首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了探究上覆水类型及流速对养殖池塘底泥耗氧速率(SOD)的影响,在实验室进行6组水池平行实验,实验期为2 d,采用6个装置相同的玻璃缸进行对照实验,分别选取自来水和池塘原水作为上覆水体,在实验过程中利用水泵对上覆水进行循环流动,调节水泵循环流量以得到不同的上覆水流速,并采用2台溶氧仪测定不同实验条件下的上覆水水温和DO浓度,记录每次测量的对应时间点,测量间隔约为30 min。结果表明,当上覆水体为自来水和池塘原水时,在不同的循环流速下,SOD的范围为0.042~0.426 g/(m~2·d)。实验第2天各水池的SOD值较第1天均有一定下降,说明SOD随着水体中DO降低也相应减小,表明SOD与DO浓度有显著相关性。当上覆水处于静止状态时,其类型对SOD值有较大的影响,池塘原水在第1天和第2天的SOD值分别为0.426 g/(m~2·d)和0.297 g/(m~2·d),而自来水在第1天和第2天的SOD值均为0.258 g/(m~2·d),与上覆水体为自来水相比,有机物质含量高的池塘原水在第1天和第2天的SOD值分别高出65.12%和15.12%;当上覆水处于流动状态时,池塘原水的SOD为0.042~0.237 g/(m~2·d),自来水的SOD为0.045~0.252 g/(m~2·d),增幅仅为5.9%~15.0%,表明在此条件下上覆水体类型对实验水池的SOD值影响不显著。SOD与上覆水流速存在一定的相关性,对应最小的SOD值有一个流速较低值。  相似文献   

2.
厌氧氨氧化和反硝化作用是底泥生物脱氮的主要过程,碳源是调控厌氧氨氧化和反硝化作用的关键因子。本研究以褐煤为对象,对褐煤的静态碳释情况及其对池塘底泥中脱氮作用的影响进行了研究。结果显示,褐煤在室温条件下的碳释放规律符合二级动力学方程,具备作为反硝化碳源的可行性;在脱氮实验中,发现褐煤对底泥上覆水体中的亚硝酸盐氮(NNO2--N)的去除具有促进作用,NNO2--N的去除率随褐煤浓度的增加而升高,当褐煤质量浓度为40 g/L时,N\${\rm{O}}_2^ - $\-N去除率最高达99.61%,此时硝酸盐氮(NO3--N)的浓度也最低;同时发现,水体中氨氮(NH4+-N)氧化的最适褐煤质量浓度为10 g/L,其去除率达99.39%;对底泥中的厌氧氨氧化菌群进行Illumina高通量测序发现,其中浮霉菌门占比最大(39.6%~71.8%),优势菌属为Candidatus Brocadia (13.9%~35.8%)和Desulfovibrio (17.1%~34.8%),添加褐煤组Candidatus Scalindua菌属比例高于未添加组;荧光定量PCR得出,随着褐煤质量浓度升高,底泥中的反硝化菌丰度呈增长趋势,而厌氧氨氧化菌丰度则低于无褐煤添加组,表明添加褐煤对底泥反硝化有促进作用,而对厌氧氨氧化有一定的抑制作用。研究表明,褐煤具备作为反硝化碳源的条件,可用于池塘养殖底泥脱氮作用。  相似文献   

3.
为研究卫河新乡市区河段底泥-间隙水-上覆水中营养盐的时空分布特征,分别于2013年1、4、7、10月对卫河新乡段上游(S1)、人口密集区(S2)、人工拓宽河道形成的牧野湖入湖水口(S3)、湖岸静水区(S4)、湖心处(S5)和湖区下游(S6)共计6个样点进行采样分析。结果表明:(1)S1和S2底泥中总氮(TN)、氨氮(NH4+-N)含量呈现随深度增加而上升的趋势,除S3外,各样点底泥中总磷(TP)含量的垂向分布在15~20 cm处比表层含量低,但并无明显规律性;(2)S2、S3、S4样点在4月时底泥(干重)中的TN含量达到最大值,分别为5.8、2.2、1.7 g/kg,10月时TP含量达到最大值,分别为0.88、0.22、0.21 g/kg,除S3号样点外,其余各样点底泥NH4+-N的含量均在7月出现最大值,按样点号依次为25.42、37.19、14.23、12.28、34.11 mg/kg;(3)间隙水中TN和NH4+-N含量的垂向分布与底泥中的分布相似,间隙水和底泥中的TN、NH4+-N之间呈显著的正相关,TP之间无明显相关性;(4)间隙水和上覆水中的各营养盐之间均无明显相关性。  相似文献   

