首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Enrofloxacin was administered i.v. to five adult mares at a dose of 5 mg/kg. After administration, blood and endometrial biopsy samples were collected at regular intervals for 24 h. The plasma and tissue samples were analyzed for enrofloxacin and the metabolite ciprofloxacin by high-pressure liquid chromatography. In plasma, enrofloxacin had a terminal half-life (t(1/2)), volume of distribution (area method), and systemic clearance of 6.7 +/- 2.9 h, 1.9 +/- 0.4 L/kg, and 3.7 +/- 1.4 mL/kg/min, respectively. Ciprofloxacin had a maximum plasma concentration (Cmax) of 0.28 +/- 0.09 microg/mL. In endometrial tissue, the enrofloxacin Cmax was 1.7 +/- 0.5 microg/g, and the t(1/2) was 7.8 +/- 3.7 h. Ciprofloxacin Cmax in tissues was 0.15 +/- 0.04 microg/g and the t(1/2) was 5.2 +/- 2.0 h. The tissue:plasma enrofloxacin concentration ratios (w/w:w/v) were 0.175 +/- 0.08 and 0.47 +/- 0.06 for Cmax and AUC, respectively. For ciprofloxacin, these values were 0.55 +/- 0.13 and 0.58 +/- 0.31, respectively. We concluded that plasma concentrations achieved after 5 mg/kg i.v. are high enough to meet surrogate markers for antibacterial activity (Cmax:MIC ratio, and AUC:MIC ratio) considered effective for most susceptible gram-negative bacteria. Endometrial tissue concentrations taken from the mares after dosing showed that enrofloxacin and ciprofloxacin both penetrate this tissue adequately after systemic administration and would attain concentrations high enough in the tissue fluids to treat infections of the endometrium caused by susceptible bacteria.  相似文献   

3.
The efficacy of flunixin alone and together with enrofloxacin in treatment of experimental Escherichia coli mastitis was compared using six cows. The cross-over study design was used. Pharmacokinetics of flunixin and enrofloxacin were also studied in these diseased cows. The response of each cow was similar after the first and second challenge and the individual reaction seemed to explain the severity of clinical signs. The most important predictive factor for outcome of E. coli mastitis was a heavy drop in milk yield. Treatment with enrofloxacin and flunixin enhanced elimination of bacteria, but the difference from those receiving flunixin alone was not significant. Two cows, which had received no antimicrobial treatment (Group 1), were killed on day 4 postchallenge. One cow was killed after the first and the other after the second challenge. Cows receiving combination therapy produced 0.9 L more milk per day during the study period than cows which had only received flunixin (P < 0.05). Based on our findings, antimicrobial treatment might be beneficial in the treatment of high-yielding cows in early lactation. The absorption of enrofloxacin was delayed after subcutaneous administration, the mean apparent elimination half-life being about 23 h, whereas after i.v. administration elimination t(1/2) was only 1.5 h. The majority of the antimicrobial activity in milk originated from the active metabolite, ciprofloxacin, which could be measured throughout the 120-h follow-up period after the last subcutaneous administration. No differences were present in the pharmacokinetic parameters of flunixin between treatment groups: mean elimination half-life was 5.7-6.2 h, volume of distribution 0.43-0.49 L/kg and clearance 0.13-0.14 L h/kg. No flunixin or merely traces were detected in milk: one of the three cows had a concentration of 0.019 mg/L 8 h after administration.  相似文献   

4.
The objective of this study was to evaluate the pharmacokinetic profile of enrofloxacin and its active metabolite, ciprofloxacin, in Korean catfish after intravenous and oral administrations. Enrofloxacin was administered to Korean catfish by a single intravenous and oral administrations at the dose of 10 mg/kg body weight. The plasma concentrations from intravenous and oral administrations of enrofloxacin were determined by LC/MS. Pharmacokinetic parameters from both routes were described to have a two-compartmental model. After intravenous and oral administrations of enrofloxacin, the elimination half-lives (t(1/2,beta)), area under the drug concentration-time curves (AUC), oral bioavailability (F) were 17.44 +/- 4.66 h and 34.13 +/- 11.50 h, 48.1 +/- 15.7 microgxh/mL and 27.3 +/- 12.4 microgxh/mL, and 64.59 +/- 4.58% respectively. The 3.44 +/- 0.81 h maximum concentration (C(max)) of 1.2 +/- 0.2 microg/mL. Ciprofloxacin, an active metabolite of enrofloxacin, was detected at all the determined time-points from 0.25 to 72 h, with the C(max) of 0.17 +/- 0.08 microg/mL for intravenous dose. After oral administration, ciprofloxacin was detected at all the time-points except 0.25 h, with the C(max) of 0.03 +/- 0.01 microg/mL at 6.67 +/- 2.31 h. Ciprofloxacin was eliminated with terminal half-life t(1/2,beta) of 52.08 +/- 17.34 h for intravenous administration and 52.43 +/- 22.37 h for oral administration.  相似文献   

