首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This study was examined whether the species of felid affects synchronization accuracy at the G0/G1 stage of the cell cycle and the occurrence of apoptosis by different protocols, such as serum starvation, confluent and roscovitine treatment. Skin fibroblast cells were obtained from the Asian golden cat, marbled cat, leopard and Siamese cat. The cells from each animal were treated with either serum starvation for 1–5 days, cell confluency‐contact inhibition for 5 days or roscovitine at various concentrations (7.5–30 μm ). Flow cytometric analysis revealed that serum starvation for 3 days provided the highest cell population arrested at the G0/G1 stage, irrespective of the felid species. In all species, 100% confluency gave a significantly higher percentage of cells arrested at the G0/G1 stage compared with the non‐treated control cells. The effects of roscovitine treatment and the appropriate concentration on the rates of G0/G1 cells differed among the felid species. Serum starvation for more than 4 days in the marbled cat and Siamese cat and roscovitine treatment with 30 μm in the Asian golden cat and leopard increased the rates of apoptosis. In conclusion, different felid species responded to different methods of cell cycle synchronization. Asian golden cat and Siamese cat fibroblast cells were successfully synchronized to G0/G1 stage using the serum starvation and roscovitine treatment, whereas only confluency‐contact inhibition treatment induced cell synchronization in the leopard. Moreover, these three methods did not successfully induce cell synchronization of the marbled cat. These findings may be valuable for preparing their donor cells for somatic cell nuclear transfer in the future.  相似文献   

2.
供体细胞对猪体细胞克隆胚胎早期发育的影响   总被引:1,自引:1,他引:1  
以中国农业大学实验用小型猪香猪胎儿成纤维细胞、成年耳成纤维细胞和颗粒细胞3种细胞系为供体细胞进行核移植。比较了血清饥饿法和接触抑制法处理胎儿成纤维细胞诱导进入G0/G1期的效率,发现二者差异不显著(P〉0.05),血清饥饿2d和4d差异不明显,同样接触抑制2d和4d差异也不显著(P〉0.05)。系统研究了影响克隆胚胎发育的供体因素:血清饥饿与否、细胞形态、细胞类型及个体差异等,结果表明:血清饥饿处理对克隆胚的早期发育没有明显的促进作用;圆形光滑细胞有利于细胞融合,对早期发育无显著影响(P〉0.05);不同个体、不同类型的供体细胞对克隆胚囊胚发育率有一定的影响。  相似文献   

3.
The present study was designed to examine the effects of cell-cycle synchronization protocols, such as confluent, roscovitine treatment and serum starvation, in bovine foetal fibroblasts on synchronization accuracy at G0/G1, viability, apoptosis, necrosis and ploidy for use as a nuclei donor. The cells in 5-10 passages were randomly allocated into three treated groups. Cells were cultured either in Dulbecco's modified Eagle's medium (DMEM) + 10% foetal bovine serum (FBS) until 90% confluent (group 1, confluent), in DMEM + 10% FBS + 30 microM roscovitine for 12 h (group 2, roscovitine), or in DMEM + 0.5% FBS for 5 days (group 3, serum starvation). Most of the cells (>80%) in all groups were arrested at the G0/G1 stage. Although the rates did not differ, cells in group 1 showed an increased cell population arrested at the G0/G1 phase. Significantly (p < 0.05) higher rates of apoptosis occurred in group 3 than in group 1 and 2 (10% vs 6% and 6%, respectively). No differences in chromosomal abnormality were observed among groups. However, by increasing the number of cell culture passages up to 15, significantly (p < 0.05) higher chromosomal abnormality was observed than in 5 and 10 passages (39% vs 28% and 23%, respectively) in group 1. The results clearly indicated that bovine foetal fibroblasts could be effectively synchronized at G0/G1 stages by all the three different treatments, confluent, roscovitine and serum starvation. However, cells in confluent showed reduced apoptosis and necrosis when they underwent 5-10 passages, exhibiting increased percentage of cells with stable chromosome diversity. Hence, cells in confluent merit further studies before they could be used as nuclear donors.  相似文献   

