首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为评价猪伪狂犬病活疫苗(Bartha-K61株,传代细胞源)的免疫保护效力,本研究对3批疫苗分别进行免疫产生期试验和免疫持续期试验。免疫产生期试验中将3批疫苗以单剂量免疫仔猪,在免疫后2、3、4、5、6 d连同对照组分别攻击伪狂犬病强毒,结果表明猪伪狂犬病活疫苗免后5 d即可产生坚强的免疫保护力。免疫持续期试验中将3批疫苗以单剂量免疫母猪,免疫后12、14个月连同对照猪分别攻击伪狂犬病强毒,结果显示免疫母猪及其所产仔猪均健康存活,表明猪伪狂犬病活疫苗(Bartha-K61株)的免疫持续期可长达14个月。  相似文献   

2.
将猪伪狂犬病活疫苗(Bartha-K61株,传代细胞源)基础毒种F7传至F13,并将PRV F8~PRV F13六个代次毒种接种仔猪进行安全性检验,PRV F8、PRV F10、PRV F13三个代次毒种接种仔猪进行免疫原性检验,用以研究猪伪狂犬病活疫苗(Bartha-K61株,传代细胞源)生产用毒种不同代次生物学特性。安全性检验结果显示,各代次毒种经颈部肌肉接种仔猪,观察期内仔猪精神、食欲、体温均正常;免疫原性检验结果显示,免疫组仔猪攻毒后精神、食欲、体温均正常,对照组仔猪攻毒后体温升高,全部发病并死亡。以上结果表明,猪伪狂犬病活疫苗(Bartha-K61株,传代细胞源)不同代次的生产毒种对仔猪均安全且保持良好的免疫原性。  相似文献   

3.
为研究高剂量高致病性猪繁殖与呼吸综合征病毒(PRRSV)TJM-F92疫苗株对低剂量伪狂犬病毒(PRV)Bartha-K61疫苗株是否存在免疫干扰作用,本研究对其从体液免疫水平、免疫攻毒保护水平及病理学变化等方面进行评价。结果表明,二联免疫组抗体消长规律与低剂量PRV Bartha-K61株免疫对照组抗体消长规律相一致,二联免疫组中高剂量PRRSV TJM-F92株未抑制低剂量PRV Bartha-K61株抗体生成;二联免疫组与低剂量PRV Bartha-K61免疫对照组对PRV JL1株强毒攻击保护率均为5/5;免疫病理学研究结果表明,两组免疫组攻击PRV JL1株强毒后各组织器官病理变化轻微;二联免疫组与低剂量PRV Bartha-K61免疫对照组均可对PRV强毒攻击产生良好的保护效果。综上,高剂量PRRSV TJM-F92株对低剂量PRV Bartha-K61株无免疫干扰作用。  相似文献   

4.
ST传代细胞生产3批次伪狂犬病毒活疫苗(Bartha-K61株)中试产品,检验合格后对20~25日龄、50~55日龄健康猪以及妊娠后期的母猪,分别采用耳后颈部肌肉注射方式进行超剂量免疫接种,同时设立相应对照组。超剂量免疫后各组猪只精神、食欲、体温、生产状况等经持续观察记录,均表现为正常。结果表明,ST传代细胞生产猪伪狂犬病活疫苗(Bartha-K61株)对不同日龄猪和妊娠后期母猪进行超剂量免疫接种均是安全的。  相似文献   

