首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parthenium hysterophorus is a noxious invasive weed of both agricultural and natural ecosystems, spreading aggressively in Nepal. Management of this weed in Nepal has been limited, mainly because of the lack of geo‐referenced data concerning the weed's distribution. We conducted a nationwide survey of P. hysterophorus and its coleopteran biological control agent Zygogramma bicolorata from 2013 to 2016 to determine their spatial distribution. Both were widespread, with the distribution of Z. bicolorata lagging behind the invasion front of P. hysterophorus. The weed was present in 21.2% of the 4838 locations examined, including several isolated satellite populations. The weed was found in the Tarai, Siwalik, Middle Mountains and High Mountains regions, reaching up to 2000 m asl. It has invaded natural and modified ecosystems including all six protected areas in the Tarai and Siwalik regions. Road access appears to be the major pathway for its long‐distance dispersal. Zygogramma bicolorata had spread from the east to the west and was present in 15.4% of the weed occurrence locations, inflicting a low amount of damage. A CLIMEX modelling projection revealed the presence of additional geographic areas in Nepal which are climatically suitable for both P. hysterophorus and Z. bicolorata. Eradication of satellite populations of the weed by physical and chemical measures, and the release of Z. bicolorata into new, but climatically suitable, locations should be prioritised for P. hysterophorus management in Nepal. In conclusion, P. hysterophorus has rapidly become widespread in Nepal and the currently available biological control agent has not been able to prevent further spread of the weed.  相似文献   

2.
Systematic information on the quantitative impact of Z ygogramma bicolorata on the biology of P arthenium hysterophorus is crucial as the seeds of this weed continue to germinate from the accumulated soil seed bank throughout the year in the form of different germinating flushes, while the activity of the beetle ceases during winter as it enters diapause. Therefore, plant–herbivore interactions need to be explored to develop predictions of the overall impact of the introduced beetle on the weed. The findings revealed that defoliation by Z . bicolorata had a significant impact on the plant height, density and flower production in flushes F 3, F 4 and F 5, but not in F 1 and F 2 that exhibited longer periodicity, profuse branching, a longer flowering period and maximum flower production and contributed mostly to the existing seed soil bank. Therefore, total depletion of the existing soil seed bank was not possible. Consequently, the effect of augmentative field releases of laboratory‐reared beetles was explored on F 1 and F 2 in February for three consecutive years (2011–2013). Before initiating the trial, random soil samples were taken from the plots that were assigned to the paired treatments (i.e. with the beetle and without the beetle [insecticide‐treated]) and it was found that the seed bank in those samples did not differ. The single release of Z . bicolorata adults at five per plant at the six‐leaf stage significantly reduced the soil seed bank, compared to without the biocontrol agent, irrespective of the flushes at the end of the season.  相似文献   

3.
Biological invasion is increasing worldwide and the management of invasive species is becoming an important priority for vegetation managers. Success of invasive species management depends on a thorough understanding of the biology of the organism in question and the effectiveness of current management efforts, in order to identify the best practices for management improvement. In this review, we synthesised current biological knowledge of a noxious invasive weed Ageratina adenophora to identify knowledge gaps and assessed management efforts to identify best practices. Finally, we proposed some priority areas for future research to fill knowledge gaps and improve management. Our analysis showed that A. adenophora has already invaded 40 countries, mainly in Asia, Oceania, Africa and Europe. Phenotypic plasticity, allelopathic interference and invasion‐mediated changes in the soil microbial community are the proposed mechanisms that facilitate rapid spread of this weed. However, allelopathy as a mechanism of invasion success of this weed has not been supported by ecologically meaningful experiments. Though mechanical, chemical and biological control measures have been used, their success remains limited and the weed continues to spread in new regions. Among seven biological control agents examined to date, gall fly (Procecidochares utilis) and leaf spot fungus (Passalora ageratinae) have been effective in limited areas to suppress growth of this weed. Some perennial native grasses (e.g. Setaria sphacellata and Lolium perenne) have shown potential to competitively suppress A. adenophora. In conclusion, understanding the invasion mechanisms, exploring further to identify effective biological control agents, combined with approaches of ecological restoration, could help in the management of this weed.  相似文献   