4.
Cell cycle stage and synchronization of donor cells are important factors influencing the success of somatic cell nuclear transfer. This study examined whether serum starvation has any effect on specific cell death. We also studied the effects of serum starvation, culture to confluence, and full confluency (confluent + 72 h) on cell cycle characteristics and apoptosis of goat dermal fibroblast cells. The cells were obtained from the ear of a 1.5‐year‐old female goat. The following experimental groups were analysed for fibroblast cells: (i) normally growing, (ii) confluent, (iii) full confluency, (iv) cells starved for 48 h and (v) cells starved for 72 h. Analysis of cell cycle distribution by flow cytometry showed that 4.56 and 51.88% of normal cycling cells were at the G0 and G1 phases respectively. In the confluent group, 80% of the cells were arrested in the G0/G1 phase. Serum starvation for 48 and 72 h arrested 84.78% and 90.1% cells at the G0/G1 phase respectively which showed a significant difference when compared with the control group (p < 0.05). Double staining by PI and FITC distinguishes G0 phase from G1 phase. In the full confluency group, 91.53% of cells were at G0/G1 stage, but in contrast to the serum starved group, this high percentage of G0/G1 cells was mainly associated with G1 cells. Under normal culture conditions, 6.39% of cells underwent early apoptosis. In the confluent group 8.93% of cells showed early apoptosis. Serum starvation for 48 and 72 h caused early apoptosis in 8.91 and 39.83% of the cells respectively. Full confluency treatment did not increase the number of apoptotic cells significantly (8.67%). After 72 h, serum starvation significantly increased early apoptosis (p < 0.05). In conclusion, the use of full confluency is suitable for cell cycle synchronization because it arrests cells at the G0/G1 phase and also induces less apoptosis in comparison with the serum starvation group.  相似文献   

5.
To optimize somatic cell nuclear transfer (SCNT) procedures in mini-pigs, the present study was designed to examine the effects of donor cell types and aphidicolin (APC) treatment on in vitro development of reconstructed embryos. Oviduct epithelial cells (OEC), ear fibroblast cells (EFC) and cumulus cells (CC) derived from mini-pigs were treated with serum starvation only or serum starvation followed by treatment of 0.1 µg/mL APC. The reconstructed embryos were cultured for 7 days to evaluate their developmental competency. Cleavage and blastocyst formation rates of reconstructed embryos derived from the OEC by APC treatment were significantly higher than the serum starvation (61.82% vs. 56.25%, 24.55% vs. 17.86%; P < 0.05). The cleavage rate from the EFC was significantly increased by APC treatment compared to serum starvation only (63.36% vs. 57.01%; P < 0.05). In the ooctyes with the CC, the reconstructed embryos could yield high blastocyst formation rate by APC treatment (29.63%; P < 0.05). In the presence of APC, CC gave rise to the highest cleavage and blastocyst formation rates among the three cell types. Therefore, our results suggest that treatment of CC with serum starvation plus APC prior to nuclear transfer is more suitable in SCNT of mini-pigs.  相似文献   

6.
Nuclear transfer of domestic cat can be used as a tool to develop reproductive biotechnologies in wild felids. The importance of cell cycle phase during the nuclear transfer has been a matter of debate since the first mammalian clone was produced. The cell cycle phase of donor cells interferes on maintenance of correct ploidy and genetic reprogramming of the reconstructed embryo. The use of G0/G1 arrested donor cells has been shown to improve nuclear transfer efficiency. The present study was conducted to test the hypothesis that domestic cat foetal fibroblasts cultured up to the fifth passage and submitted to full confluency provide a higher percentage of cells at G0/G1 stage than fibroblasts cultured in serum starved media. Results demonstrated that serum starvation increased (p ≤ 0.05) the percentage of G0/G1 fibroblasts when compared with control. Moreover, the combined protocol using confluency and serum starvation was more efficient (p ≤ 0.05) synchronizing cells at G0/G1 stage than serum starvation or confluency alone for the first 3 days of treatment. In conclusion, serum starvation and full confluency act in a synergistic manner to improve domestic cat foetal fibroblast cell cycle synchronization at the G0/G1 stage.  相似文献   