5.
The pharmacokinetics of enrofloxacin and its active metabolite ciprofloxacin were investigated in goats given enrofloxacin alone or in combination with probenecid. Enrofloxacin was administered i.m. at a dosage of 5 mg x kg(-1) alone or in conjunction with probenecid (40 mg x kg(-1), i.v.). Blood samples were drawn from the jugular vein at predetermined time intervals after drug injection. Plasma was separated and analysed simultaneously for enrofloxacin and ciprofloxacin by reverse-phase high performance liquid chromatography. The plasma concentration-time data for both enrofloxacin and ciprofloxacin were best described by a one-compartment open pharmacokinetic model. The elimination half-life (t(1/2beta)), area under the plasma concentration-time curve (AUC), volume of distribution (V(d(area))), mean residence time (MRT) and total systemic clearance (Cl(B)) were 1.39 h, 7.82 microg x h x mL, 1.52 L x kg(-1), 2.37 h and 802.9 mL x h(-1) x kg(-1), respectively. Enrofloxacin was metabolized to ciprofloxacin in goats and the ratio between the AUCs of ciprofloxacin and enrofloxacin was 0.34. The t(1/2beta), AUC and MRT of ciprofloxacin were 1.82 h, 2.55 microg x h x mL and 3.59 h, respectively. Following combined administration of probenecid and enrofloxacin in goats, the sum of concentrations of enrofloxacin and ciprofloxacin levels > or = 0.1 microg x mL(-1) persisted in plasma up to 12 h.Co-administration of probenecid did not affect the t(1/2beta), AUC, V(d (area)) and Cl(B) of enrofloxacin, whereas the values of t(1/2beta) (3.85 h), AUC (6.29 microg x h x mL), MRT (7.34 h) and metabolite ratio (0.86) of ciprofloxacin were significantly increased. The sum of both enrofloxacin and ciprofloxacin levels was > or = 0.1 microg x mL(-1) and was maintained in plasma up to 8 h in goats after i.m. administration of enrofloxacin alone. These data indicate that a 12 h dosing regime may be appropriate for use in goats.  相似文献   

6.
OBJECTIVES: To determine pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin after a single i.v. and i.m. administration of enrofloxacin and tissue residues after serial daily i.m. administration of enrofloxacin in pigs. ANIMALS: 20 healthy male pigs. PROCEDURE: 8 pigs were used in a crossover design to investigate pharmacokinetics of enrofloxacin after a single i.v. and i.m. administration (2.5 mg/kg of body weight). Twelve pigs were used to study tissue residues; they were given daily doses of enrofloxacin (2.5 mg/kg, i.m. for 3 days). Plasma and tissue concentrations of enrofloxacin and ciprofloxacin were determined. Residues of enrofloxacin and ciprofloxacin were measured in fat, kidney, liver, and muscle. RESULTS: Mean (+/-SD) elimination half-life and mean residence time of enrofloxacin in plasma were 9.64+/-1.49 and 12.77+/-2.15 hours, respectively, after i.v. administration and 12.06+/-0.68 and 17.15+/-1.04 hours, respectively, after i.m. administration. Half-life at alpha phase of enrofloxacin was 0.23+/-0.05 and 1.94+/-0.70 hours for i.v. and i.m. administration, respectively. Maximal plasma concentration was 1.17 +/-0.23 microg/ml, and interval from injection until maximum concentration was 1.81+/-0.23 hours. Renal and hepatic concentrations of enrofloxacin (0.012 to 0.017 microg/g) persisted for 10 days; however, at that time, ciprofloxacin residues were not detected in other tissues. CONCLUSIONS AND CLINICAL RELEVANCE: Enrofloxacin administered i.m. at a dosage of 2.5 mg/kg for 3 successive days, with a withdrawal time of 10 days, resulted in a sum of concentrations of enrofloxacin and ciprofloxacin that were less than the European Union maximal residue limit of 30 ng/g in edible tissues.  相似文献   