5.
《中国兽医学报》2019,(9):1674-1683
2013-2016年期间,从云南陆良、富源、寻甸及西双版纳规模猪场经Bartha-K61疫苗免疫猪群中发生流产的胎儿内脏组织病料中成功分离获得4株伪狂犬病病毒流行毒株,分别命名为FY-YN-2014、LL-YN-2014、XSBN-YN-2015和XD-YN-2014株。经TCID_(50)测定、动物致病性试验、免疫保护试验及gE、gD、gC、TK基因序列分析,结果显示TCID_(50)分别为10~(-6.083)/100μL、10~(-5.75)/100μL、10~(-6.583)/100μL、10~(-6.5)/100μL。采用Bartha-K61疫苗免疫过的经产母猪血清样品对XSBN-YN-2015分离毒株进行微量病毒中和试验,其结果显示gB抗体阳性、gE抗体阴性的血清样品的中和效价在1∶16~1∶32之间,用gB、gE抗体均为阳性的血清样品时,其中和效价在1∶64~1∶128之间。4株分离毒株接种昆明小白鼠、家兔2~5 d后,均出现奇痒的典型伪狂犬病临床症状。对健康非免疫断奶仔猪进行攻毒,同样出现伪狂犬病的典型发病症状,且能从脑及内脏组织中扩增出伪狂犬病病毒gE基因并成功回收分离到病毒株。在昆明小白鼠上的LD_(50)分别是10~(2.625) TCID_(50)、10~(2.875) TCID_(50)、10~(2.625) TCID_(50)、10~(2.5) TCID_(50)。XSBN-YN-2015株在非免疫断奶仔猪(伪狂犬病病毒gE、gB抗体阴性)测得的LD_(50)=10~(5.33) TCID_(50)。XSBN分离毒株对免疫2次Bartha-K61疫苗的断奶仔猪的攻击试验结果显示,被攻击仔猪均出现高热、精神萎顿、厌食等临床表现,但1周后均能耐过并逐渐康复,提示Bartha-K61疫苗株免疫猪只对当前流行的伪狂犬病病毒云南变异毒株的攻击基本能够提供100%保护。4株伪狂犬病病毒云南流行毒株与近年来国内报道的TJ、HeN1、NH1201等变异毒株的gE、gC、gD及TK基因核苷酸及氨基酸序列均高度一致,同源性高达99%~100%,均分属于同一进化树分支,不过与早期的国内毒株SC、GDSH株,国外毒株Becker、Nia-1、CL15、Kaplan、Kolchis、Hercules、NIA3及疫苗株Bartha相比,均存在一定程度的变异,也未分属于同一进化分支,因此,4株伪狂犬病病毒云南流行毒株也属于变异毒株。  相似文献   

6.
《畜牧与兽医》2015,(12):1-4
本研究旨在检测仔猪免疫猪伪狂犬病活疫苗(Bartha K61株)后,抵抗伪狂犬病病毒(PRV)变异株攻击的保护效果。取4~6周龄PRV抗体阴性仔猪,接种猪伪狂犬病活疫苗,1周后用PRV变异株(AH02LA株)攻毒,检测攻毒后临床症状、直肠温度、鼻腔排毒和肺部病变。疫苗免疫组在免疫后7 d均可以检测到gB抗体。攻毒对照组攻毒后出现典型伪狂犬症状,发病率为100%,死亡率为60%,所有猪只鼻拭子均检出排毒,所有猪只肺部均有出血、淤血等病变。免疫组的猪只攻毒后,所有猪只均未出现明显临床症状,部分猪只鼻拭子检出排毒,排毒持续时间缩短,排毒量显著减少,所有免疫猪只肺部未见明显病变。结果表明:伪狂犬病活疫苗免疫猪后对PRV变异株的攻击具有良好的保护效果。  相似文献   

7.
用伪狂犬病病毒及抗体阴性羊,以不同免疫剂量,间隔一定时间,多次免疫不同类型的猪伪狂犬病病毒(Bartha-K61株),制备猪伪狂犬病病毒高免血清,特异性强,效价可达1:2 048以上。本研究为伪狂犬病活疫苗或毒种的鉴定及外源病毒检验提供了具有良好特异性和高效价的中和用血清。  相似文献   

8.
为研制貂源伪狂犬病(PR)灭活疫苗,本实验室从疑似患PR的水貂脑组织中分离到一株PR病毒(PRV)DL14/08株(10~(7.10)TCID_(50)/m L),采用甲醛灭活以铝胶为佐剂制备了水貂源PR灭活疫苗。采用水貂和家兔对疫苗进行安全性检验和最小免疫剂量测定,结果显示水貂和家兔的最小免疫剂量均为5×10~(5.6)TCID_(50)/m L;采用研制的PR灭活疫苗和商品化猪用PR灭活疫苗免疫水貂,免疫21 d后平均中和抗体分别为1∶516和1∶348,用相当于100倍半数致死量毒力的分离株病毒攻毒,自制灭活疫苗组保护率为100%,商品化疫苗组保护率为80%。实验结果表明,制备的水貂源PR灭活疫苗抗体水平及攻毒后保护率明显高于商品化疫苗,能够有效保护强毒株对水貂的攻击,可以作为水貂伪PRV预防和控制的候选疫苗株。  相似文献   

