首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 288 毫秒
1.
The effects of l ‐DOPA, a precursor of dopamine (DA), and sulpiride, a D2‐type DA receptor blocker, on growth hormone (GH) and prolactin (PRL) secretion were investigated in steers. Eight Holstein steers (212.8 ± 7.8 kg body weight) were used. Lighting conditions were 12:12 L:D (lights on: 06.00–18.00 hours). Blood samplings were performed during the daytime (11.00–15.00 hours) and nighttime (23.00–03.00 hours). Intravenous injections of drugs or saline were performed at 12.00 hour for the daytime and 00.00 hour for the nighttime, respectively. Plasma GH and PRL concentrations were determined by radioimmunoassay. l ‐DOPA did not alter the GH secretion when it was injected at 12.00 hour (spontaneous GH level at its peak). On the other hand, l ‐DOPA increased GH secretion at 00.00 hour (GH level at its trough). Injection of sulpiride suppressed GH secretion at 12.00 hour but did not affect GH levels at 00.00 hour. l ‐DOPA inhibited and sulpiride stimulated PRL release during both periods. These results suggest that dopaminergic neurons have stimulatory action on GH secretion and inhibitory action on PRL secretion in cattle. In addition, injection time should be considered to evaluate the exact effects on GH secretion due to its ultradian rhythm of GH secretion in cattle.  相似文献   

2.
The aim of the present study was to clarify the effects of hypothalamic dopamine (DA) on salsolinol (SAL)‐induced prolactin (PRL) release in goats. The PRL‐releasing response to an intravenous (i.v.) injection of SAL was examined after treatment with augmentation of central DA using carbidopa (carbi) and L‐dopa in male goats under 8‐h (8 h light, 16 h dark) or 16‐h (16 h light, 8 h dark) photoperiod conditions. The carbi and L‐dopa treatments reduced basal PRL concentrations in the 16‐h photoperiod group (P < 0.05), while a reduction was not observed in the 8‐h photoperiod group. The mean basal plasma PRL concentration in the control group for the 8‐h photoperiod was lower than that for the 16‐h photoperiod (P < 0.05). SAL significantly stimulated the release of PRL promptly after the injection in both the 8‐ and 16‐h photoperiod groups (P < 0.05). PRL‐releasing responses for the 16‐h photoperiod were greater than those for the 8‐h photoperiod (P < 0.05). The carbi and L‐dopa treatments blunted SAL‐induced PRL release in both the 8‐ and 16‐h photoperiods (P < 0.05). These results indicate that hypothalamic DA blunts the SAL‐induced release of PRL in male goats, regardless of the photoperiod, which suggests that both SAL and DA are involved in regulating the secretion of PRL in goats.  相似文献   

3.
Some evidence suggests that there might be a species difference in the effect of intracerebroventricularly administered (ICV) prolactin‐releasing peptide (PrRP) between rodents and sheep. We compared the levels of cortisol (CORT) and prolactin (PRL), rectal temperature (RT) and behavioral responses to ICV bovine PrRP (bPrRP) in steers. ICV bPrRP (0.2, 2 and 20 nmol/200 µL) tended to evoke a dose‐related increase in CORT concentrations and 0.2 nmol of bPrRP induced transient increase in PRL concentrations. A significant time–treatment interaction was observed for the percent change of CORT (P < 0.05) and PRL (P < 0.05) from pre‐injection value. The time–treatment interaction for changes in RT was not significant (P = 0.50). There tended to be a difference among the four treatments in terms of maximum change in RT from the pre‐injection value between 0 and 90 min (P < 0.1). Stress‐related behavioral signs were not observed in the present experiment. These findings indicate that ICV bPrRP increased CORT and PRL levels, suggesting that central PrRP might participate in controlling the hypothalamo‐pituitary‐adrenal axis and PRL release in cattle, unlike sheep. In contrast, central PrRP is unlikely to be involved in controlling the behavior of this species because ICV bPrRP did not induce marked changes in their behavior.  相似文献   