4.
集约化投饵型养殖会导致养殖区域底部环境持续恶化,限制了水产养殖的可持续发展。对采自威海金海滩排污口附近污泥中的海洋光合细菌进行了富集、分离和初步鉴定,模拟自然养殖环境,选取优势菌株进行池塘底泥处理试验(上层水体,下层底泥),分析比较两株菌对底泥的改良效果;试验共获得两株优势光合细菌PSB1和PSB2,分属于红假单胞菌属(Rhodopseudomonas)和小红卵菌属(Rhodovulum)。底泥处理试验结果显示:PSB1和PSB2都可以稳定水体pH,降解水中的硫化物、氨氮和化学耗氧量(COD Mn)。PSB1处理底泥最佳效果为:添加1‰的PSB1,水体中pH在6.98~7.33,底泥中COD Mn 、硫化物、氨氮和NO - 2-N降解率分别为92.91%、79.61%、97.00%和73.56%。研究表明,光合细菌可以促进改善水质、维持下层水体的良好水质,在水产养殖中具有良好的应用前景。  相似文献   

5.
在各种元素中,氮、磷对水体生物的生长最为重要,是藻类生长的主要限制性营养元素。底泥在湖泊、池塘等水生态系统的物质循环中处于重要地位。实践表明,底泥可以作为系统的“内释磷源”,但是释磷过程十分复杂,受到底泥中的磷特性、底泥间隙水磷浓度、上覆水磷状况等因...  相似文献   

6.
1 养殖前准备 1.1 池底氧化处理与消毒 放苗前还原底质,能减少淤泥与污染物对养殖环境的有害影响,有利于对虾的生存和生长.有效的措施是排干池水后,清除淤泥或采用曝晒-翻耕-曝晒的办法使还原底泥充分氧化.每1/15 hm2用生石灰100~200 kg或漂白粉5~10 kg全池泼洒能加快池底氧化的进程并同时起到消毒的作用.  相似文献   

7.
生物复合酶污水净化剂处理黑臭水体的研究   总被引:1,自引:0,他引:1  
用生物复合酶对黑臭水体进行修复实验,其对水体COD、BOD5、NH3-N、S2-等有较高的去除率,并能提高水体的复氧功能,增加水中溶解氧。消除水体黑臭,显著降低黑臭指数。实验表明:当水体中复合酶浓度达6 mg/L时效果最佳,随着处理时间的延长,效果越加显著,适当曝气效果更佳。  相似文献   

8.
嘉陵江合川段秋季微生物多样性研究   总被引:2,自引:0,他引:2  
为了解嘉陵江合川段秋季微生物多样性,通过16S rRNA基因扩增和测序分析了2017年9月嘉陵江合川段利泽、渠江口、涪江口、草街4个监测点水样和底泥微生物的多样性和种类结构。结果显示:河流上下游水体中微生物物种组成相似、有延续性,利泽和涪江口,渠江口和草街水体中微生物组成均呈现相似;底泥中微生物组成与小区域水文环境相关,涪江口和渠江口水文环境相似,底泥中微生物群落结构也呈现相似;缓流环境更适应微生物生存繁殖,处于监测尾端的草街水体和底泥中微生物数量最多;环境影响因子中总磷、总氮和pH对水体中微生物群落结构组成表现出较大影响;水体中变形菌门、放线菌门、拟杆菌门和蓝细菌门较为丰富,显示该水域有富营养化的趋势。  相似文献   

9.
城市水环境治理生物修复技术   总被引:5,自引:0,他引:5  
刘思明  刘军  刘斌  徐亚同 《水利渔业》2005,25(6):7-9,47
河湖富营养化和河道黑臭是我国城市水环境普遍现象.生物修复技术是20世纪90年代迅速发展的一项污染治理工程技术.利用该项技术原理,通过水体底泥生物氧化、水体生物修复、水环境生态恢复等技术,可对城市水环境进行有效治理,但必须根据城市水环境的实际情况,选择合适的生物修复组合技术.  相似文献   