7.
The objective of this study was to determine the pharmacokinetics (PK) of enrofloxacin in pigs and compare to the tissue interstitial fluid (ISF). Six healthy, young pigs were administered 7.5 mg/kg enrofloxacin subcutaneously (SC). Blood and ISF samples were collected from preplaced intravenous catheters and ultrafiltration sampling probes placed in three different tissue sites (intramuscular, subcutaneous, and intrapleural). Enrofloxacin concentrations were measured using high-pressure liquid chromatography with fluorescence detection, PK parameters were analyzed using a one-compartment model, and protein binding was determined using a microcentrifugation system. Concentrations of the active metabolite ciprofloxacin were negligible. The mean ± SD enrofloxacin plasma half-life, volume of distribution, clearance, and peak concentration were 26.6 ± 6.2 h (harmonic mean), 6.4 ± 1.2 L/kg, 0.18 ± 0.08 L/kg/h, and 1.1 ± 0.3 μg/mL, respectively. The half-life of enrofloxacin from the tissues was 23.6 h, and the maximum concentration was 1.26 μg/mL. Tissue penetration, as measured by a ratio of area-under-the-curve (AUC), was 139% (± 69%). Plasma protein binding was 31.1% and 37.13% for high and low concentrations, respectively. This study demonstrated that the concentration of biologically active enrofloxacin in tissues exceeds the concentration predicted by the unbound fraction of enrofloxacin in pig plasma. At a dose of 7.5 mg/kg SC, the high tissue concentrations and long half-life produce an AUC/MIC ratio sufficient for the pathogens that cause respiratory infections in pigs.  相似文献   

8.
The purpose of this study was to establish the pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin in the plasma and interstitial fluid (ISF) following subcutaneous (s.c.) administration of enrofloxacin. Ultrafiltration probes were placed in the s.c. tissue, gluteal musculature, and pleural space of five calves. Each calf received 12.5 mg/kg of enrofloxacin. Plasma and ISF samples were collected for 48 h after drug administration and analyzed by high pressure liquid chromatography. Plasma protein binding of enrofloxacin and ciprofloxacin was measured using a microcentrifugation system. Tissue probes were well tolerated and reliably produced fluid from each site. The mean +/- SD plasma half-life was 6.8 +/- 1.2 and 7.3 +/- 1 h for enrofloxacin and ciprofloxacin, respectively. The combined (ciprofloxacin + enrofloxacin) peak plasma concentration (Cmax) was 1.52 microg/mL, and the combined area under the curve (AUC) was 25.33 microg/mL. The plasma free drug concentrations were 54% and 81% for enrofloxacin and ciprofloxacin, respectively, and free drug concentration in the tissue fluid was higher than in plasma. We concluded that Cmax/MIC and AUC/MIC ratios for free drug concentrations in plasma and ISF would meet suggested ratios for a targeted MIC of 0.06 microg/mL.  相似文献   

9.
This study describes the pharmacokinetics of enrofloxacin following oral and i.v. administration to goral (Nemorrhaedus goral arnouxianus). The objective of this study was to expand upon current antimicrobial treatment options available for use in goral by measuring plasma concentrations and examining the pharmacokinetics of enrofloxacin in these animals. Two single-dose treatments of enrofloxacin were administered to four goral in a crossover design. Single-dose treatments consisted of administration of injectable enrofloxacin i.v. (5 mg/kg) and enrofloxacin tablets (136 mg chewable tablets) dissolved in a grain slurry and administered p.o. (10 mg/kg). Plasma levels of enrofloxacin and its metabolite ciprofloxacin were measured with the use of high-performance liquid chromatography with UV detection. Plasma volume of distribution for i.v. enrofloxacin was 2.15 - 1.01 L/kg, with a mean elimination half-life of 13.3 hr and total body clearance of 0.19+/-0.14 L/kg/hr. The maximum plasma concentration measured for oral enrofloxacin was 2.77 microg/ml, with a mean half-life of 5.2 hr and systemic availability of 14.6%. The area under the plasma concentration over time curve (AUC) for oral enrofloxacin was 21.06 microg/hr/ml. The area under the plasma concentration over time curve generated for oral enrofloxacin in goral yields an area under the plasma concentration over time curve to minimum inhibitory concentration ratio > 100 for many gram-positive and gram-negative bacterial pathogens common to small ruminants. Based on these results, oral enrofloxacin may be considered for further study as a treatment option for susceptible infections in goral.  相似文献   