4.
The aim of the present study was to clarify the effects of hypothalamic dopamine (DA) on the secretion of growth hormone (GH) in goats. The GH‐releasing response to an intravenous (i.v.) injection of GH‐releasing hormone (GHRH, 0.25 μg/kg body weight (BW)) was examined after treatments to augment central DA using carbidopa (carbi, 1 mg/kg BW) and L‐dopa (1 mg/kg BW) in male and female goats under a 16‐h photoperiod (16 h light, 8 h dark) condition. GHRH significantly and rapidly stimulated the release of GH after its i.v. administration to goats (P < 0.05). The carbi and L‐dopa treatments completely suppressed GH‐releasing responses to GHRH in both male and female goats (P < 0.05). The prolactin (PRL)‐releasing response to an i.v. injection of thyrotropin‐releasing hormone (TRH, 1 μg/kg BW) was additionally examined in male goats in this study to confirm modifications to central DA concentrations. The treatments with carbi and L‐dopa significantly reduced TRH‐induced PRL release in goats (P < 0.05). These results demonstrated that hypothalamic DA was involved in the regulatory mechanisms of GH, as well as PRL secretion in goats.  相似文献   

5.
This study was conducted to investigate the possibility of suppression of stress‐induced cortisol (CORT) secretion by tryptophan (TRP) administration and to better understand its regulatory mechanisms by using a noradrenaline (NA) injection into the third ventricle (3V) as a stress model in cattle. A total of 25 Holstein steers with a cannula in the 3V were used. First, the increase in CORT secretion was observed following a NA injection into the 3V in a dose‐dependent manner, verifying the appropriateness of this treatment as a stress model of CORT secretion (Experiment 1). The effect of prior‐administration of TRP into peripheral blood with a dose that has been demonstrated to increase brain 5‐hydroxytryptamine levels on the elevation of plasma CORT induced by NA or corticotropin‐releasing hormone (CRH) was then examined (Experiment 2). The prior administration of TRP suppressed NA‐induced, but not CRH‐induced, CORT elevation. These results suggest that an increase in TRP absorption into peripheral blood could suppress the stress‐induced CORT secretion in cattle via the attenuation of the stimulatory effect of NA on the hypothalamic CRH release.  相似文献   

6.
The secretion rhythms of plasma cortisol (CORT) and prolactin (PRL), hormones related to stress responsiveness and biological rhythm and controlled by light and temperature, were investigated under varying external environments and different management techniques. Serial blood samples were collected from female cattle reared in free‐stall and freely fed (FF) conditions (n = 4) or in tie‐stall and restricted feeding (RF) conditions (hay and concentrate twice daily, n = 4). Plasma CORT and PRL concentrations, eating behavior, and environmental parameters were analyzed. Cyclic patterns for each parameter were examined using spectral analysis, and correlations between CORT, PRL and other parameters were investigated using cross‐spectral analysis. Under FF conditions, CORT secretion was not related to the lighting intensity and eating behavior. However, under RF conditions, the CORT secretion rhythm showed a distinct correlation with lighting intensity and eating behavior. Under FF conditions, the PRL secretion rhythm was similar in all seasons. However, under RF conditions, the PRL rhythm oscillated with high frequency in summer and low frequency in winter, indicating a seasonal change in rhythm. The present study demonstrates that hormone secretion rhythms change under different environments and management techniques.  相似文献   

7.
The aim of the present study was to clarify the effect of extracerebral dopamine (DA) on salsolinol (SAL)‐induced prolactin (PRL) secretion in goats. An intravenous injection of SAL or thyrotropin‐releasing hormone (TRH) was given to female goats before and after treatment with an extracerebral DA receptor antagonist, domperidone (DOM), and the PRL‐releasing response to SAL was compared with that to TRH. DOM alone increased plasma PRL concentrations and the PRL‐releasing response to DOM alone was greater than that to either SAL alone or TRH alone. The PRL‐releasing response to DOM plus SAL was similar to that to DOM alone, and no additive effect of DOM and SAL on the secretion of PRL was observed. In contrast, the PRL‐releasing response to DOM plus TRH was greater than that to either TRH alone or DOM alone and DOM synergistically increased TRH‐induced PRL secretion. The present results demonstrate that the mechanism involved in PRL secretion by SAL differs from that by TRH, and suggest that the extracerebral DA might be associated in part with the modulation of SAL‐induced PRL secretion in goats.  相似文献   