9.
为了确定猪伪狂犬病基因缺失灭活疫苗(PRV JS-2012-△g I/g E株)的最小免疫剂量,本研究将25头14日龄仔猪(猪伪狂犬病毒、猪繁殖与呼吸综合征病毒、猪瘟病毒、猪圆环病毒2型病原抗体均为阴性)随机分成5组,每组5头。第1~4组分别接种猪伪狂犬病灭活疫苗(PRV JS-2012-△g I/g E株)0.5、1、2、3 m L/头,免疫28 d后各组参照第1次免疫的剂量分别加强免疫1次,第5组实验猪不做处理作为阴性对照。免疫后,每周采集各组猪血清检测抗体水平。待第2次免疫28 d后,5组实验猪均滴鼻接种PRV JS-2012株第5代强毒2 m L,含病毒105.0TCID50/头。结果表明:第1次免疫后14 d,第2~4组猪PRV g B抗体全部转为阳性,而第1组猪在第1次免疫后21 d全部转阳。攻毒后,第1组有1头猪发病,表现精神沉郁、厌食和轻微神经症状,其余4头猪有一过性的发热,无任何其他异常临床表现,保护率为80%;第2~4组,实验猪只有一过性的发热,无任何其他异常临床表现,保护率为100%;第5组猪在攻毒后48 h,体温迅速上升到41℃以上,并表现为明显的精神沉郁、厌食和神经症状,发病率为100%,死亡率为40%。由此确定猪伪狂犬病灭活疫苗(JS-2012-△g I/g E株)最小免疫剂量为1 m L/头。  相似文献   

10.
为评估猪伪狂犬病病毒(Pseudorabies virus,PRV)灭活疫苗(HN1201-ΔgE株)免疫后对PRV流行毒株和经典毒株的保护效果,本研究对试验猪分别免疫PRV灭活疫苗(HN1201-ΔgE株)和PRV活疫苗(Bartha-K61),免疫后第0、7、10、14、17、21、24和28天采血测定PRV gB抗体,并分别使用PRV流行毒株HN1201株和经典毒株闽A株测定免疫后第0、7、14、21和28天血清的中和抗体水平,于免疫后第28天分别使用HN1201株和闽A株攻毒并观察,之后测定体温,测定攻毒后第7和14天PRV gE抗体,及攻毒后0~8 d的排毒情况。结果显示,HN1201-ΔgE免疫组较Bartha-K61免疫组gB抗体和中和抗体产生早,且抗体水平较高。两个免疫组试验猪在攻毒后虽然均无明显临床症状,且免疫组织化学检测(IHC)组织中的病毒抗原均为阴性,但HN1201-ΔgE免疫组试验猪脏器未见任何病理损伤,Bartha-K61免疫组试验猪部分脏器具有病理损伤。与未免疫对照组相比,2个免疫组试验猪在HN1201株和闽A株攻毒后,gE抗体转阳时间晚且排毒率低,HN1201-ΔgE免疫组gE抗体水平整体均低于Bartha-K61免疫组,攻毒后排毒检测中,Bartha-K61免疫组于2个毒株攻毒后第3~5天可检测到排毒,而HN1201-ΔgE免疫组全程未检测到排毒。研究结果表明,灭活疫苗(HN1201-ΔgE株)对PRV流行毒株和经典毒株均可提供完全保护。  相似文献   

11.
《养猪》2018,(6)
猪伪狂犬病病毒变异株的流行对伪狂犬病的防控提出了严峻挑战,传统的疫苗对新流行毒株不能提供完全的保护。为评估3种不同毒株的活疫苗C株、HB2000株、Bartha-K61株的免疫效果,在某猪伪狂犬病gE抗体阴性猪场进行试验。结果显示,虽然3组疫苗1次和2次免疫后gB抗体阳性率达到100%,但是中和抗体的效价差异显著。从经典毒株HB-J和变异毒株CW的中和试验结果看,C株产生的平均中和抗体效价均为最高,显著高于HB2000株和Bartha-K61株,提示C株免疫效果优于HB2000株和Bartha-K61株,可以作为防控猪伪狂犬病的高效疫苗。  相似文献   