7.
The aim of the present study was to optimize the conditions for in vitro development and postvitrification survival of somatic cell cloned feline embryos. To determine the effects of cell cycle synchronization of the nuclear donor cells, we cultured preadipocytes under serum starvation or conventional conditions. After two days in serum starvation culture, the proportion of synchronized donor cells at the G0/G1 phase was 91.6%. This was significantly higher than the proportion of non-synchronized cells in the proliferative phase (72.6%, P<0.05). The in vitro development of somatic cell nuclear transfer (SCNT) embryos reconstructed using donor cells treated under serum starvation conditions (normal cleavage rate of 65.7%, 46/70, and blastocyst formation rate of 20.0%, 14/70) was comparable to that of the serum supplemented group (52.5%, 31/59, and 20.3%, 12/59). Use of in vitro or in vivo matured oocytes as recipient cytoplasts equally supported development of the SCNT embryos to the blastocyst stage (11.9%, 5/42, vs. 9.5%, 2/21). SCNT-derived blastocysts were vitrified using the original minimum volume cooling (MVC) or the modified (stepwise) MVC method. Although none (n=10) of the SCNT blastocysts survived following vitrification by the original MVC method, the stepwise MVC method resulted in 100% survival after rewarming (n=11). In conclusion, we demonstrated that feline somatic cell cloned embryos with a high developmental ability can be produced irrespective of cell cycle synchronization of donor cells using either in vivo or in vitro matured oocytes. Furthermore, by utilizing a stepwise vitrification method, we showed that it is possible to cryopreserve cloned feline blastocysts.  相似文献   

8.
供体细胞周期同步化是影响体细胞核移植成功率的重要因素之一.试验分别对绵羊卵丘细胞采用血清饥饿和接触抑制的方法进行细胞周期同步化处理,使用流式细胞仪检测各组细胞周期的分布.结果发现,与对照组相比,卵丘细胞经血清饥饿24~72 h后,显著地增加了G0/G1期细胞的百分比(P <0.05);接触抑制24~72 h,G0/G1期细胞所占比例与血清饥饿组无显著差异(P >0.05),但显著高于对照组(P <0.05);用经血清饥饿与接触抑制的供体细胞进行核移植后,重构胚卵裂率、桑椹胚率和囊胚率差异不显著(P >0.05),但二者囊胚率显著高于对照组(P <0.05).上述结果证实,血清饥饿和接触抑制均能使绵羊卵丘细胞周期同步化至G0/G1,均可用作绵羊体细胞核移植的供体细胞细胞周期同步化处理.  相似文献   

9.
Currently, in vitro‐produced embryos derived by ovum pick up (OPU) and in vitro fertilization (IVF) technologies represent approximately one‐third of the embryos worldwide in cattle. Nevertheless, the culture of small groups of embryos from an individual egg donor is an issue that OPU‐IVF laboratories have to face. In this work, we tested whether the development and quality of the preimplantation embryos in vitro cultured in low numbers (five embryos) could be improved by the addition of epidermal growth factor, insulin, transferrin and selenium (EGF‐ITS) or by the WOW system. With this aim, immature oocytes recovered from slaughtered heifers were in vitro matured and in vitro fertilized. Presumptive zygotes were then randomly cultured in four culture conditions: one large group (LG) (50 embryos/500 μl medium) and three smaller groups [five embryos/50 μl medium without (control) or with EGF‐ITS (EGF‐ITS) and five embryos per microwell in the WOW system (WOW)]. Embryos cultured in LG showed a greater ability to develop to blastocyst stage than embryos cultured in smaller groups, while the blastocyst rate of WOW group was significantly higher than in control. The number of cells/blastocyst in LG was higher than control or WOW, whereas the apoptosis rate per blastocyst was lower. On the other hand, the addition of EGF‐ITS significantly improved both parameters compared to the control and resulted in similar embryo quality to LG. In conclusion, the WOW system improved embryo development, while the addition of EGF‐ITS improved the embryo quality when smaller groups of embryos were cultured.  相似文献   

10.
In this study, we compared the developmental ability of somatic cell nuclear transfer (SCNT) embryos reconstructed with three bovine somatic cells that had been synchronized in G0‐phase (G0‐SCNT group) or early G1‐phase (eG1‐SCNT group). Furthermore, we investigated the production efficiency of cloned offspring for NT embryos derived from these donor cells. The G0‐phase and eG1‐phase cells were synchronized, respectively, using serum starvation and antimitotic reagent treatment combined with shaking of the plate containing the cells (shake‐off method). The fusion rate in the G0‐SCNT groups (64.2 ± 1.8%) was significantly higher than that of eG1‐SCNT groups (39.2 ± 1.9%) (P < 0.05), but the developmental rates to the blastocyst stage of SCNT embryos per fused oocytes were similar for all groups. The overall production efficiency of the clone offspring in eG1‐SCNT groups (12.7%) per recipient cow was higher than that in G0‐SCNT groups (3%) (P < 0.05). The mean birth weight of cloned calves and the average calving score in the G0‐SCNT groups (48.1 ± 3.4 kg and 3.3 ± 0.3, respectively) was significantly higher (P < 0.05) than those of eG1‐SCNT groups (37.2 ± 2.1 kg and 2.3 ± 0.2, respectively). Results of this study indicate that synchronization of donor cells in eG1‐phase using the shake‐off method improved the overall production efficiency of the clone offspring per transferred embryo.  相似文献   