8.
The aim of the present study was to clarify the relationship between hypothalamic dopamine (DA) and salsolinol (SAL) for the secretion of prolactin (PRL) in goats. SAL or thyrotropin‐releasing hormone (TRH) was intravenously injected into female goats treated with or without the D2 DA receptor antagonist haloperidol (Hal), which crosses the blood‐brain barrier, and the PRL‐releasing response to SAL was compared with that to TRH. PRL‐releasing responses to SAL, Hal, and Hal plus SAL were also examined after a pretreatment to augment central DA using carbidopa (Carbi) and L‐dopa. The PRL‐releasing response to Hal alone was greater than that to SAL or TRH alone. The PRL‐releasing response to Hal plus SAL was similar to that of Hal alone. In contrast, the PRL‐releasing response to Hal plus TRH was greater than that to TRH or Hal alone. The treatment with Carbi plus L‐dopa inhibited SAL‐ and Hal‐induced PRL secretion. The inhibition of the PRL‐releasing response to SAL disappeared when SAL was injected with Hal. These results indicate that the mechanisms underlying the SAL‐induced PRL response differ from those of TRH, and suggest that hypothalamic DA and its synthesis is associated in part with SAL‐induced PRL secretion in goats.  相似文献   

9.
In rodents, intracerebroventricular oxytocin administration attenuated hypothalamo-pituitary-adrenal (HPA) responses and anxiety behavior during stress. We examined the effects of intracerebroventricular injection of oxytocin on isolation-induced stress responses in cattle. In a methodological test, we determined the dosage of oxytocin applied in a main test which did not induce an increase in plasma cortisol concentration or stereotyped behaviors. In a main test, 5 steers aged from 199 to 250 days were assigned to the following three treatments randomly: T1, no isolation after injection of 200 microl of artificial cerebrospinal fluid (aCSF); T2, isolation after aCSF injection; and T3, isolation after 0.5 microg of oxytocin in 200 microl aCSF injection. The isolation was conducted by leaving the experimental steer alone in its stall for one hour while its peers were taken outside. In T2, the isolation induced a rapid increase in plasma cortisol concentration. The maximum %-changes from the pre-isolation value were significantly attenuated by oxytocin injection (T2 vs. T3, p<0.05). The isolation also induced an increase in the frequency (number of occurrences/1 hr isolation) of vocalizations and body orientation changes, and a decrease in the percentage of time spent lying and ruminating. The effect of oxytocin on these behavioral responses to isolation was not apparent. These results indicate that intracerebroventricularly injected oxytocin at low dose attenuated the cortisol response to isolation in steers while the effect on behavior was very small in this experimental condition.  相似文献   

10.
The secretion of prolactin (PRL) is under the dominant and tonic inhibitory control of dopamine (DA); however, we have recently found that salsolinol (SAL), an endogenous DA‐derived compound, strongly stimulated the release of PRL in ruminants. The aim of the present study was to clarify the inhibitory effect of DA on the SAL‐induced release of PRL in ruminants. The experiments were performed from late June to early July. Male goats were given a single intravenous (i.v.) injection of SAL (5 mg/kg body weight (BW)), a DA receptor antagonist (sulpiride, 0.1 mg/kg BW), or thyrotropin‐releasing hormone (TRH, 1 µg/kg BW) before and after treatment with a DA receptor agonist (bromocriptine), and the effect of DA on SAL‐induced PRL release was compared to that on sulpiride‐ or TRH‐induced release. Bromocriptine completely inhibited the SAL‐induced release of PRL (P < 0.05), and the area under the response curve (AUC) for a 120‐min period after the treatment with bromocriptine was 1/28 of that for before the treatment (P < 0.05). Bromocriptine also completely inhibited the sulpiride‐induced release (P < 0.05). The AUC post‐treatment was 1/17 that of pre‐treatment with bromocriptine (P < 0.05). Bromocriptine also inhibited the TRH‐induced release (P < 0.05), though not completely. The AUC post‐treatment was 1/3.8 that of pre‐treatment (P < 0.05). These results indicate that DA inhibits the SAL‐induced release of PRL in male goats, and suggest that SAL and DA are involved in regulating the secretion of PRL. They also suggest that in terms of the regulatory process for the secretion of PRL, SAL resembles sulpiride but differs from TRH.  相似文献   

11.
To clarify the role of serotonin (5‐HT) in the regulatory mechanism of L‐tryptophan (TRP)‐induced growth hormone (GH) secretion in cattle, changes in 5‐HT concentrations in the cerebrospinal fluid (CSF) in the third ventricle (3V) and GH in plasma before and after the peripheral infusion of TRP were determined simultaneously. The direct effect of TRP on GH release from the dispersed anterior pituitary cells was also assessed. A chronic cannula was placed in 3V by stereotaxic surgery, then CSF and blood were withdrawn under physiological conditions. TRP (38.5 mg/kg BW) was infused through an intravenous catheter from 12.00 to 14.00 hours and CSF and blood sampling were performed from 11.00 to 18.00 hours at 1‐h intervals. The concentration of 5‐HT in CSF was determined by high‐performance liquid chromatography with electrochemical detection. GH, melatonin (MEL), and cortisol (CORT) concentrations were measured by radio‐immunoassay and enzyme‐immunoassay. Concentrations of 5‐HT were increased by TRP infusion. The TRP infusion significantly increased GH release. On the other hand, TRP did not stimulate GH release from the bovine pituitary cells. MEL and CORT concentrations were not altered by TRP infusion. These results suggest that TRP induced GH release via the activation of serotonergic neurons in cattle.  相似文献   