10.
氧化还原电位的测定及在水族中的应用   总被引:1,自引:0,他引:1  
氧化还原反应是氧化剂和还原剂之间在水溶液中进行的电子交换过程。氧化还原电位(oxidation reductionpotential:ORP)就是还原剂和氧化剂之间的电位差,是反映水体氧化还原能力的量度,单位通常用伏(V)或毫伏表示(mV)。 氧化还原电位是反映水体的一个综合性指标,它虽然不能明确表明某种氧化物质与还原物质的浓度,但是能帮助我们了解水体中可能存在什么样的氧化还原物质及存在量,了解水质状态;同时,氧化还原电位法灵敏度高、并可在线测定,从而为许多水族馆所采用。 氧化还原电位可以解释为水质的“活力”,水体的氧化能力或还原能力,当水体的氧化还原电位高时,表示水体氧化能力强,即处理生物代谢的还原性有机物能力强,系统可更快更有效地处理污染物。因此,一般水族馆水体皆保持相对较高的氧化还原电位值。  相似文献   

11.
养殖池塘污染底泥生物修复的室内比较实验   总被引:11,自引:1,他引:11       下载免费PDF全文
在实验室模拟生态条件下,运用投放复合微生物、微生物合酶菌液、添加营养促生剂、水底界面曝气等不同方法对养殖池塘污染底泥进行生物-生态修复;检测底泥及上覆水在不同生物修复技术作用下溶氧、氨氮、硝态氮、CODcr、TOC、底泥生物降解能力(G值)、异养细菌数量和反硫化细菌数量等指标的动态变化,据此评价不同修复技术的生态效应。结果表明,4种不同的生物生态方法均对污染底泥产生了一定的修复作用,其中以VB997底泥营养促生剂组的综合修复效果最为理想,在为期60 d的实验中,底表水CODcr消除率达70.00%,底泥生物降解能力(G值)从12.00 kg/(kg.h)提高至45.60 kg/(kg.h),底泥表面形成1.80~2.20 cm灰白色氧化层。曝气组溶氧充足,底层DO一直保持在7.00mg/L以上,底表水CODcr消除率达69.25%,G值从14.30 kg/(kg.h)升高到34.20 kg/(kg.h)。实验同时表明,几种生物制剂和营养促生剂的添加能导致上覆水硝态氮和氨态氮含量的升高,促进浮游藻类的阶段性滋生。[中国水产科学,2006,13(1):140-145]  相似文献   

12.
生态浮岛植物在富营养化养殖水体中去磷途径的初步分析   总被引:4,自引:0,他引:4  
植物修复富营养化养殖水体过程中磷(P)的去除途径主要包括植物吸收、植物根系吸附、底泥吸附和还原状态下的磷挥发。为了深入探讨植物修复去磷机理,阐明植物修复富营养化养殖水体过程中磷的去向问题,分别以夏秋季(高温)和冬春季(低温)的高效除磷植物大漂和冬牧70组成的生态浮岛为研究对象,通过研究模拟条件下的富营养养殖水体生态修复系统,研究不同温度季节下生态浮岛植物在富营养养殖水体中各去磷途径对水体总磷(TP)去除量的贡献率大小。结果表明:经过20 d处理后,生态浮岛植物大漂和冬牧70对富营养化养殖水体中总磷的去除效率都较高 ,均达50%以上;在生态浮岛植物修复富营养养殖水体过程中最主要的磷去除途径都为植物吸收作用和底泥吸附作用,分别占水体中总磷去除量的23%~58%和27%~51%;其次是植物根系吸附作用,占水体中总磷去除量的13%~28%;贡献率最低的是还原状态下的磷挥发,一般低于1.5%,几乎可忽略不计。  相似文献   

13.
养殖水体氨氮积累危害与生物利用   总被引:17,自引:0,他引:17  
在养殖水体中,有机污染物包括氮、碳、磷、硫四种主要物质,而后三者形成的产物在氧气充足的条件下对鱼类的影响程度不是太大,当氮以分子氨态或亚硝酸盐氮态存在时,却会对水生动物产生很强的神经性毒害.当前以强饲为特征的集约养殖方式加大了水体有机氮物质分解转化的负荷,微生物分解环节严重受阻,从而成为水体系统循环过程的制约瓶颈,造成水体富营养化甚至污染,引发出诸多病害、药残、食品隐患等问题.水体系统的氨氮循环及污染治理已成为世界性关注的环境问题和研究热点.  相似文献   