4.
S Follak  U Aldrian  D Moser  F Essl 《Weed Research》2015,55(3):289-297
Cyperus esculentus (yellow nutsedge) is a serious weed in agriculture worldwide and observational data suggest that it has recently started to spread rapidly in Central Europe. We studied its spatiotemporal invasion pattern, rate of spread and habitat affiliation in Austria, Germany and Switzerland, using retrospective distribution data from various sources and a method that accounts for sampling bias. In total, we found 265 records of C. esculentus since 1900. Multiple accidental introductions, coupled with subsequent regional radial expansion, describe the spatiotemporal range expansion of C. esculentus in the study area. Cumulative number of records and of the number of invaded grid cells showed a continuous increase, but spread has become more pronounced recently (>2005). Invasion hotspots were located in the warmest regions of the study area, as well as in regions with an oceanic climate. On average, the rate of spread within these invasion hotspots ranged between 3.1 and 5.7 km per year. Cyperus esculentus was primarily found on arable land, while other habitats have been rarely invaded. The integration of different data sources improved the cover of distribution data and was useful for reconstructing the incipient and recent invasion phase of C. esculentus. The data suggest that control may be best achieved by preventing long‐range dispersal and containing or eradicating incipient infestations of C. esculentus.  相似文献   

5.
Amaranthus retroflexus, a troublesome agricultural weed native to North America, has expanded its distribution in large areas of China since its introduction around 1905. Geographical interpretation of changes in their distribution ranges could provide valuable insights on its spatiotemporal invasion patterns and could be used to predict the extent of its future spread. Based on compiled historical distribution occurrences of A. retroflexus in North American and Chinese ranges, invaded ecological niche models for three hypothetical invasion stages were developed. Native models on the basis of all available records within the North American range were also generated for reciprocal comparison with the invaded model. Climate similarity between native and invasive ranges was also investigated. Amaranthus retroflexus has exhibited a rapid and large range expansion after about a 50‐year lag, especially in central and western China. It established a relative stable distribution in the 1960s and has been undergoing a more continuous westward expansion since then. Presently A. retroflexus has not yet reached full occupancy of suitable habitats in China. The results highlight prioritising habitats in south‐western China for monitoring and control to prevent its further spread.  相似文献   

6.
T Hyvönen  S Ramula 《Weed Research》2014,54(3):245-255
Climate change is predicted to affect range expansion of harmful C4 weeds into the boreal region, given that they are able to successfully colonise both C3 and C4 crops. We studied the impact of a 3°C elevation in temperature on the establishment and maintenance of populations of two annual C4 weeds (Amaranthus retroflexus and Echinochloa crus‐galli) with and without a competing C3 (barley) or C4 (maize) crop. Data obtained from field and glasshouse experiments were modelled using a periodic matrix population model. Competition of a weed with a crop appeared to be a more important factor for limiting the maintenance of weed populations than elevation in temperature, as neither of the weed species was able to maintain populations in competition with crops. Even an increase in the frequency of warm years did not result in viable weed populations establishing. However, A. retroflexus was able to form persistent populations in competition with maize when released from competition every fifth year. Simulations parameterised from glasshouse data predicted that both weed species would persist without competition in the current climate, whereas simulations parameterised from field data suggested only A. retroflexus to be able to persist. These results demonstrate that competition affects the range expansion of arable weed species more than elevation in temperature, necessitating the inclusion of crop–weed interactions in models of range shifts as a consequence of climate change.  相似文献   

7.
Annual grass weeds such as Apera spica‐venti and Vulpia myuros are promoted in non‐inversion tillage systems and winter cereal‐based crop rotations. Unsatisfactory weed control in these conditions is often associated with a poor understanding of the emergence pattern of these weed species. The aim of this study was to investigate, understand and model the cumulative emergence patterns of A. spica‐venti, V. myuros and Poa annua in winter cereals grown in three primary tillage regimes: (i) mouldboard ploughing, (ii) pre‐sowing tine cultivation to 8–10 cm soil depth and (iii) direct drilling. Direct drilling delayed the cumulative emergence of A. spica‐venti and V. myuros (counted together) in contrast with ploughing, while the emergence pattern of P. annua was unaffected by the type of tillage system. The total density of emerged weed seedlings varied between the tillage systems and years with a higher total emergence seen under direct drilling, followed by pre‐sowing tine cultivation and ploughing. The emergence patterns of all species were differently influenced by the tillage systems, suggesting that under direct drilling, in which these species occur simultaneously, management interventions should first and foremost consider that A. spica‐venti and V. myuros emerge over a longer period to avoid control failures.  相似文献   