12.
Growth hormone (GH) secretion regularity and the effects of lighting condition and GH‐releasing hormone (GHRH) on GH release were determined in steers. First, steers were kept under 12:12 L : D conditions (light: 06.00–18.00 hours). The animals were then subjected to a 1‐h advancement in lighting on/off conditions (05.00 and 17.00 hours, respectively). Blood was sampled for 24 h at 1‐h interval on the seventh day of each condition. Second, GHRH was injected intravenously (IV) at 12.00 and 00.00 hours under 12:12 L : D and blood was sampled at 15‐min interval for 4‐h (1 h before and 3 h after the injection). Plasma GH concentrations were measured by a radioimmunoassay. Periodicity of GH secretory profile was calculated by power spectrum analysis using the maximum entropy method. Plasma GH concentrations showed a characteristic pattern consisting of four distinct peaks. Mean periodicity of GH secretory profile was 5.7 h, and it was not altered by any change in lighting conditions. IV injection of GHRH increased GH secretion during the day and night. The increase in GH secretory volume after GHRH injection during the night was equal to that during the day. The present results suggest that GH secreted from the anterior pituitary have regularity in steers.  相似文献   

13.
Opioid modulation of LH and prolactin (PRL) concentrations in Angus steers was investigated. In Exp. 1, morphine sulfate (M) was administered at either 1, 2 or 3 mg/kg BW (n = 4) as an i.v. injection. Blood samples were obtained at 15-min intervals for 4 h pre- and post-treatment for serum hormone analyses. Mean serum LH concentration and number of LH secretory pulses decreased (P less than .1) for 2 h after M (4.1 to nadir of 2.4 ng/ml, and .33 vs. .21 pulses/h; pre- vs post-treatment). Luteinizing hormone pulse amplitude decreased (P less than .01; 7.3 vs 2.6 ng/ml; pre- vs post-treatment) during the 2 h following M. Prolactin concentrations increased 126.6%, 170.6% and 187.6% following 1, 2 and 3 mg M/kg BW, respectively (P less than .05, 1 vs 2; P less than .01, 1 vs 3). In Exp. 2, either saline solution (S, n = 6) or M (.31 mg/kg BW, i.v. injection followed by .15 mg/(kg.h) infusion; n = 6) was given for 7 h. Concentration of LH was unaffected. Response of LH to naloxone was determined in Exp. 3. Blood samples were obtained for 2 h pre- and post-administration of either naloxone (1 mg/kg BW, i.v. injection; n = 5) or S (n = 5). Response of LH at 15, 30 and 45 min posttreatment was greater (P less than .05) in naloxone- compared with S-treated steers. In summary, M had no significant effect on serum LH concentration or LH pulse frequency, but it decreased pulse amplitude and increased serum PRL concentrations. In contrast, naloxone increased LH secretion. These observations taken together indicate a physiological role for opioid modulation of LH and PRL secretion in the steer.  相似文献   

