首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
猪3种重要病毒寡核苷酸芯片诊断方法的建立   总被引:2,自引:0,他引:2  
将猪细小病毒(PPV)、猪圆环病毒-Ⅱ(PCV-2)、猪瘟病毒(CSFV)分别应用生物信息学方法,针对病毒基因组保守序列设计特异性强的60-mer寡核苷酸探针,并将其按所设计阵列固定于表面经氨基化修饰的玻片上,制备出寡核苷酸芯片.分别设计出相应的引物,对待测样本进行不对称PCR扩增,从而产生大量可与寡核苷酸探针特异性互补的单链DNA片段,并通过间接荧光标记技术使扩增产物标记上荧光染料.将标有荧光染料的扩增产物与芯片上寡核苷酸探针杂交.扫描、分析芯片上荧光信号.试验结果表明,芯片上各样本对应探针位点呈现阳性荧光信号.而阴性对照和空白对照则基本不能检测到荧光信号.不对称PCR技术制备的单链DNA片段与寡核苷酸芯片进行杂交反应可同时、快速、特异性地检测多种猪疫病病毒.  相似文献   

2.
本研究以猪细小病毒VP2基因为目的基因设计引物和探针,通过不对称PCR扩增Cy3标记的DNA片段与固定于芯片上的探针进行杂交,对杂交芯片进行扫描分析,根据荧光信号的强度来确定是否存在猪细小病毒。结果表明,采用浓度为5μmol/L的探针与PCR产物于47℃杂交1 h即可得到清晰的荧光信号,检测灵敏度可达34.5 ng/μL,同时用制备的基因芯片对临床20份疑似猪细小病毒病感染的病料进行检测,检测结果与PCR检测结果符合率达100%,表明基因芯片检侧技术是一种灵敏度高、特异好的检侧方法。该方法的建立可以快速有效地对猪细小病毒做出诊断,具有较好的应用前景。  相似文献   

3.
为建立一种能够快速鉴别猪瘟病毒野毒和疫苗弱毒株的临床检测方法,本实验针对猪瘟病毒野毒株及疫苗弱毒株分别设计了特异性鉴别引物及探针,利用RT-PCR方法特异性扩增目的基因后进行芯片杂交反应并显色,直观判定检测结果,经反应条件优化建立了一种鉴别检测猪瘟病毒的基因芯片方法,并对该方法的特异性、敏感性及重复性进行了试验。结果显示,该芯片检测方法仅能鉴别检测出猪瘟病毒野毒株与疫苗弱毒株,不能检测猪的其他12种主要传染病病原,特异性较强。对猪瘟病毒野毒株和疫苗弱毒株重组质粒标准品的最低检出限分别为6.98拷贝/μL和6.92×10~1拷贝/μL,敏感性较高。选择不同批次基因芯片对同一质粒标准品的检测结果均为阳性,重复性良好。利用该方法检测177份临床样本,结果与国标猪瘟病毒RT-nPCR检测方法(GB/T26875-2018)相比较,总体符合率为99.43%(176/177)。可视化猪瘟病毒鉴别诊断基因芯片方法可在2 h内完成对猪瘟野毒感染和疫苗免疫的临床样本的鉴别检测,且检测结果可用肉眼直观判定,在基层猪瘟流行病学监测及我国猪瘟的防控和净化方面具有良好的应用前景。  相似文献   

4.
几种动物病毒的基因芯片检测技术   总被引:14,自引:1,他引:14  
分别用水疱性口炎病毒、蓝舌病病毒、口蹄疫病毒、猪瘟病毒、牛病毒性腹泻病毒、鹿流行性出血热病毒和赤羽病病毒各一段高度保守的基因片段构建质粒,在此基础上制备了芯片探针。提取样品中的核酸,经反转录和荧光标记后滴加到芯片上进行特异性杂交,对杂交结果扫描检测,可同时对上述7种动物传染病进行快速、准确的诊断,此方法敏感性高,特异性强,适合于大批动物高通量检疫。  相似文献   

5.
为建立快速区分3种猪圆环病毒(PCV2、PCV3和PCV4)的现场检测方法,采用微流控芯片环介导等温扩增技术(loop-mediated isothermal amplification,LAMP),收集3种猪圆环病毒临床阳性样本进行核酸提取,与市场上3种猪圆环病毒荧光探针法检测试剂盒进行灵敏度、特异性和重复性同步比对。结果显示:微流控芯片LAMP法在3种猪圆环病毒联检测试中具有非常高的灵敏度,可以在30 min内,实现不低于荧光定量PCR法的敏感性;与非洲猪瘟病毒、猪瘟病毒、猪繁殖与呼吸综合征病毒、猪伪狂犬病毒和猪细小病毒临床阳性样本均无交叉反应,特异性好;测试3种猪圆环病毒重复性Ct值变异系数(CV)均在2%以下,稳定性好。结果表明:3种猪圆环病毒微流控芯片快速联检技术特异性好、灵敏度高、重复性强,检测速度快,环境要求低,可以满足现场检测的要求,适用于养猪场等场所的猪圆环病毒现场快速检测。本方法的建立为猪相关病原体的现场快速核酸检测提供了有力工具。  相似文献   