8.
Solidago canadensis is native to North America, but has become a noxious invasive plant in China. We know only a little about its invasion history and the effects of introductions on its genetic composition. Here, we investigated genetic variation and structure between 15 North American and 13 Chinese populations of S. canadensis using AFLP makers. Four AFLP loci suggested relatively high genetic diversity of this weed and similar genetic variation between the invasive range and the native range. Most genetic variation was within populations across two ranges, but the Chinese range had a higher degree of among‐population variation than the North American range. Multiple tests, including Bayesian assignment, UPGMA analysis, PCoA and analysis of ‘isolation by distance’, showed that the Chinese populations originated from at least two distinct native sources and that secondary introduction or dispersal should be common in China. Also, North American populations were possibly a single genetic group. Overall, S. canadensis in China was probably founded from multiple introductions and then spread through long‐distance dispersal associated with human activities. Genetic variability in the species in the invaded range appears to have favoured establishment and spread and may well provide a challenge to successful control.  相似文献   

9.
In this study, we used Parthenium hysterophorus and one of its biological control agents, the winter rust (Puccinia abrupta var. partheniicola) as a model system to investigate how the weed may respond to infection under a climate change scenario involving an elevated atmospheric CO2 (550 μmol mol?1) concentration. Under such a scenario, P. hysterophorus plants grew significantly taller (52%) and produced more biomass (55%) than under the ambient atmospheric CO2 concentration (380 μmol mol?1). Following winter rust infection, biomass production was reduced by 17% under the ambient and by 30% under the elevated atmospheric CO2 concentration. The production of branches and leaf area was significantly increased by 62% and 120%, under the elevated as compared with ambient CO2 concentration, but unaffected by rust infection under either condition. The photosynthesis and water use efficiency (WUE) of P. hysterophorus plants were increased by 94% and 400%, under the elevated as compared with the ambient atmospheric CO2 concentration. However, in the rust‐infected plants, the photosynthesis and WUE decreased by 18% and 28%, respectively, under the elevated CO2 and were unaffected by the ambient atmospheric CO2 concentration. The results suggest that although P. hysterophorus will benefit from a future climate involving an elevation of the atmospheric CO2 concentration, it is also likely that the winter rust will perform more effectively as a biological control agent under these same conditions.  相似文献   

10.
Myrtle rust (caused by Austropuccinia psidii) affects more than 500 known host species in the Myrtaceae family. Three different modelling approaches (CLIMEX, MaxEnt and Multi-Model Framework) were used to project the habitat suitability for myrtle rust at both global and local scales. Current data on the global occurrence of myrtle rust were collected from online literature and expert solicitation. Long-term averages of climate data (1960–1990) were sourced from WorldClim and CliMond websites. Recent reports of myrtle rust in New Zealand were used for validation of model outputs but not in model training and testing. The model outputs were combined into a consensus model to identify localities projected to be suitable for myrtle rust according to two or three models (hotspots). In addition to the locations where the pathogen is currently present, all models successfully projected independent occurrence data in New Zealand suitable for establishment of the pathogen. Climate suitability for the pathogen was primarily related to temperature followed by rainfall in MaxEnt and the CLIMEX model. The results confirmed the optimum temperature range of this pathogen in the literature (15–25 °C). Additional analysis of the precipitation variables indicated that excessive rain (more than 2000 mm in warmest quarter of the year) combined with high temperatures (>30 °C) constrain pathogen establishment. The results of the current study can be useful for countries such as New Zealand, China, South Africa and Singapore where the pathogen has not fully spread or established.  相似文献   

