DOPA did not alter the GH secretion when it was injected at 12.00 hour (spontaneous GH level at its peak). On the other hand, l ‐DOPA increased GH secretion at 00.00 hour (GH level at its trough). Injection of sulpiride suppressed GH secretion at 12.00 hour but did not affect GH levels at 00.00 hour. l ‐DOPA inhibited and sulpiride stimulated PRL release during both periods. These results suggest that dopaminergic neurons have stimulatory action on GH secretion and inhibitory action on PRL secretion in cattle. In addition, injection time should be considered to evaluate the exact effects on GH secretion due to its ultradian rhythm of GH secretion in cattle.  相似文献   

9.
10.
The aim of the present study was to clarify the effect of melatonin (MEL) on the salsolinol (SAL)‐induced release of prolactin (PRL) in goats. Female goats were kept at 20°C with 16 h of light, 8 h of darkness, and orally administered saline or MEL for 5 weeks. A single intravenous (i.v.) injection of saline (controls), SAL, thyrotropin‐releasing hormone (TRH) or a dopamine receptor antagonist, sulpiride, was given to the goats 3 weeks after the first oral administrations of saline or MEL, and the responses were compared. The mean basal plasma PRL concentrations in the control group were higher for the saline treatments than MEL treatments (P < 0.05). SAL as well as TRH and sulpiride stimulated the release of PRL promptly after each injection in both the saline‐ and MEL‐treated groups (P < 0.05). The area under the response curve of PRL for the 60‐min period after the i.v. injection of SAL, TRH and sulpiride in the saline‐treated group was greater than each corresponding value in the MEL‐treated group (P < 0.05). These results show that daily exposure to MEL under a long day length reduces the PRL‐releasing response to SAL as well as TRH and sulpiride in goats.  相似文献   

11.
Growth hormone (GH) secretion regularity and the effects of lighting condition and GH‐releasing hormone (GHRH) on GH release were determined in steers. First, steers were kept under 12:12 L : D conditions (light: 06.00–18.00 hours). The animals were then subjected to a 1‐h advancement in lighting on/off conditions (05.00 and 17.00 hours, respectively). Blood was sampled for 24 h at 1‐h interval on the seventh day of each condition. Second, GHRH was injected intravenously (IV) at 12.00 and 00.00 hours under 12:12 L : D and blood was sampled at 15‐min interval for 4‐h (1 h before and 3 h after the injection). Plasma GH concentrations were measured by a radioimmunoassay. Periodicity of GH secretory profile was calculated by power spectrum analysis using the maximum entropy method. Plasma GH concentrations showed a characteristic pattern consisting of four distinct peaks. Mean periodicity of GH secretory profile was 5.7 h, and it was not altered by any change in lighting conditions. IV injection of GHRH increased GH secretion during the day and night. The increase in GH secretory volume after GHRH injection during the night was equal to that during the day. The present results suggest that GH secreted from the anterior pituitary have regularity in steers.  相似文献   

12.
The intravenous infusion of somatostatin (800 ng/kg min) reduced the concentration of growth hormone (GH) in the plasma of 4 to 5, 6 to 7 and 8 to 9 week-old ducklings, but not in adult ducks. The inhibition of GH secretion was not due to accompanying changes in pancreatic function, since the infusion of a lower dose of somatostatin (200 ng/kg min) increased glucagon release and decreased plasma free fatty acids (FFA), as observed with the higher dose, but had no effect on GH concentrations. The withdrawal of somatostatin inhibition resulted in rebound GH secretion in immature birds, the magnitude of which was directly related to the pre-treatment level. Following somatostatin infusion (800 ng/kg min) no modification in GH concentration was observed in adult ducks. These results demonstrate that basal GH release in young birds is not autonomous and is suppressible by somatostatin. The data provide further evidence for age-related changes in the control of avian GH and insulin release and for the independence of the effects of somatostatin on the pituitary and pancreas glands.  相似文献   