6.
建立一种特异、敏感、快速的实时荧光定量PCR(FQ-PCR)方法,用于非洲猪瘟病毒(ASFV)和高致病性猪繁殖与呼吸综合征病毒(HP-PRRSV)的鉴别诊断。针对ASFV的B646L基因和HP-PRRSV的NSP2基因分别设计特异性引物/探针对,经优化反应体系、反应程序等反应条件,建立一种基于探针技术的FQ-PCR方法,验证方法的敏感性、特异性和重复性,对130份临床样品进行检测,并与OIE检测方法(ASFV)及国标方法(HP-PRRSV)进行比较分析。本研究成功建立的ASFV和HP-PRRSV二重FQ-PCR检测方法在10-1~105 copies/μL模板范围内有良好的线性关系;对ASFV和HP-PRRSV基因出现阳性扩增,但对猪日本乙型脑炎病毒(JEV)、猪瘟(CSFV)、猪细小病毒(PPV)、猪伪狂犬病病毒(PRV)、猪圆环病毒2型(PCV2)、猪繁殖与呼吸综合征病毒(PRRSV)美洲经典株(VR2332株)、健康猪脾脏等7种病原核酸样品对照未出现扩增;批内、批间试验变异系数在0.53%~3.14%,重复性良好;对ASFV和HP-PR...  相似文献   

7.
为建立运用多重PCR和基因芯片技术同时检测5种猪繁殖障碍性病毒病的方法。本研究根据GenBank中登录的猪瘟病毒(CSFV)、猪细小病毒(PPV)、猪繁殖与呼吸综合征病毒(PRRSV)、猪日本乙型脑炎病毒(JEV)及猪圆环病毒2型(PCV2)的基因序列设计特异性引物与探针,制备相应的寡核苷酸芯片,检测了5种猪繁殖障碍性疾病病毒的标准毒株,并对16份临床样品进行检测。通过多重PCR扩增出带有荧光标记的5种病毒的特异性基因片段,并与固定有特异性探针的基因芯片杂交。结果显示,本研究建立的多重PCR结合基因芯片检测方法特异性强、稳定性好,灵敏度可达10~2拷贝/μL。16份临床样品检测结果显示阳性率达87.5%(14/16)。以上结果表明该方法特异性好、灵敏度高,可高效检测以上5种病毒,为其临床诊断及流行病学调查提供了有效的检测方法。  相似文献   

8.
《中国兽医学报》2016,(12):2001-2004
根据GenBank发表的1株鸭细小病毒全基因组序列设计1对特异性引物,利用PCR扩增得到大小为301bp的片段,回收纯化后用地高辛进行标记,制备鸭细小病毒地高辛标记探针。特异性试验表明,该探针仅与鸭细小病毒发生特异性杂交反应,与GPV、MDPV、DcuV、DEV、DHAV-I、H9N2亚型AIV、N-DRV、NDV、TMUV杂交反应均为阴性。敏感性试验表明,该探针对鸭细小病毒核酸的最低检测量为25pg。应用制备的探针对山东、江苏和安徽等地采集的61份患病鸭和30份健康鸭组织进行检测,阳性率分别为97%和0%,与病毒分离结果符合率为98%。上述结果显示,本研究制备的探针特异性强、敏感性高,为该病的诊断和流行病学调查提供可靠的方法。  相似文献   

9.
对伪狂犬病病毒(PRV)、猪细小病毒(PPV)和流行性乙型脑炎病毒(JEV)检测基因芯片的制备及该芯片的检测技术进行了研究。选定靶基因最佳点样质量浓度为200 mg/L,用基因芯片点样仪将其点制在氨基化基片上,经干燥、水合、紫外线交联和洗涤后,成功制备了PRV-PPV-JEV检测基因芯片。以CY3荧光素标记的dCTP经PCR扩增制备探针,对芯片的质量进行了评价。结果表明,制备的芯片质量好,探针最佳使用质量浓度为3 000μg/L,芯片系统检测灵敏度可达3μg/L。该芯片可同时检测PRV、PPV和JEV,其灵敏度高、特异性强,芯片可重复使用,室温下至少可保存4个月。  相似文献   