14.
水生植物修复技术,目前国内外专家们十分关注,利用水生植物修复污染淡水养殖水体,主要表现在以下三个方而: l.水生植物能控制底泥营养盐释放; 2.水生植物吸收水体中过剩的营养物质; 3.水生植物与浮游藻类具有相互克制的性质。水生植物主要通过资源竞争和相互作用等影响浮游藻类的生长。  相似文献   

15.
南美白对虾养殖环境及其肠道细菌多样性分析   总被引:10,自引:3,他引:7  
为了探讨南美白对虾(Penaeus vannamei Boone)肠道及其养殖环境中细菌种群组成和分布,采用Illumina miseq测序平台,基于16S r RNA基因的序列测定结果,对南美白对虾肠道及其养殖池塘底泥、水体中细菌的种群结构进行分析。结果显示,在南美白对虾肠道、养殖池塘底泥、水体分别检测到206、265和270个细菌属,其中,有90个属在3个样品中均可检测到,底泥和水、底泥和虾肠道、水和虾肠道中检测到的共有细菌属分别为146、128和119个,表明养殖池塘底泥、水和肠道中细菌存在密切的相互作用。在底泥、水和虾肠道样品中丰度大于1%的优势菌属分别有20、17和10个;底泥、水体和虾肠道中丰度最高的细菌均为一种分类未明的细菌属,丰度分别为23.08%、37.13%和42.22%。除此之外,底泥中主要优势细菌属分别为假单胞菌属(Pseudomonas)(5.77%)、Ohtaekwangia(4.79%)和狭义的梭菌属(Clostridium)(3.88%);水体中主要优势细菌属分别为土壤杆菌属(Sediminibacterium)(6.64%)、Spartobacteria genera incertae sedis(3.95%)和GPIIa(3.20%),而虾肠道中主要优势细菌属分别为假单胞菌属(Pseudomonas)(14.57%)和不动杆菌属(Acinetobacter)(6.54%)。在底泥、水和肠道中分别检测到3、6和6个潜在致病细菌属,丰度最高的细菌属分别是假单胞菌属(5.77%)、黄杆菌属(Flavobacterium)(0.77%)和假单胞菌属(14.57%)。在底泥、水和肠道中检测到的益生菌可分别分配至8、6和7个细菌属,其中有5个属在3个样品中均可检测到。聚类分析显示,养殖池塘底泥、水体和南美白对虾肠道细菌种群中丰富度位于前20的分类操作单元(OUT)在聚类树的位置存在明显不同。研究结果进一步加深了对健康南美白对虾肠道细菌种群及其与养殖环境中细菌种群互作的理解,为益生菌制剂的研发提供了新的线索。  相似文献   

16.
杭州西湖底泥反硝化作用初探   总被引:1,自引:0,他引:1  
反硝化作用作为水体彻底去除硝态氮的主要途径之一,主要发生在沉积物中。为了调查杭州西湖高硝态氮水体中底泥反硝化作用及其影响因子,2013年12月(冬季)和2014年6月(夏季)在西湖5个子湖区和3个湖湾的13个点位(X1~X13)进行样品采集,以底泥中硝酸盐还原酶活性和反硝化强度代表反硝化作用。结果表明,西湖水体冬夏两季TN浓度分别为1.568~2.613 mg/L和1.117~2.848 mg/L,硝态氮在TN中占比平均值分别为76%和72%。冬夏两季的底泥反硝化强度分别为0.132~1.350 mg/g和0.643~1.286 mg/g,硝酸盐还原酶活性分别为0.015~5.092μg/g和0.665~19.123μg/g;其中,硝酸盐还原酶活性冬季与夏季差异极显著(P<0.01),而冬季和夏季的反硝化强度没有显著性差异(P>0.05)。夏季底泥反硝化强度与水温和泥温极显著正相关(P<0.01),与水体氨氮呈显著负相关(P<0.05),底泥硝酸盐还原酶活性与底泥总有机碳(TOC)呈显著正相关(P<0.05)。冬季底泥反硝化强度与硝酸盐还原酶活性呈极显著正相关(P<0.01),与表层水体溶解氧(DO)呈显著正相关(P<0.05)。在沉水植物盖度对反硝化作用影响的调查中发现,一定盖度的沉水植物可以促进反硝化作用,但过多的沉水植物也会抑制反硝化作用。  相似文献   