13.
Insulin‐like growth factor‐1 (IGF‐1) is one of the important factors for growth, milk production and reproductive functions and mainly released from the liver in response to growth hormone (GH) via GH receptor (GHR) in cattle. Recently, some single nucleotide polymorphisms (SNPs) were identified in the bovine GHR gene. Some GHR‐SNPs were shown to be related to plasma IGF‐1 concentration in cattle. Hence, the capacity to IGF‐1 production in the liver might be affected by GHR‐SNP and associated with performance in the future. This study examined whether GHR‐SNP is associated with IGF‐1 production in the liver of pre‐pubertal heifers. In 71 Holstein calves, blood samples for genomic DNA extraction were obtained immediately after birth. To genotype the GHR‐SNPs in the promoter region, polymerase chain reaction (PCR) products were digested with restriction enzyme NsiI (cutting sites: AA, AG and GG). All heifers at 4 months of age were intramuscularly injected with 0.4 mg oestradiol benzoate. Blood samples were obtained from the jugular vein just before (0 h) and 24 h after injection. The number of AA, AG and GG at the NsiI site was 0, 17 and 54 respectively. In AG and GG, plasma GH concentrations were higher pre‐injection than 24 h post‐injection (p < 0.01). Moreover, plasma GH concentrations in AG post‐injection were higher than in GG (p < 0.05). In contrast, the GG genotype exhibited higher plasma IGF‐1 concentrations in pre‐injection than post‐injection (p < 0.01), although oestradiol did not change IGF‐1 concentration in the AG genotype. We conclude that the GG polymorphism in the promoter region of GHR is associated with a higher potential capacity of IGF‐1 production in the liver of cattle.  相似文献   

14.
OBJECTIVE: To determine whether glutamine (GLN), tryptophan (TRP), and tryptophan metabolite concentrations are higher in cerebralspinal fluid (CSF) dogs with naturally occurring portosystemic shunts (PSS), compared with control dogs. ANIMALS: 11 dogs with confirmed PSS and 12 control dogs fed low- and high-protein diets. PROCEDURE: Cerebrospinal fluid and blood samples were collected from all dogs. Serum and CSF concentrations of GLN, alanine, serine, TRP, 5-hydroxyindoleacetic acid (5-HIAA), and quinolinic acid (QUIN) were measured. RESULTS: Cerebrospinal fluid concentrations of GLN, TRP, and 5-HIAA were significantly higher in PSS dogs, compared with control dogs fed high- or low-protein diets. Cerebrospinal fluid QUIN concentration was significantly higher in PSS dogs, compared with control dogs fed the low-protein diet. Serum QUIN concentration was significantly lower in PSS dogs, compared with control dogs fed either high- or low-protein diets. CONCLUSIONS AND CLINICAL RELEVANCE: An increase in CNS GLN concentration is associated with high CSF concentrations of TRP and TRP metabolites in dogs with PSS. High CSF 5-HIAA concentrations indicate an increased flux of TRP through the CNS serotonin metabolic pathway, whereas high CSF QUIN concentrations indicate an increased metabolism of TRP through the indolamine-2,3-dioxygenase pathway. The high CSF QUIN concentrations in the face of low serum QUIN concentrations in dogs with PSS indicates that QUIN production from TRP is occurring in the CNS. High concentrations of QUIN and other TRP metabolites in the CNS may contribute to neurologic abnormalities found in dogs with PSS and hepatic encephalopathy.  相似文献   