10.
为建立运用多重PCR和基因芯片技术同时检测5种猪繁殖障碍性病毒病的方法。本研究根据GenBank中登录的猪瘟病毒(CSFV)、猪细小病毒(PPV)、猪繁殖与呼吸综合征病毒(PRRSV)、猪日本乙型脑炎病毒(JEV)及猪圆环病毒2型(PCV2)的基因序列设计特异性引物与探针,制备相应的寡核苷酸芯片,检测了5种猪繁殖障碍性疾病病毒的标准毒株,并对16份临床样品进行检测。通过多重PCR扩增出带有荧光标记的5种病毒的特异性基因片段,并与固定有特异性探针的基因芯片杂交。结果显示,本研究建立的多重PCR结合基因芯片检测方法特异性强、稳定性好,灵敏度可达10~2拷贝/μL。16份临床样品检测结果显示阳性率达87.5%(14/16)。以上结果表明该方法特异性好、灵敏度高,可高效检测以上5种病毒,为其临床诊断及流行病学调查提供了有效的检测方法。  相似文献   

11.
禽白血病病毒B、E和J亚群基因芯片检测方法的建立   总被引:1,自引:0,他引:1  
目的基于多重PCR技术,建立禽白血病病毒(ALV)的B、E、J亚群的基因芯片分型和检测方法。方法根据NCBI已收录的ALV三个亚群的参考毒株cDNA序列,在各亚群特异性基因突变区两端选取其保守区域,设计合成三个亚群的通用上游引物1条,以及B、E亚群的通用下游引物和J亚群下游引物各1条,将上述引物用Cy3标记,建立多重PCR体系;参考靶序列内部的三个亚群各自的保守区域,选择亚群之间基因突变位点多的区域,设计合成5条寡核苷酸探针,制作寡核苷酸探针基因检测芯片;以寄主细胞DF-1中提取传代ALV的cDNA,以及合成NCBI收录的各亚群参考毒株的cDNA序列作为检测模板;利用Cy3标记的PCR扩增产物,与基因芯片进行杂交反应,扫描结果。结果芯片准确检测并分型三个亚群的参考毒株,其检测灵敏度能够达到102个基因拷贝,且与禽类常见的四种病毒均无交叉反应。结论本研究结果证明,基因芯片技术是一种ALV的B、E和J亚群进行检测和分型的有效方法,且具有较高的特异性和灵敏度,为今后在临床应用中快速鉴别诊断ALV等免疫抑制病提供可行性。  相似文献   

12.
为探索建立马病病毒基因芯片检测方法,采用人工拼接的方式拼接了非洲马瘟病毒(ASHV)核酸序列,通过分子克隆技术获得西尼罗病毒(WNV)和马冠状病毒(ECV)的特异基因片段。用芯片点样仪逐点分配到处理过的玻片上,制备成检测芯片。以拼接、克隆的核酸序列为模板通过多重不对称RT-PCR进行特异性扩增和荧光标记后滴加到芯片上进行杂交,对杂交结果进行扫描检测和计算机软件分析。结果显示,制备的基因芯片可同时检测和鉴别上述3种病毒,ECV质粒样品、WNV质粒样品检测灵敏度为102拷贝;AHSV质粒样品检测灵敏度为104拷贝。其他病毒材料未出现荧光信号,验证了本方法的特异性。证明基因芯片技术可快速、准确和灵敏地同时进行多种病毒的检测。  相似文献   

13.
水貂阿留申病基因检测芯片的研究与初步应用   总被引:6,自引:0,他引:6  
根据已发表的水貂阿留申病病毒(ADV)的序列,设计合成能扩增VP2基因片段的一对引物,通过生物素标记PCR技术,将VP2基因片段作为探针点在硝酸纤维素膜上,制作成疾病诊断基因芯片。以采取的160份可疑病貂的血液核酸作模板,进行PCR扩增,将其产物与诊断基因芯片进行特异性逆向点杂交检测;同时使用水貂阿留申病DOT-ELISA检测试剂盒进行检测、比较。结果表明基因芯片的检出率比ELISA方法高17%,试验同时还比较了常规PCR与基因芯片的敏感性。  相似文献   

14.
根据GPV H1株核苷酸序列,设计了扩增VP1-VP3基因非重叠序列的1对引物,对其结构蛋白VP1与VP3非重叠核苷酸序列进行PCR扩增,将PCR产物纯化、回收后制备出GPV VP1-VP3基因DIG标记核酸探针,其标记效率达到0.1pg/μl。特异性检测结果表明,该探针能与GPV不同毒株核酸发生特异性杂交,而与对照的DPV、GPMV等病毒的核酸杂交反应均为阴性;敏感性检测结果表明该探针对GPV的最低检出量为0.032ng。上述试验结果表明该探针可以用于GPV感染临床病料的检测。  相似文献   