10.
The pharmacokinetics of a single dose of enrofloxacin administered orally, both pilled and in fish, and i.v. to African penguins (Spheniscus demersus) at 15 mg/kg were determined. Plasma concentrations of enrofloxacin and its metabolite ciprofloxacin were measured via high-pressure liquid chromatography with mass spectrometry. An i.v. administration of enrofloxacin resulted in an extrapolated mean plasma concentration of 7.86 microg/ml at time zero. Plasma volume of distribution for i.v. administration was 3.00 L/kg, with a mean elimination half-life of 13.67 hr and a mean total body clearance rate of 3.03 ml/min/kg. Oral administration of enrofloxacin achieved a mean maximum plasma concentration of4.38 microg/ml at 4.8 hr after administration when pilled, whereas mean maximum plasma concentration was 4.77 microg/ml at 1.59 hr after administration when given in fish. Mean terminal elimination half-life was 13.79 hr pilled and 11.93 hr when given in fish. Low concentrations of ciprofloxacin were detected after both oral and i.v. enrofloxacin administration. Enrofloxacin administered to African penguins at 15 mg/kg p.o.q. 24 hr, whether in fish or pilled, is expected to achieve the surrogate markers of efficacy for bacteria with a minimum inhibitory concentration of 0.5 microg/ml or less; however, clinical studies are needed to determine efficacy.  相似文献   

11.
OBJECTIVE: To determine the pharmacokinetics of enrofloxacin in neonatal kittens and compare the pharmacokinetics of enrofloxacin in young and adult cats. ANIMALS: 7 adult cats and 111 kittens (2 to 8 weeks old). PROCEDURE: A single dose of 5 mg of enrofloxacin/kg was administered to adults (i.v.) and kittens (i.v., s.c., or p.o.). Plasma concentrations of enrofloxacin and its active metabolite, ciprofloxacin, were determined. RESULTS: The half-life of enrofloxacin administered i.v. in 2-, 6-, and 8-week-old kittens was significantly shorter and its elimination rate significantly greater than that detected in adults. The apparent volumes of distribution were lower at 2 to 4 weeks and greater at 6 to 8 weeks. This resulted in lower peak plasma concentration (Cmax) at 6 to 8 weeks; however, initial plasma concentration was within the therapeutic range after i.v. administration at all ages. Compared with i.v. administration, s.c. injection of enrofloxacin in 2-week-old kittens resulted in similar Cmax, half-life, clearance, and area under the curve values. Enrofloxacin administered via s.c. injection was well absorbed in 6- and 8-week-old kittens, but greater clearance and apparent volume of distribution resulted in lower plasma concentrations. Oral administration of enrofloxacin resulted in poor bioavailability. CONCLUSIONS AND CLINICAL RELEVANCE: In neonatal kittens, i.v. and s.c. administration of enrofloxacin provided an effective route of administration. Oral administration of enrofloxacin in kittens did not result in therapeutic drug concentrations. Doses may need to be increased to achieve therapeutic drug concentrations in 6- to 8-week-old kittens.  相似文献   