12.
江苏省猪伪狂犬病流行病学调查及两种疫苗免疫效果评估   总被引:1,自引:1,他引:0  
为了掌控江苏地区规模化猪场伪狂犬病野毒的感染情况及其流行性趋势,比较变异株猪伪狂犬病疫苗(C株)和Bartha-K61疫苗的免疫防控效果。于2017年5月份至2019年1月份对江苏地区59个规模场进行采样,通过间接ELISA方法检测猪群中的gE抗体来鉴定猪群是否被伪狂犬病野毒感染。另外,在一猪伪狂犬病阳性的规模猪场进行变异株猪伪狂犬病疫苗(C株)和Bartha-K61疫苗的防控效果的实验,通过检测猪伪狂犬病gE,gB抗体及中和抗体来判定猪群的猪伪狂犬病抗体保护水平。显示4 608份检测血样中,gE阳性1 681份,阳性率36%,母猪群gE阳性率46%,育肥猪群gE阳性率28%,59个猪场中育肥阶段gE阳性的猪场22个,占比37%。在其中一个商品猪群gE抗体100%阳性猪场进行2组猪伪狂犬病疫苗的实验,通过实验2组商品猪gE抗体18周龄至出栏前均为阴性,同时检测发现变异株疫苗(C株)对经典株和变异株的中和抗体效价均高于Bartha-K61疫苗。结果表明,江苏地区猪伪狂犬病感染压力较大,另外C株疫苗相对于进口的Bartha-K61株疫苗在本场的免疫效果更佳。  相似文献   

13.
为研究猪伪狂犬病病毒(PRV)HNX株水平传播的能力及PRV活疫苗的保护效力,本研究通过以颈部肌肉接种PRV HNX株(2 m L 107 TCID50)的未免疫猪作为病毒的传染源,同居感染未免疫猪和Bartha-K61株活疫苗免疫猪,通过检测抗PRV的g B和g E蛋白抗体、中和抗体及干扰素水平等评估疫苗保护力,并利用荧光定量PCR方法检测同居感染猪排毒情况。结果显示Bartha-K61株活疫苗能够快速诱导免疫猪产生抗g B蛋白的抗体,但疫苗诱导产生的交叉保护中和抗体水平较低。同居感染期间,免疫猪和未免疫猪均出现典型的临床症状,体温明显升高。荧光定量PCR方法结果显示,疫苗免疫能够减少免疫猪排毒,但不能阻止排毒,也不能阻止野毒感染。本研究结果表明Bartha-K61株活疫苗阻止PRV HNX株水平传播的效力是有限的,有必要更换疫苗病毒株。同居感染期间,每组感染猪均表现敏感,表明PRV HNX株病毒具有较强的水平传播能力。  相似文献   

14.
为了解近年来广东省伪狂犬病病毒(PRV)变异情况,本研究从猪场收集Bartha-K61活疫苗免疫后的猪血清559份,经ELISA筛选出326份gB抗体阳性且gE抗体阴性的猪血清,进行中和试验,分析血清中的疫苗抗体对Bartha-K61株和临床分离到的PRV GD1406野毒株的中和能力。进一步应用小鼠进行交叉免疫保护性试验。结果显示,187份gB阳性且gE阴性的猪血清样品对Bartha-K61株和PRV GD1406野毒株的平均中和抗体滴度分别为1:57和1:13,并且免疫Bartha-K61株使小鼠免受PRV GD1406野毒株致死性攻击的保护率仅为20%,而免疫PRV GD1406野毒株使小鼠免受Bartha-K61株致死性攻击的保护率为100%,免疫灭活PRV GD1406野毒株使小鼠免受PRV GD1406野毒株致死性攻击的保护率为40%。根据试验结果推测,PRV GD1406野毒株与Batha-K61株之间存在抗原差异性,现用疫苗不能有效抵抗PRV变异株攻击。本研究结果将为PRV的防控提供实验依据,为研制PRV新疫苗提供新的思路。  相似文献   

15.
某伪狂犬病野毒阴性场,分别选用伪狂犬病疫苗C株和Bartha-K61株做仔猪免疫平行对比试验,采用IDEXX伪狂犬病ELISA试剂盒检测抗体滴度和阳性率,评估母源抗体干扰度和维持时间.检测结果表明,某厂家C株伪狂犬病疫苗效果优于某厂家Bartha-K61毒株.研究为规模猪场伪狂犬病疫苗毒株的选择提供参考依据.  相似文献   

16.
本试验对兽用狂犬病灭活疫苗PV2061株的保护效率进行评估,分别以常量、1/2剂量和1/4剂量免疫本动物并进行街毒攻击试验。血清中和抗体检测结果表明,前2组在免疫4周后抗体阳性率均为100%,抗体的平均滴度分别为4.86 IU/mL和1.18 IU/mL,1/4剂量组的抗体滴度较低,平均滴度仅为0.36 IU/mL。攻毒后前2组的保护率为100%,1/4剂量组的保护率为40%,阴性对照组攻毒后全部死亡。对试验犬的脑组织进行直接荧光抗体染色检测表明仅有死亡犬脑组织中有狂犬病病原存在。综上所述,狂犬病灭活疫苗PV2061株正常免疫剂量和1/2免疫剂量的强毒攻击保护率均在80%以上,阴性对照犬的死亡率高于80%,符合国际标准。本试验为灭活疫苗PV2061株的保护效率提供了试验依据,为其实际应用并投入生产奠定了试验基础。  相似文献   