14.
A study was conducted to determine whether exogenous opioids increase prolactin (PRL) secretion in Holstein heifer calves via a dopaminergic mechanism. Twenty-four Holstein heifer calves ranging in age from 5 to 7 mo were assigned to one of four treatment groups (six/treatment): 1) injection of saline (SAL); 2) injection of a synthetic enkephalin (D-Ala2, N-Me-Phe4, Met(O)5-ol enkephalin; DAMME); 3) injection of DAMME after pretreatment with the long-acting dopamine agonist 2-bromo-alpha-ergocryptine; or 4) injection of thyrotropin-releasing hormone (TRH) after pretreatment with 2-bromo-alpha-ergocryptine. Calves were equipped with indwelling jugular cannulas on d 1, and baseline plasma PRL concentrations were established. Animals receiving 2-bromo-alpha-ergocryptine were injected s.c. 3 h after the last baseline sample was drawn on d 1. On d 2, calves assigned to receive SAL, DAMME, or TRH were injected 2 h after the start of sampling, and sampling was continued for an additional 4.5 h. Basal plasma PRL was lower (P less than .01) on d 2 in calves injected with 2-bromo-alpha-ergocryptine than baseline levels on d 1. Plasma PRL was higher (P less than .01) in calves not pretreated with 2-bromo-alpha-ergocryptine after DAMME injection on d 2 but was not different after DAMME injection in calves pretreated with 2-bromo-alpha-ergocryptine. In contrast, plasma PRL increased (P less than .01) after TRH injection on d 2 in calves pretreated with 2-bromo-alpha-ergocryptine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The aim of the present study was to clarify the relation between salsolinol (SAL)‐induced prolactin (PRL) release and photoperiod in goats. A single intravenous (i.v.) injection of SAL was given to adult female goats under short (8 h light, 16 h dark) or long (16 h light, 8 h dark) photoperiod conditions at two different ambient temperatures (20°C or 5°C), and the PRL‐releasing response to SAL was compared to that of thyrotropin‐releasing hormone (TRH) or a dopamine (DA) receptor antagonist, sulpiride. SAL, as well as TRH or sulpiride, stimulated the release of PRL promptly after each injection in both 8‐ and 16‐h daily photoperiods at 20°C (P < 0.05). The area under the response curve (AUC) of PRL for the 60‐min period after injections of saline (controls), SAL, TRH and sulpiride in the 16‐h daily photoperiod group was greater than each corresponding value in the 8‐h daily photoperiod group (P < 0.05). There were no significant differences in the AUC of PRL among the values produced after the injection of SAL, TRH and sulpiride in 16‐h daily photoperiod group; however, the values produced after the injection of TRH were smallest among the three in the 8‐h daily photoperiod group (P < 0.05). The PRL‐releasing responses to SAL, TRH and sulpiride under a short and long photoperiod condition at 5°C resembled those at 20°C. These results show that a long photoperiod highly enhances the PRL‐releasing response to SAL as well as TRH or sulpiride in either medium or low ambient temperature in goats.  相似文献   

16.
This study was conducted to investigate the effect of tryptophan (TRP) supply on the thermoregulatory responses via brain serotonin (5‐HT) in cattle. In period 1, 12 Holstein steers were kept under a constant room temperature (22°C) and were administered the intravenous (i.v.) infusion of saline or TRP (38.5 mg/kg/2 h). Changes in rectal temperature (RT), 5‐HT concentration in the cerebrospinal fluid (CSF), and other factors involved in thermoregulation were measured. In period 2, the steers received the same treatments as in period 1; however, the room temperature was elevated from 22°C to 33°C during i.v. infusion and maintained at 33°C for 3 h. 5‐HT concentration in CSF increased following TRP infusion in both periods, and RT significantly decreased following TRP infusion only in period 2. The effect of TRP on respiration rate and plasma prolactin and total triiodothyronine concentrations was not significant. These results suggest that increase in TRP supply can attenuate increase in RT in response to acute heat stress through the increase in brain 5‐HT, followed by presumable increase in evaporative heat loss from the skin surface in cattle. It is possible that the increase in peripheral blood TRP metabolites could also participate in the hypothermic effect of TRP.  相似文献   

17.
Plasma concentrations of luteinizing hormone (LH), follicle stimulating hormone (FSH) and prolactin (PRL) were determined over a 24-h period using radioimmunoassay in sheep injected with corn oil (control) or various doses of zeranol or estradiol-17 beta. Injection of .333, 1 or 10 mg of zeranol caused dose-related increases (P less than .01) in plasma PRL (peak levels at 12 to 18 h) and LH (peak levels at 12 to 20 h) in ovariectomized ewes. Similarly, PRL and LH increased following doses of 33 or 100 microgram of estradiol. Before the LH surge, plasma LH levels were significantly depressed (4 to 8 h). Plasma FSH levels were significantly decreased 4 to 8 h after zeranol and estradiol injection. Slight surges of FSH were observed at times similar to those of LH, but the peak level was never greater than control levels. Injection of 1 mg of zeranol or 100 microgram of estradiol into wethers resulted in a 24-h pattern of PRL secretion not significantly different of LH concentration and significantly prolonged inhibition of FSH secretion. These results indicate similarities in the effects of zeranol and estradiol on anterior pituitary hormone secretion within groups of animals of the same sex or reproductive state. Differences in secretion and plasma concentrations of LH, FSH and PRL due to underlying sexual dimorphism are maintained and expressed even when animals are challenged with structurally different compounds of varying estrogenic potencies.  相似文献   