12.
The pharmacokinetics of enrofloxacin administered orally and i.v. to American alligators (Alligator mississippiensis) at 5 mg/kg was determined. Plasma levels of enrofloxacin and its metabolite ciprofloxacin were measured using high-performance liquid chromatography and the resulting concentration versus time curve analyzed using compartmental modeling techniques for the i.v. data and noncompartmental modeling techniques for the oral data. A two-compartment model best represented the i.v. data. Intravenous administration of enrofloxacin resulted in an extrapolated mean plasma concentration of 4.19 +/- 4.23 microg/ml at time zero, with average plasma drug levels remaining above 1.0 microg/ml for an average of 36 hr. Plasma volume of distribution for i.v. enrofloxacin was 1.88 +/- 0.96 L/kg, with a harmonic mean elimination half-life of 21.05 hr and mean total body clearance rate of 0.047 +/- 0.021 L/hr/kg. Plasma levels of p.o. enrofloxacin remained below 1.0 microg/ml in all test animals, and average concentrations ranged from 0.08 to 0.50 microg/ml throughout the sampling period. Oral administration of enrofloxacin achieved a mean maximum plasma concentration of 0.50 +/- 0.27 microg/ml at 55 +/- 29 hr after administration, with a harmonic mean terminal elimination half-life of 77.73 hr. Minimal levels of ciprofloxacin were detected after both oral and i.v. enrofloxacin administration, with concentrations below minimum inhibitory concentrations for most susceptible organisms. On the basis of the results of this study, enrofloxacin administered to American alligators at 5 mg/kg i.v. q 36 hr is expected to maintain plasma concentrations that approximate the minimum inhibitory concentration for susceptible organisms (0.5 microg/ml). Enrofloxacin administered to American alligators at 5 mg/kg p.o. is not expected to achieve minimum inhibitory values for susceptible organisms.  相似文献   

13.
The metabolism and excretion of enrofloxacin were studied when applied as oral solution to chicken broilers for five consecutive days. Sixty 9‐day‐old broilers were isolated within an intensively rearing poultry farm during enrofloxacin therapy (15.5 mg/kg per day). The excreta of the isolated broilers were collected daily, 9 days after therapy termination, for 13 consecutive days, and analyzed for the presence of enrofloxacin and its metabolites [ciprofloxacin, desethylene‐enrofloxacin (DES‐EF) and desethylene‐ciprofloxacin (DES‐CF)]. Enrofloxacin was excreted predominantly in the form of the parent compound between days 1 and 13. Ciprofloxacin was detected in the excreta between days 1 and 6, whereas minor amounts of DES‐EF and DES‐CF were excreted only between days 1–7 and 1–6, respectively. In conclusion, the analysis of the excreta showed that approximately 74% of orally applied enrofloxacin was excreted as the parent compound, approximately 25% as the main metabolite ciprofloxacin, and approximately 1% as the minor metabolites desethylene‐enrofloxacin and desethylene‐ciprofloxacin.  相似文献   

14.
This study was performed in 105 ill cows to determine the best practical individualized dose of enrofloxacin after i.m. (2.5 mg/kg) single-dose administration. Samples were collected from each cow at random time to ensure the percentage of samples distributed equally in the absorption phase, distribution phase, and elimination phase of the drug. Drug concentrations were determined by high-performance liquid chromatography with fluorometric detector, analyzed by population pharmacokinetic (PPK) modeling with NONMEM. The concentration–time data for enrofloxacin in plasma and ciprofloxacin were fitted to the one-compartment model with first-order absorption and elimination. The final covariate model indicated that body weight and daily milk productions have significant influence on clearance (CL) of enrofloxacin and ciprofloxacin, and the volume ( V ) of distribution of enrofloxacin. The typical PPK parameters were K a = 3.33 h−1, CL = 1.25 L/h/kg, and V  = 2.98 L/kg of enrofloxacin, and the interindividual variability for CL and V were 20.2% and 24.3%, respectively, the population mean estimates of K a, CL, and V for ciprofloxacin were 1.12 h−1, 2.36 L/h/kg, 8.20 L/kg, respectively, and their interindividual variability was 36.9%, 15.8% and 14.1%, respectively.  相似文献   

15.
OBJECTIVE: To examine pharmacokinetic interactions of flunixin meglumine and enrofloxacin in dogs following simultaneously administered SC injections of these drugs. ANIMALS: 10 Beagles (4 males and 6 females). PROCEDURE: All dogs underwent the following 3 drug administration protocols with a 4-week washout period between treatments: flunixin administration alone (1 mg/kg, SC); simultaneous administration of flunixin (1 mg/kg, SC) and enrofloxacin (5 mg/kg, SC); and enrofloxacin administration alone (5 mg/kg, SC). Blood samples were collected from the cephalic vein at 0.5, 0.75, 1, 1.5, 2, 3, 5, 8, 12, and 24 hours following SC injections, and pharmacokinetic parameters of flunixin and enrofloxacin were calculated from plasma drug concentrations. RESULTS: Significant increases in the area under the curve (32%) and in the elimination half-life (29%) and a significant decrease (23%) in the elimination rate constant from the central compartment of flunixin were found following coadministration with enrofloxacin, compared with administration of flunixin alone. A significant increase (50%) in the elimination half-life and a significant decrease (21%) in the maximum plasma drug concentration of enrofloxacin were found following coadministration with flunixin, compared with administration of enrofloxacin alone. CONCLUSIONS AND CLINICAL RELEVANCE: The observed decrease in drug clearances as a result of coadministration of flunixin and enrofloxacin indicates that these drugs interact during the elimination phase. Consequently, care should be taken during the concomitant use of flunixin and enrofloxacin in dogs to avoid adverse drug reactions.  相似文献   