11.
G X Hu  C L Xiang  E D Liu 《Weed Research》2013,53(5):355-361
This study corrected the misidentification of an alien species, Salvia tiliifolia, which had been incorrectly identified as S. dugesii (a synonym of S. melissodora) in China. The distribution of S. tiliifolia in China was surveyed and it was inferred that it was probably introduced into Kunming, Yunnan in the 1990s and then spread to adjacent counties of Yunnan and south‐western Sichuan Province. The Australian weed risk assessment (WRA) was used to evaluate its invasive status. To determine the validity of Australian WRA in China, another 25 exotics representing casual alien plants, naturalised plants and invasive plants were tested. The Australian WRA was validated as a legitimate approach in China. Salvia tiliifolia scored 14, falling into the category of invasive plants. While the distribution of S. tiliifolia is currently restricted to Yunnan and a small part of Sichuan and the species has not displayed an adverse impact on local environments yet, the WRA results indicated that the species was a high risk plant. It was recommended that local land managers should monitor this species and take measures to stop its continuing expansion or eradicate it if possible.  相似文献   

12.
Intensification of agricultural practices has severely reduced weed diversity in arable fields, which affects the delivery of ecosystem services. However, in parallel, some species have benefited from intensive farming and have vastly increased their abundance, as is the case for Lolium rigidum and Avena sterilis in cereal fields. These highly competitive species severely reduce yields but can also compete with other weed species, and, when less intensive practices are applied, they might limit the recovery of weed diversity and the success of arable species reintroductions. A gradient of infestation was established in a winter wheat field in Catalonia (north‐eastern Spain) by sowing seeds of both species at three different densities to test their effects on the abundance, diversity and composition of the natural weed community. The emergence of seeds and the survival and biomass of transplanted seedlings of two rare species, Agrostemma githago and Vaccaria hispanica, were also evaluated. Avena sterilis and L. rigidum infestations reduced the diversity, abundance and biomass and changed the composition of the natural weed community, even at low infestation densities. Moreover, infestations of both species affected the overall performance of A. githago and V. hispanica. This study reveals that A. sterilis and L. rigidum are highly competitive and that their infestations might hamper the recovery of diverse weed communities. Their densities should be considered when selecting suitable sites for promoting diversity and reintroducing rare species.  相似文献   

13.
The development of acetolactate synthase (ALS) tolerant sugar beet provides new opportunities for weed control in sugar beet cultivation. The system consists of an ALS?inhibiting herbicide (foramsulfuron + thiencarbazone‐methyl) and a herbicide‐tolerant sugar beet variety. Previously, the use of ALS‐inhibitors in sugar beet was limited due to the susceptibility of the crop to active ingredients from this mode of action. The postulated benefits of cultivation of the ALS‐tolerant sugar beet are associated with potential risks. Up to now, with no relevant proportion of herbicide‐tolerant crops in Germany, ALS‐inhibitors are used in many different crops. An additional use in sugar beet cultivation could increase the selection pressure for ALS‐resistant weeds. To evaluate the impact of varying intensity of ALS‐inhibitor use on two weed species (Alopecurus myosuroides and Tripleurospermum perforatum) in a crop rotation, field trials were conducted in Germany in two locations from 2014 to 2017. Weed densities, genetic resistance background and crop yields were annually assessed. The results indicate that it is possible to control ALS‐resistant weeds with an adapted herbicide strategy in a crop rotation including herbicide‐tolerant sugar beet. According to the weed density and species, the herbicide strategy must be extended to graminicide treatment in sugar beet, and a residual herbicide must be used in winter wheat. The spread of resistant biotypes in our experiments could not be attributed to the integration of herbicide‐tolerant cultivars, although the application of ALS‐inhibitors promoted the development of resistant weed populations. Annual use of ALS‐inhibitors resulted in significant high weed densities and caused seriously yield losses. Genetic analysis of surviving weed plants confirmed the selection of ALS‐resistant biotypes.  相似文献   