18.
We have recently demonstrated that salsolinol (SAL), a dopamine (DA)-derived compound, is present in the posterior pituitary gland and is able to stimulate the release of prolactin (PRL) in ruminants. The aim of the present study was to clarify the effect that the interaction of SAL with thyrotropin-releasing hormone (TRH) or DA has on the secretion of PRL in ruminants. A single intravenous (i.v.) injection of SAL (5mg/kg body weight (b.w.)), TRH (1microg/kg b.w.), and SAL plus TRH significantly stimulated the release of PRL in goats (P<0.05). The cumulative response curve (area under the curve: AUC) during 120min was 1.53 and 1.47 times greater after the injection of SAL plus TRH than either SAL or TRH alone, respectively (P<0.05). A single i.v. injection of sulpiride (a DA receptor antagonist, 0.1mg/kg b.w.), sulpiride plus SAL (5mg/kg b.w.), and sulpiride plus TRH (1microg/kg b.w.) significantly stimulated the release of PRL in goats (P<0.05). The AUC of PRL during 120min was 2.12 and 1.78 times greater after the injection of sulpiride plus TRH than either sulpiride alone or sulpiride plus SAL, respectively (P<0.05). In cultured bovine anterior pituitary (AP) cells, SAL (10(-6)M), TRH (10(-8)M), and SAL plus TRH significantly increased the release of PRL (P<0.05), but the additive effect of SAL and TRH detected in vivo was not observed in vitro. In contrast, DA (10(-6)M) inhibited the TRH-, as well as SAL-induced PRL release in vitro. All together, these results clearly show that SAL can stimulate the release of PRL in ruminants. Furthermore, they also demonstrate that the additive effect of SAL and TRH on the release of PRL detected in vivo may not be mediated at the level of the AP, but that DA can overcome their releasing activity both in vivo and in vitro, confirming the dominant role of DA in the inhibitory regulation of PRL secretion in ruminants.  相似文献   

19.
The effects of leptin on the release of luteinizing hormone (LH), growth hormone (GH) and prolactin (PRL) were studied in cultured bovine anterior pituitary (AP) cells in vitro. The AP cells were obtained from fully‐fed Japanese Black steers and were incubated for 3 h with 10?13 to 10?7 mol/L of leptin after incubating in Dulbecco's modified Eagle's Medium for 3 days. Leptin significantly increased the concentration of LH in the culture medium by 45 and 44% at doses of 10?8 and 10?7 mol/L, respectively, compared with the controls (P < 0.05). Leptin significantly increased the concentration of GH in the culture medium by 14 and 12% at doses of 10?8 and 10?7 mol/L, respectively (P < 0.05). Leptin also significantly increased the concentration of PRL in the culture medium by 26% compared with the controls at a dose of 10?7 mol/L (P < 0.05). These results show that leptin stimulates the release of LH, GH and PRL by acting directly on bovine AP cells from fully‐fed steers.  相似文献   

20.
The effect of adrenocorticotropin hormone (ACTH) on plasma cortisol and on gonadotropin releasing hormone (GnRH)-induced release of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone was determined in nine Holstein bulls and 12 Holstein steers. Treatments consisted of animals receiving either GnRH (200 micrograms, Group G), ACTH (.45 IU/kg BW, Group A) or a combination of ACTH followed 2 h later by GnRH (Group AG). Group G steers and bulls had elevated plasma LH and FSH within .5 h after GnRH injection and plasma testosterone was increased by 1 h after GnRH injection in bulls. In Group A, plasma cortisol was elevated by .5 h after ACTH injection in both steers and bulls, but plasma LH and FSH were unaffected. In Group A bulls, testosterone was reduced after ACTH injection. In Group AG, ACTH caused an immediate increase in plasma cortisol in both steers and bulls, but did not affect the increase in either plasma LH or FSH in response to GnRH in steers. In Group AG bulls, ACTH did not prevent an increase in either plasma LH, FSH or testosterone in response to GnRH compared with basal concentrations. However, magnitude of systemic FSH response was reduced compared with response in Group G bulls, but plasma LH and testosterone were not reduced. The results indicate that ACTH caused an increase in plasma cortisol, but did not adversely affect LH or FSH response to GnRH in steers and bulls. Further, while testosterone was decreased after ACTH alone, neither ACTH nor resulting increased plasma cortisol resulted in decreased testosterone production in the bull after GnRH stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号