17.
本研究将伪狂犬病病毒(Pseudorabies virus,PRV)变异株(PRV AH02LA株)的gE基因缺失株(LA-A株)接种BHK-21细胞,经纯悬浮培养制备抗原,甲醛灭活后制备油乳剂灭活疫苗,并确定该灭活疫苗的最小免疫剂量和效力检验方法,以及在2~8℃保存期。结果显示:猪伪狂犬病病毒基因缺失灭活疫苗(LA-A株)的效力检验方法为以2.0 mL(抗原含量108.20TCID50)接种4~5周龄PRV阴性健康仔猪,颈部肌肉注射,间隔28 d以相同剂量和方法加强免疫,加强免疫后第21 d,免疫猪血清PRV抗体中和指数应不低于10000,攻毒保护率应不低于80%;最小免疫剂量为1.0 mL(抗原含量107.90 TCID50);制品保存期:在2~8℃保存期为18个月。该研究结果为新型疫苗的研制提供了重要的试验依据。  相似文献   

18.
正一、猪场信息福建某规模化种猪场,基础母猪800头,自2014年以来一直使用某疫苗厂家生产的猪伪狂犬病(PR)弱毒活疫苗(Bartha-K61株),猪群生产成绩稳定,健康状况良好,连续抽样监测显示种猪群gE抗体阳性率低于10%,并于2016年正式展开猪群伪狂犬病野毒免疫净化工作,2018年顺利通过国家相关部门验收工作。二、净化技术路线1.监测。按照种母猪群10%、种公猪群100%数量采血,检测PRV-gE  相似文献   

19.
用生理盐水将猪流行性腹泻病毒细胞分离毒株XJ-DB2株稀释成含10~4、10~5和10~6 TCID_(50)(病毒半数细胞感染量)3个剂量组。将16头25日龄健康易感仔猪随机分成4组,每组4头。前3组分别口服1 mL含有10~4、10~5 TCID_(50)和10~6TCID_(50)PEDV XJ-DB2株病毒液作为攻毒组,最后1组作为阴性对照口服同等量的生理盐水。相同条件下隔离饲喂,连续观察7 d,攻毒组全部出现猪流行性腹泻临床症状,对照组则无任何临床症状。第7天全部剖杀,观察肠组织病理变化。剖检结果显示:10~4TCID_(50)剂量组中有3头猪肠组织均有明显病变(肠壁变薄、臌气,肠内充满黄色液体)而另外1头猪肠组织无明显病变;10~5 TCID_(50)和10~6 TCID_(50)两个剂量组8头仔猪肠组织均出现明显病变;阴性对照组4头仔,猪肠组织均无病变。由此判断XJ-DB2株为PEDV强毒株,以10~4 TCID_(50)剂量口服可以致25日龄仔猪发病。  相似文献   

20.
《中国兽医学报》2019,(8):1435-1440
为建立猪伪狂犬病病毒(PRV)变异株人工感染小鼠动物模型,将本实验室分离鉴定的猪PRV变异株(Fujian-LY)进行连续10倍稀释后,对6周龄SPF级BALB/c小鼠进行腹股沟皮下接种攻毒,每个稀释度接种5只小鼠,测定其LD_(50),观测小鼠感染、致病的多项指标,试验期为7 d。结果显示,该毒株对小鼠的LD_(50)为3.7×10~3 TCID_(50)/0.1 mL,在不同的感染剂量下各攻毒组小鼠的临床症状、死亡率等各项指标差异明显,其中以2.3×10~5 TCID_(50)的攻毒剂量接种后小鼠未发生急性死亡,且能表现出以神经症状为主的典型伪狂犬病症状;病理剖检可见发病小鼠脑膜充血,肺脏出血,胸腺、脾脏严重萎缩等病理变化;病理组织学检查结果显示该毒株对攻毒小鼠全身多个重要组织器官均造成了严重的病理损伤,同时采用PCR及免疫组化的方法在这些组织内均能检测到PRV抗原。结果表明,本研究已成功建立了PRV变异株感染小鼠动物模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号