16.
Detection of enrofloxacin and its metabolite ciprofloxacin in equine hair   总被引:4,自引:0,他引:4  
Hair analysis to detect drug administration has not been studied extensively in horses. This study aimed to (a) develop an analytical method for enrofloxacin and its metabolite ciprofloxacin in mane and tail hair, (b) relate measured values to doses, routes of administration, hair colour, and (c) demonstrate long-term detectability. Samples were extracted in trifluoroacetic acid at 70 degrees C. Extracts were cleaned-up by solid-phase extraction and analysed by high-performance liquid chromatography with UV-diode array detection. Analyte recoveries were > 87%. Horses were sampled after therapeutic enrofloxacin administration either orally at 7.5 mg/kg daily for 3-13 days or twice daily for 10-14 days (Group 1, n=7) or intravenously at 5.0 mg/kg daily for 12 and 15 days (Group 2, n=2). Enrofloxacin and ciprofloxacin were detected at concentrations up to 452 and 19 ng/mg, respectively, up to 10 months post-treatment. In vitro, enrofloxacin and ciprofloxacin were extensively bound to melanin (> 96%) and in vivo, their uptake was 40-fold greater in black than white hair. Enrofloxacin and ciprofloxacin concentrations correlated to enrofloxacin dose (r2=0.777 and r2=0.769). Enrofloxacin:ciprofloxacin ratios were 21:1 and 13:1 following intravenous and oral administration, respectively. Longitudinal analyte distributions correlated to treatment-sampling interval.  相似文献   

17.
The plasma pharmacokinetics of danofloxacin and enrofloxacin in broiler chickens was investigated following single intravenous (i.v.) or oral administration (p.o.) and the steady-state plasma and tissue concentrations of both drugs were investigated after continuous administration via the drinking water. The following dosages approved for the treatment of chickens were used: danofloxacin 5 mg/kg and enrofloxacin 10 mg/kg of body weight. Concentrations of danofloxacin and enrofloxacin including its metabolite ciprofloxacin were determined in plasma and eight tissues by specific and sensitive high performance liquid chromatography methods. Pharmacokinetic parameter values for both application routes calculated by noncompartmental methods were similar for danofloxacin compared to enrofloxacin with respect to elimination half-life (t1/2: approximately 6-7 h), mean residence time (MRT; 6-9 h) and mean absorption time (MAT; 1.44 vs. 1.20 h). However, values were twofold higher for body clearance (ClB; 24 vs. 10 mL/min. kg) and volume of distribution at steady state (VdSS; 10 vs. 4 L/kg). Maximum plasma concentration (Cmax) after oral administration was 0.5 and 1.9 micrograms/mL for danofloxacin and enrofloxacin, respectively, occurring at 1.5 h for both drugs. Bioavailability (F) was high: 99% for danofloxacin and 89% for enrofloxacin. Steady-state plasma concentrations (mean +/- SD) following administration via the drinking water were fourfold higher for enrofloxacin (0.52 +/- 0.16 microgram/mL) compared to danofloxacin (0.12 +/- 0.01 microgram/mL). The steady-state AUC0-24 h values of 12.48 and 2.88 micrograms.h/mL, respectively, derived from these plasma concentrations are comparable with corresponding area under the plasma concentration-time curve (AUC) values after single oral administration. For both drugs, tissue concentrations markedly exceeded plasma concentrations, e.g. in the target lung, tissue concentrations of 0.31 +/- 0.07 microgram/g for danofloxacin and 0.88 +/- 0.24 microgram/g for enrofloxacin were detected. Taking into account the similar in vitro activity of danofloxacin and enrofloxacin against important pathogens in chickens, a higher therapeutic efficacy of water medication for enrofloxacin compared to danofloxacin can be expected when given at the approved dosages.  相似文献   