15.
Objectives were to (1) characterize the relationship of third-ventricle (IIIV) cerebrospinal fluid (CSF) concentrations of growth hormone–releasing hormone (GHRH) with concentrations of GH in the peripheral circulation; and (2) assess the influence of acute administration of appetite-regulating peptides leptin (anti-orexigenic) and neuropeptide Y (NPY; orexigenic) on the release of GHRH. Six mature beef cows fitted with IIIV and jugular vein cannulae were treated intracerebroventricularly with saline, and leptin (600 μg) and NPY (500 μg) in saline, in a replicated 3 × 3 Latin square design. Third-ventricle CSF and blood were collected 10 min before and continued 220 min after treatments. Mean concentrations of GHRH and frequency of pulses after treatments were 2.2 ± 0.13 ng/mL and 1.2 ± 0.15 pulses/220 min, respectively. These measures were not influenced by treatments. Concentrations of GHRH in CSF were weakly correlated (r = 0.15; P < 0.03) with serum concentrations of GH; however, 58% of the GH pulses were preceded by a pulse of GHRH and 90% of the GHRH pulses occurred within 20 min preceding a pulse of GH. Leptin tended (P < 0.10) to suppress GH area under the curve (AUC) compared to saline. Concomitantly, NPY tended (P < 0.10) to increase GH AUC, which appeared to be a consequence of increased (P < 0.05) pulse amplitude. Infusion of NPY also increased (P < 0.05) AUC of GHRH relative to saline. No differences were detected among treatments in serum concentrations of insulin-like growth factor-I or its AUC. Sampling CSF from the IIIV appears to be a viable procedure for assessing hypothalamic release of GHRH coincident with anterior pituitary gland secretion of GH in cattle. These data also demonstrate the differential responsiveness of the GH axis to appetite-regulating peptides.  相似文献   

16.
Growth hormone (GH) is secreted in a pulsatile manner, but the underlying mechanisms of GH pulse generation remain to be resolved. In the present study, we investigated the relationship between GH pulses in the peripheral circulation and GH-releasing hormone (GHRH) and somatostatin (SRIF) profiles in the cerebrospinal fluid (CSF) of male goats. The effects of an intracerebroventricular (icv) injection of neuropeptide Y (NPY), galanin and ghrelin were also analyzed. Blood and CSF samples were collected every 15 min for 8 hr from the jugular vein and third ventricle, respectively. GH pulsatility in the goat was found to consist of distinct large pulses of 5 hr periodicity and small pulses of 1 hr periodicity. GHRH and SRIF in the CSF fluctuated in a pulsatile manner with 1 hr periodicity, and most of the descending phase of SRIF pulses were associated with the initiation of GH pulses. Icv injections of NPY, galanin and ghrelin stimulated GHRH release without affecting SRIF release. In addition, NPY suppressed, and galanin and ghrelin induced large GH pulses, although ghrelin was much more effective than galanin. These results suggest that an hourly fall in SRIF is involved in generating intrinsic circhoral rhythm of GH pulsatility. The mechanisms underlying the generation of large GH pulses of 5 hr periodicity remain unknown, while direct action of NPY and/or ghrelin on the pituitary might be involved.  相似文献   

17.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a hypothalamic neuropeptide that stimulates release of growth hormone (GH) from cultured bovine anterior pituitary gland cells, but the role of PACAP on the regulation of in vivo secretion of GH in cattle is not known. To test the hypothesis that PACAP induces secretion of GH in cattle, meal-fed Holstein steers were injected with incremental doses of PACAP (0, 0.1, 0.3, 1, 3, and 10 microg/kg BW) before feeding and concentrations of GH in serum were quantified. Compared with saline, injection of 3 and 10 microg PACAP/kg BW increased peak concentrations of GH in serum from 11.2 ng/ml to 23.7 and 21.8 ng/ml, respectively (P < 0.01). Peak concentrations of GH in serum were similar in steers injected with 3 or 10 microg PACAP/kg BW. Meal-fed Holstein steers were then injected with 3 microg/PACAP/kg BW either 1 hr before feeding or 1 hr after feeding to determine if PACAP-induced secretion of GH was suppressed after feeding. Feeding suppressed basal concentrations of GH in serum. Injection of PACAP before feeding induced greater peak concentrations of GH in serum (19.2 +/- 2.6 vs. 11.7 +/- 2.6 ng/ml) and area under the response curve (391 +/- 47 vs. 255 +/- 52 ng. ml(-1) min) than injection of PACAP after feeding, suggesting somatotropes become refractory to PACAP after feeding similar to that observed by us and others with growth hormone-releasing hormone (GHRH). We concluded that PACAP induces secretion of GH and could play a role in regulating endogenous secretion of GH in cattle, perhaps in concert with GHRH.  相似文献   