15.
几种主要禽疫病诊断基因芯片的制备及初步应用   总被引:5,自引:2,他引:5  
进行了几种主要禽疫病诊断基因芯片制备及其初步应用研究。试验分别设计和克隆鉴定了NDV、IBV、AIV和IBDV的靶基因重组质粒。以克隆的靶基因重组质粒为模板。分别进行PCR扩增制备靶基因并纯化,以基因芯片点样仪将制备的靶基因点制在氨基化的基片上,经干燥、水合、紫外线交联和洗涤后,成功制备了NDV-IBV-AIV-IBDV诊断基因芯片。试验应用CY3荧光标记制备的探针进行芯片的检验,结果表明制备的NDV-IBV-AIV-IBDV诊断基因芯片质量好,可对NDV、IBV、AIV和IBDV进行诊断检测,具有检测灵敏性好,特异性高和芯片可重复检测的优点。试验对30个临床样品进行初步应用检测,结果表明该诊断基因芯片技术与RT—PCR检测技术检出率基本一致,并具有同步诊断检测多种疫病的优点。  相似文献   

16.
应用生物信息学手段和查阅文献资料设计了金黄色葡萄球菌、大肠埃希菌、无乳链球菌、绿脓杆菌、停乳链球菌、乳房链球菌6种奶牛乳房炎主要致病菌的通用引物和金黄色葡萄球菌、大肠埃希菌、绿脓杆菌的寡核苷酸探针及无乳链球菌、停乳链球菌、乳房链球菌的特异引物,并用这3种特异引物扩增片段的纯化产物作为这3种链球菌的检测探针。在引物对样品中细菌的相应基因片段扩增的同时进行靶基因的生物素标记,扩增的产物与硝酸纤维素膜上的探针进行杂交,酶联、显色后根据芯片扫描仪的判读结果来确定奶牛乳房炎致病菌感染的种类。结果表明,建立的以16S rDNA为对象的基因芯片技术可以快速的检测出以上6种细菌,整个检测过程需要6h~7h,灵敏度高,特异性好,能快速的对奶牛乳房炎的主要致病菌做出诊断。  相似文献   

17.
基因芯片技术在猪病毒性疾病诊断中的应用   总被引:3,自引:1,他引:2  
基因芯片是研究生物大分子功能的新技术,具有高通量、高度平行性、高度自动化的特点。它是通过点样法或原位合成法把大量基因探针或基因片段按特定的排列方式固定在硅片上形成致密有序的DNA分子点阵,按碱基配对的特性与样品DNA杂交,然后通过计算机进行解读和分析,以获取大量信息。在对动物传染病病原体的研究中,基因芯片技术已应用于病原体检测、基因分型、表达谱的分析等。论文就其定义、作用机理、分类、在动物病毒性传染病方面的应用及其存在的问题和发展前景进行了综述。  相似文献   

18.
19.
本研究旨在建立联合检测胸膜肺炎放线杆菌、猪肺炎支原体和多杀性巴氏杆菌的DNA芯片.用7个从3种病菌基因组中扩增出的不同特异性靶DNA制作基因芯片,并对芯片的靶DNA和探针浓度、杂交温度、重复性、特异性和灵敏度进行了研究.结果表明,检测芯片的特异性强,能与测试的李氏放线杆菌、猪鼻支原体和副猪嗜血杆菌等9种病原区分;灵敏度高,在50μL标记反应体系中,能检测到10~50 pg基组DNA,芯片可重复利用.用芯片对44株目标菌的不同型标准菌株、分离株和疫苗株进行了检测.其信号值≥1 000,信号噪音比(SNR)≥6.用芯片对45头病猪和97头健康猪的临床样品选择培养物进行了检测,其检出率分别为多杀性巴氏杆菌71.1%和49.5%、胸膜肺炎放线杆菌42.2%和26.8%、猪肺炎支原体20%和22.7%,混合感染率分别为42.2%和24.7%.在检测临床样品时,芯片法与PCR的符合率为97.8%~100%,与分离鉴定法的符合率为87.6%~95.6%.研究表明,研制的芯片特异性强、敏感性高、可重复使用,是一种能有效用于胸膜肺炎放线杆菌、猪多杀性巴氏杆菌和猪肺炎支原体鉴定和联合检测的新工具.  相似文献   

20.
用特定引物通过PCR合成了经地高辛标记的鸡致病性外源性及内源性禽白血病病毒特异性核酸探针,通过交叉斑点分子杂交,这些探针将可用于检测病料样品中致病性外源性禽白血病毒特异性核酸的存在。利用此试剂盒,对从病料组织样品中提取的基因组DNA作交叉斑点分子杂交或对提取的DNA用相应引物扩增后的PCR产物作交叉斑点分子杂交,可在24~36h内完成检测并报告结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号