11.
Inhibitors of cyclin‐dependent kinases, as roscovitine, have been used to prevent the spontaneous resumption of meiosis in vitro and to improve the oocyte developmental competence. In this study, the interference of oil overlay on the reversible arrest capacity of roscovitine in sheep oocytes as well as its effects on cumulus expansion was evaluated. For this, cumulus‐oocyte complexes (COCs) were cultured for 20 h in TCM 199 with 10% foetal bovine serum (Control) containing 75 μm roscovitine (Rosco). Subsequently, they were in vitro matured (IVM) for further 18 h in inhibitor‐free medium with LH and FSH. The culture was performed in Petri dishes under mineral oil (+) or in 96 well plates without oil overlay (?) at 38.5°C and 5% CO2. At 20 and 38 h, the cumulus expansion and nuclear maturation were evaluated under stereomicroscope and by Hoechst 33342 staining, respectively. No group presented cumulus expansion at 20 h. After additional culture with gonadotrophins, a significant rate of COCs from both Control groups (+/?) exhibited total expansion while in both Rosco groups (+/?) the partial expansion prevailed. Among the oocytes treated with roscovitine, 65.2% were kept at GV in the absence of oil overlay while 40.6% of them reached MII under oil cover (p < 0.05). This meiotic arrest was reversible, and proper meiosis progression also occurred in the Control groups (+/?). So, the culture system without oil overlay improved the meiotic inhibition promoted by roscovitine without affecting the cumulus expansion rate or the subsequent meiosis progression.  相似文献   

12.
The efficiency of cloning by somatic cell nuclear transfer (SCNT) has remained low. In most cloned embryos, epigenetic reprogramming is incomplete, and usually the genome is hypermethylated. The DNA methylation inhibitor 5-aza-2’-deoxycytidine (5-aza-dC) could improve the developmental competence of cow, pig, cat and human SCNT embryos in previous studies. However, the parameters of 5-aza-dC treatment among species are different, and whether 5-aza-dC could enhance the developmental competence of porcine cloned embryos has still not been well studied. Therefore, in this study, we treated porcine fetal fibroblasts (PFF) that then were used as donor nuclei for nuclear transfer or fibroblast-derived reconstructed embryos with 5-aza-dC, and the concentration- and time-dependent effects of 5-aza-dC on porcine cloned embryos were investigated by assessing pseudo-pronucleus formation, developmental potential and pluripotent gene expression of these reconstructed embryos. Our results showed that 5-aza-dC significantly reduced the DNA methylation level in PFF (0 nM vs. 10 nM vs. 25 nM vs. 50 nM, 58.70% vs. 37.37% vs. 45.43% vs. 39.53%, P<0.05), but did not improve the blastocyst rate of cloned embryos derived from these cells. Treating cloned embryos with 25 nM 5-aza-dC for 24 h significantly enhanced the blastocyst rate compared with that of the untreated group. Furthermore, treating cloned embryos, but not donor cells, significantly promoted pseudo-pronucleus formation at 4 h post activation (51% for cloned embryos treated, 34% for donor cells treated and 36% for control, respectively, P<0.05) and enhanced the expression levels of pluripotent genes (Oct4, Nanog and Sox2) up to those of in vitro fertilized embryos during embryo development. In conclusion, treating cloned embryos, but not donor cells, with 5-aza-dC enhanced the developmental competence of porcine cloned embryos by promotion of pseudo-pronucleus formation and improvement of pluripotent gene expression.  相似文献   