18.
Enrofloxacin and marbofloxacin were administered to six healthy dogs in separate crossover experiments as a single oral dose (5 mg/kg) and as a constant rate IV infusion (1.24 and 0.12 mg/h.kg, respectively) following a loading dose (4.47 and 2 mg/kg, respectively) to achieve a steady-state concentration of approximately 1 microg/mL for 8 h. Interstitial fluid (ISF) was collected with an in vivo ultrafiltration device at the same time period as plasma to measure protein unbound drug concentrations at the tissue site and assess the dynamics of drug distribution. Plasma and ISF were analyzed for enrofloxacin, its active metabolite ciprofloxacin, and for marbofloxacin by high performance liquid chromatography (HPLC). Lipophilicity and protein binding of enrofloxacin were higher than for marbofloxacin and ciprofloxacin. Compared to enrofloxacin, marbofloxacin had a longer half-life, higher Cmax, and larger AUC(0-infinity) in plasma and ISF after oral administration. Establishing steady state allowed an assessment of the dynamics of drug concentrations between plasma and ISF. The ISF and plasma-unbound concentrations were similar during the steady-state period despite differences in lipophilicity and pharmacokinetic parameters of the drugs.  相似文献   

19.
Pharmacokinetics of enrofloxacin and its active metabolite ciprofloxacin were investigated in normal, febrile and probenecid‐treated adult goats after single intravenous (i.v.) administration of enrofloxacin (5 mg/kg). Pharmacokinetic evaluation of the plasma concentration–time data of enrofloxacin and ciprofloxacin was performed using two‐ and one‐compartment open models, respectively. Plasma enrofloxacin concentrations were significantly higher in febrile (0.75–7 h) and probenecid‐treated (5–7 h) goats than in normal goats. The sum of enrofloxacin and ciprofloxacin concentrations in plasma ≥0.1 μg/mL was maintained up to 7 and 8 h in normal and febrile or probenecid‐treated goats, respectively. The t1/2β, AUC, MRT and ClB of enrofloxacin in normal animals were determined to be 1.14 h, 6.71 μg.h/mL, 1.5 h and 807 mL/h/kg, respectively. The fraction of enrofloxacin metabolized to ciprofloxacin was 28.8%. The Cmax., t1/2β, AUC and MRT of ciprofloxacin in normal goats were 0.45 μg/mL, 1.79 h, 1.84 μg.h/mL and 3.34 h, respectively. As compared with normal goats, the values of t1/2β (1.83 h), AUC (11.68 μg ? h/mL) and MRT (2.13 h) of enrofloxacin were significantly higher, whereas its ClB (430 mL/h/kg) and metabolite conversion to ciprofloxacin (8.5%) were lower in febrile goats. The Cmax. (0.18 μg/mL) and AUC (0.99 μg.h/mL) of ciprofloxacin were significantly decreased, whereas its t1/2β (2.75 h) and MRT (4.58 h) were prolonged in febrile than in normal goats. Concomitant administration of probenecid (40 mg/kg, i.v.) with enrofloxacin did not significantly alter any of the pharmacokinetic variables of either enrofloxacin or ciprofloxacin in goats.  相似文献   

20.
Rung, K., Riond, J.-L. & Wanner, M. Pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin after intravenous and oral administration of enrofloxacin in dogs. J. vet
Four dogs were given 5 mg/kg body weight enrofloxacin intravenously (i.v.) and orally (p.o.) in a cross-over study. Plasma concentrations of the active ingredient enrofloxacin and its main metabolite ciprofloxacin were determined by a reversed phase liquid chromatographic method. Pharmacokinetic parameters of both substances were calculated by use of statistical moments and were compared to those of enrofloxacin described in the veterinary literature. Mean enrofloxacin t ½λZ was 2.4 h, mean Cls was 27.1 ml/min-kg, and mean Vss was 7.0 1/kg. After i.v. and p.o. administration, concentrations of ciprofloxacin exceeding minimal inhibitory concentrations of several microorganisms were reached (Cmax= 0.2 ng/ml, max = 2.2 h after intravenous administration; Cmax= 0.2 (ig/ml, t max= 3.6 h after oral administration). A considerable part of the antimicrobial activity is due to ciprofloxacin, the main metabolite of enrofloxacin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号