18.
To investigate the effects of amino acids on ghrelin‐induced growth hormone (GH), insulin and glucagon secretion in lactating dairy cattle, six Holstein cows were randomly assigned to two infusion treatments in a cross‐over design. Mixture solution of amino acids (AMI) or saline (CON) was continuously infused into the left side jugular vein via catheter for 4 h. At 2 h after the start of infusion, synthetic bovine ghrelin was single injected into the right side jugular vein through the catheter. Ghrelin injection immediately increased plasma GH, glucose and non‐esterified fatty acids (P < 0.05) with no difference between both treatments. Additionally, plasma insulin and glucagon concentrations were increased by ghrelin injection in both treatments. The peak value of plasma insulin concentration was greater in AMI compared with CON (P < 0.05). Plasma glucagon concentration showed no difference in the peak value reached at 5 min between both treatments, and then the plasma levels in AMI compared with CON showed sustained higher values (P < 0.05). After plasma glucose concentration reached the peak, the decline was greater in AMI compared with CON (P < 0.05). These results showed that the increased plasma amino acids may enhance ghrelin action which in turn enhances insulin and glucagon secretions in lactating cows.  相似文献   

19.
Growth hormone (GH)-releasing factor (GRF) at concentrations of 10−12 through 10−7M for 6 hr linearly increased GH release (b1 = 10.4 ± .3) from bovine anterior pituitary cells in culture. Maximum release of GH (262% above controls) occurred at 10−7M GRF. In contrast, GH release-inhibiting factor (SRIF) at 10−12 through 10−5M had no effect on basal concentrations of GH. In a second experiment, as the proportion of SRIF relative to GRF increased. SRIF suppression of GRF-induced GH release from anterior pituitary cells increased. In a third experiment, anterior pituitary cells cultured in media containing fetal calf serum (FCS) were treated with cortisol (0 or 10 ng/ml media) for 24 hr before exposure to 10−13 through 10−7M GRF. GRF linearly increased GH secretion (b1 = 7.4 ± .3) and cortisol augmented this response (b1 = 10.5 ± .6). However, when cells were cultured in media containing dextran-charcoal treated FCS, cortisol did not alter GRF-induced GH release. Our results demonstrate that GH response of bovine anterior pituitary cells to GRF was modulated negatively by SRIF. However, augmentation of GRF-induced GH release by cortisol was evident only when cells were cultured in media supplemented with untreated FCS.  相似文献   

20.
Estradiol increases basal growth hormone (GH) concentrations in sheep and cattle. This study sought to determine the effects of estradiol on GH-releasing hormone (GRH)-stimulated GH release in sheep. Growth hormone secretory characteristics, the GH response to GRH, and steady-state GH mRNA concentrations were determined in castrated male lambs treated with 2 different doses of estradiol 17-β for a 28-d experimental period. Although no differences between treatments in mean GH, basal GH, or GH pulse number were observed after 28 d of estradiol treatment, GH pulse amplitude was greater (P < 0.05) in the 2.00-cm implant-treated animals than in the control and 0.75-cm implant group. The effect of estradiol treatment on GRH-stimulated GH release revealed differences between the control and estradiol-treated animals (P < 0.05). The 15-min GH responses to 0.075 μg/kg hGRH in the control, 0.75-cm, and 2.00-cm implant groups, respectively, were 76 ± 10, 22.6 ± 2.1, and 43.6 ± 15.0 ng/mL. Growth hormone mRNA content was determined for pituitary glands from the different treatment groups, and no differences in steady-state GH mRNA levels were observed. There were no differences in the mean plasma concentrations of IGF-I, cortisol, T3, or T4 from weekly samples. Growth hormone release from cultured ovine pituitary cells from control sheep was not affected by estradiol after 72 h or in a subsequent 3-h incubation with estradiol combined with GRH. These data suggest that estradiol has differing actions on basal and GRH-stimulated GH concentrations in plasma, but the increase in pulse amplitude does not represent an increased pituitary sensitivity to GRH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号