14.
Increasingly, weeds have been taking on global distributions. With the proliferation of invasive weeds has come the challenge of managing these species over broad geographical regions, with diverse habitats and political jurisdictions. Here, we review the management of Mikania micrantha Kunth (Asteraceae; mile‐a‐minute) throughout its invaded range, extending through most of the Pacific islands and southern and south‐east Asia. Context matters when determining the best course of action for managing M. micrantha, as it has invaded a large variety of agricultural and natural systems. In Queensland, Australia and Florida, USA, M. micrantha has been targeted in relatively successful eradication campaigns, highlighting the importance of early detection and rapid response methods, while elsewhere in its invaded range, populations are either still increasing or showing limited signs of decline. An inter‐regional approach to research and management should incorporate successful management strategies employed throughout the invaded range including, but not limited to, chemical and cultural control practices, manual and mechanical control, classical biological control using the rust fungus Puccinia spegazzinii, plant–plant competition and integrated approaches utilising two or more control methods concurrently. Additional knowledge of M. micrantha genetics is required to determine if management approaches could be fine‐tuned for particular populations. Countries bordering the Mekong River formed a network in 2011 to co‐ordinate the management of invasive species such as M. micrantha. Expanding such a collaborative approach to other regions could further reduce populations of M. micrantha and limit its spread.  相似文献   

15.
Over‐winter mortality, that is, winterkill, reduces cereal crop competitive ability and yield. While management and environmental variables are known to affect winterkill, the extent to which weeds contribute to increased winterkill is largely unknown. Winter annual weeds may increase winterkill through resource competition and by increasing incidence of and damage from plant pathogens that cause winterkill. We evaluated the impact of summer annual (Avena fatua) and winter annual (Bromus tectorum) weeds on the over‐winter survival rate of winter wheat over three winters, during which plots were covered with snow. Pink snow mould (Microdochium nivale), a winterkill pathogen known to infect B. tectorum and winter wheat, was common in wheat stands. In weed‐free treatments, mortality rates were initially near zero, but increased by nearly 45% in each subsequent winter, presumably due to an increase in snow mould disease in continuously cropped winter wheat. Whereas A. fatua infestation had no impact on crop survival rates, winter wheat survival in B. tectorum‐infested plots was 50% less than the weed‐free control in the second and third years of this study. Among B. tectorum‐infested plots, winter wheat over‐winter survival declined with increasing weed seed produced in the previous summer. Overall, this study demonstrated that winter annual weed infestations can reduce crop stand densities below replanting thresholds by reducing fall‐sown cereal winter survival. The effects of winter annual weeds on winter wheat may be meditated by increased proliferation of snow mould disease.  相似文献   

16.
Diversified cropping systems can have high soil microbial biomass and thus strong potential to reduce the weed seedbank through seed decay. This study, conducted in Iowa, USA, evaluated the hypothesis that weed seed decay is higher in a diversified 4‐year maize–soyabean–oat/lucerne–lucerne cropping system than in a conventional 2‐year maize–soyabean rotation. Mesh bags filled with either Setaria faberi or Abutilon theophrasti seeds and soil were buried at two depths in the maize phase of the two cropping systems and sampled over a 3‐year period. Setaria faberi seed decay was consistently greater at 2 cm than at 20 cm burial depth and was higher in the more diverse rotation than in the conventional rotation in 1 year. Abutilon theophrasti seeds decayed very little in comparison with seeds of S. faberi. Separate laboratory and field experiments confirmed differences in germination and seed decay among the seed lots evaluated each year. Fusarium, Pythium, Alternaria, Cladosporium and Trichoderma were the most abundant genera colonising seeds of both species. A glasshouse experiment determined a relationship between Pythium ultimum and S. faberi seed decay. Possible differences in seed susceptibility to decay indicate the need to evaluate weed seedbank dynamics in different cropping systems when evaluating overall population dynamics and formulating weed management strategies.  相似文献   

17.
Parthenium or famine weed (Parthenium hysterophorus L.) is an annual plant originating from the Americas, which is a major invasive alien plant in almost all continents. While the deleterious impacts of the species on agriculture, human and animal health have been well documented, information on the pathways of entry of the species is only occasionally mentioned in the literature. As this invasive alien plant is only recorded as established in Israel and Egypt within the Euro‐Mediterranean region, the European and Mediterranean Plant Protection Organization identified P. hysterophorus as an emerging threat. EPPO therefore performed a Pest Risk Analysis on this species to assess the risk it represents and to consider appropriate management options. The EPPO Pest Risk Analysis main outputs are summarized in this article, indicating the probability of entry of the species via the different pathways within the EPPO region, its probabilities of establishment and spread, and the magnitude of its potential agricultural, environmental and social impacts.  相似文献   