17.
家鱼池塘底泥耗氧率与理化因子的相关性分析   总被引:1,自引:0,他引:1  
采用原位底泥耗氧测定法,研究了10口家鱼鱼池底泥耗氧率与底部水体理化因子(溶氧、温度、pH值、氧化还原电位)和底泥有机质含量及深度的相关关系。结果显示:池塘平均底泥耗氧率(SOD)为0.91 g/(m2.d),变动范围为0.76~1.09 g/(m2.d)。双变量相关性分析表明,底泥耗氧率与池塘底部水体理化指标的相关性均达到极显著水平(P<0.01),与溶氧相关性最高(Pearson相关系数为0.779),其次是温度、pH值和氧化还原电位,相关系数分别为0.587、0.557和-0.421;底泥耗氧率与底泥深度相关性达到显著水平(P<0.05)。偏相关分析结果表明,底泥耗氧率与溶氧和温度呈极显著相关(P<0.01),与其它因素均未达到显著水平。影响底泥耗氧率最重要的环境因子是溶氧,其次是温度。利用BP神经网络分析影响SOD的理化因子,以溶氧、温度和底泥深度为BP神经网络模型的输入变量建立BP神经网络模型对SOD进行预测分析,BP神经网络模型训练和测试相关系数分别为0.911和0.879,平均相对误差分别为11.6%和10.4%,预测值与真实值偏差较小,拟合度较高,可有效预测池塘底泥耗氧率。  相似文献   

18.
本研究对漳卫新河河口地区的环境因子与水生生物群落结构进行调查,本次调查漳卫新河地区共鉴定底栖动物30种、甲壳动物23种、鱼类20种.运用主成分分析对河口处环境因子进行分析,结果显示各环境因子在该流域响应都比较明显.通过计算水体有机污染物综合指数、水体富营养化状况指数、水体环境质量与主要污染物和生物多样性指标对漳卫新河河...  相似文献   

19.
本文对水与泥体系硫酸盐还原进行了实验研究,结果表明:在一定条件下水体中硫化物含量与硫酸盐含量成正比;水体中硫化物主要是底泥硫酸盐还原的逸出产物,水体自身硫酸盐还原微弱;水体中硫化物积累的最适宜pH值在7.5~8.5;在4℃时硫酸盐还原几乎不能进行,水体中硫化物在20℃以下积累较慢,30℃以上积累迅速;易分解有机物能促进硫酸盐还原,其中淀粉的作用比蔗糖更明显,但腐殖酸抑制硫酸盐还原;在1×10~(-4)N时氧化剂抑制硫酸盐还原的顺序是:C_3O_3N_3Cl_2Na>KMnO_4>FeCl_3>KNO_3,在1×10~(-3)N以上时为:FeCl_3>C_3O_3N_3Cl_2Na>KMnO_4>KNO_3;硫酸盐还原是生物还原。  相似文献   

20.
为探究江苏省射阳地区沿海滩涂中华绒螯蟹(Eriocheir sinensis)生态育苗池塘细菌群落结构,分别对养殖池塘水体(S7,S8,S9)和池塘底泥(N7,N8,N9)细菌群落16SrDNA的V3、V4、V5可变区进行扩增,检测合格的文库进行高通量测序;利用Qiime(v1.7)软件,对序列阈值97%相似性水平进行聚类分析;分别以门、纲、目、科和属的分类水平对样本进行α-多样性指数分析;以Chaol指数和Shannon指数评估菌种丰富度和多样性。结果表明,3个生态育苗池塘得到OTU分别为8 881、7 406、8 566个。S7微生物归属于16门、29纲、58目、97科、191属;S8为9门、18纲、38目、68科、132属;S9为17门、32纲、60目、111科、227属。N7为41门、103纲、198目、325科、572属;N8为42门、103纲、203目、318科、534属;N9为40门、99纲、196目、323科、578属。养殖水体优势菌群以变形菌门(Proteobacteria)为主,其次是拟杆菌门(Bacteroidetes);池塘底泥优势菌群以变形菌门为主,其次为拟杆菌门、绿弯菌门(Chloroflexi)和浮霉菌门(Planctomycetes)。养殖池塘底泥中细菌群落的丰富度和物种多样性明显高于养殖水体,水体中细菌群落的丰富度S9S7S8,物种的多样性S7S9S8。池塘底泥中细菌群落的丰富度N7N9N8,物种的多样性N7 N9N8。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号