18.
L Ziska 《Weed Research》2013,53(2):140-145
Soyabean (Glycine max) was grown at ambient and projected levels of atmospheric carbon dioxide (+250 μmol mol?1 above ambient) over two field seasons with and without the presence of a weed, Abutilon theophrasti, to quantify the potential effect of rising atmospheric carbon dioxide concentration on weed–crop interactions and potential yield loss in soyabean. Under weed‐free conditions, elevated CO2 resulted in stimulations in soyabean seed yield and associated components, including pod number. At an approximate density of 6 plants m?2, A. theophrasti competition resulted in a significant reduction (?40%) in soyabean seed yield. Although differences in seed yield reduction by A. theophrasti were observed as a function of year, the relative decrease in seed yield with A. theophrasti biomass did not differ in response to CO2. Although careful weed management will be necessary if CO2‐induced increases in seed yield for soyabean are to be achieved, these data suggest that soyabean seed yield may be more resilient in competition with A. theophrasti as a function of rising atmospheric levels of carbon dioxide.  相似文献   

19.
Conifer species, which have formed the foundation of commercial forestry industry in many countries, are known to be invasive in natural ecosystems, especially in the Southern Hemisphere. Controlling isolated invasive conifers before they reach reproductive maturity is an essential element of any strategy that aims to reduce spread rate of these species. Using a novel helicopter‐mounted spot‐application gun, which delivers a precise dosage to the crown of each tree, the objective of this research was to test the efficacy of three triclopyr‐based treatments against the four most vigorous wilding conifer species (Pinus contorta, Pinus nigra, Pinus sylvestris and Pseudotsuga menziesii) under New Zealand field conditions. Herbicides tested were triclopyr at two different rates and a combination of triclopyr and picloram. Treated trees covered a wide range of heights (c. 0.5–16 m), and measurements of mortality taken two years post‐herbicide application were used to examine variation in efficacy of the herbicides. Successful treatment was defined by a mortality rate of 85% or higher. A logistic regression model was fitted to the mortality data and used to derive threshold tree heights at which 85% mortality occurred, H85. For all four species, the most effective treatment was application of 1000 ml of herbicide mixture per tree that contained 120 and 20 g, respectively, of the active ingredients triclopyr and picloram. There was a significant decline in efficacy of this treatment with increases in tree size for all four species. Values of H85 for this treatment were 7.4 m for P. nigra, 8.3 m for P. menziesii, 9.7 m for P. contorta and >10 m for P. sylvestris. The methods developed here could be used to effectively manage emerging conifer infestations before they become problematic.  相似文献   

20.
Management actions are essential for mitigating the potentially harmful changes in biodiversity, ecosystem function and crop/forest productivity caused by invasive species. Species distribution models, if reliable, could be used to design effective management strategies. Although several modelling methods well suited for studying invasive species have been developed for presence‐only data, often the size of available data sets for modelling is small and results are not validated with test samples. Moreover, the impact of such methods in practical applications has been overlooked. Here, we evaluated the reliability of the modelling approach based on ecological‐niche factor analysis (ENFA) implemented in Biomapper software when applied to environmental weed data in the Azores. Presence‐only data sets of two top invasive woody species (Pittosporum undulatum and Acacia melanoxylon) were used. The continuous Boyce curve was used for validation, calculated either in Biomapper (cross‐validation) or based on test samples. The species' most habitable areas that should be regarded as management targets were thus estimated from modelling and validation. By imposing size restrictions on the presence‐only data sets used in modelling and validation, other habitable areas were defined and compared. The ENFA proved to be a suitable method for modelling environmental weed distributions, regardless of the presence‐only dataset size. Moreover, the cross‐validation of Biomapper was reliable, although its results should be interpreted with caution as they could potentially lead to statistically different management target areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号