13.
The purpose of this study was to investigate the role of porcine cumulus cells (CC) in oocyte maturation and somatic cell nuclear transfer (SCNT) embryo development in vitro. Denuded pig oocytes were co-cultured with CC or routinely cultured in maturation medium without a feeder layer. Porcine CC inactivated with mitomycin C or non-inactivated were used for the feeder layer in co-culture with porcine SCNT embryos to investigate comparatively the developmental competence of cloned embryos. The DNA damage aspects of apoptosis and expression pattern of genes implicated in apoptosis (Fas/FasL) as well as the mRNA expression of DNA methyltransferase (Dnmt1, Dnmt3a) of porcine SCNT embryos were also evaluated by comet assay or real-time RT-PCR, respectively. The results showed that co-culture with CC improved the extrusion rate of pbI (49.3% vs 31.5%, p<0.05) and survival rate (75.7% vs 53.3%, p<0.05) of denuded oocytes, but had no effects on blastocyst developmental rate or 2-cell-stage survival rate of in vitro fertilization embryos. Co-culture with CC inactivated by mitomycin C improved the blastocyst developmental rate (26.6% vs 13.0%, p<0.05) and decreased the apoptotic incidence (27.6% vs 46.2%, p<0.05) of porcine cloned embryos. Co-culture with inactivated CC reduced Fas and FasL mRNA expression of cloned embryos at the blastocyst stage compared with NT controls (p<0.05), but there were no differences in Dnmt1 and Dnmt3a mRNA expression among groups. Co-culture with inactivated cumulus cell monolayer significantly increased blastocyst formation and decreased the apoptotic incidence in porcine cloned embryos during in vitro development.  相似文献   

14.
供体细胞培养处理方法对水牛核移植效果的影响   总被引:4,自引:1,他引:4  
以经常规培养法 (DMEM 10 % FCS)、血清饥饿法 (DMEM 0 .5 % FCS培养 5~ 10 d)和 Apidicolin- APD结合血清饥饿法 (0 .1mg/ L APD培养 2 4 h,DMEM 0 .5 % FCS培养 1~ 18d)培养处理的水牛卵巢颗粒细胞和水牛成体耳部成纤维细胞作供核 ,分别采取带下注核法和胞质内注核法进行核移植。同一供核细胞各处理组间的核移植胚融合率 (以颗粒细胞作供核 )以及重组胚的囊胚发育率无明显差异 (P>0 .0 5 ) ,但经 APD 0 .5 % FCS培养处理供体细胞核移植后的分裂率显著高于其他组 (P<0 .0 5 )。用 7%乙醇处理的成体耳部成纤维细胞进行核移植 ,其重组胚的分裂率和囊胚发育率与对照组 (不含乙醇 )均无明显差异 (P>0 .0 5 )。结果表明 ,(1)血清饥饿处理水牛供体细胞对其核移植效果没有影响 ;(2 ) DNA合成抑制剂 APD结合血清饥饿培养处理水牛颗粒细胞和成体耳部成纤维细胞 ,可提高其核移植效果 ;(3)乙醇预激活处理水牛成体耳部成纤维细胞 ,对其核移植效果没有影响  相似文献   

15.
为了研究供体细胞不同的处理方法对核移植重构胚的作用,比较了用于保种的冻存和新鲜的成纤维细胞做供体细胞、供体细胞不同的离心转数、供体细胞不同的血清饥饿时间及用本实验室冻存的成纤维细胞,解冻复苏后,不同传代次数对重构胚的影响。结果表明分别用冷冻保存的和新鲜的成纤维细胞作为核供体,所得重构胚卵裂率、囊胚率无显著差(P>0.05);供体细胞离心800 r/min时所得重构胚效果较好,离心1500 r/min所得重构胚的卵裂率、囊胚率与其他3组相比较低;血清饥饿3~5 d组所得重构胚比其他3组好;用解冻复苏后再传2、5代的细胞进行核移植,所得重构胚的卵裂率、囊胚率无明显差异(P>0.05),显著高于传8代的细胞所得重构胚。说明供体细胞的不同处理方法对核移植重构胚发育有很重要的影响。  相似文献   

16.
This study aimed to produce in vitro bovine embryos by the addition of two drugs, which is responsible for oocyte meiosis inhibition: roscovitine (ROS) and butyrolactone I (BL‐I). Oocytes were recovered from slaughtered cows and matured in a commercial medium and maintained in a 5% CO2 atmosphere. Oocytes were maintained for 6 h in an in vitro maturation (IVM) medium containing ROS (12.5 μm ), BL‐I (50 μm ) and association of drugs (ROS 6.25 μm and BL‐I 25 μm ). Oocytes were cultured for 18 h in an agent‐free medium for the resumption of meiosis. After 24 h of maturation, oocytes were inseminated in the commercial in vitro fertilization (IVF) medium. Presumptive zygotes were cultured in SOFaa medium in a 5% CO2 atmosphere. On day 3, rate of cleavage was evaluated and on days 6 and 7, rate of blastocyst formation. BL‐I and its association with the ROS increased the rates of cleavage and blastocyst formation (p < 0.05). The ROS alone was inefficient, impairing embryonic development, with low rates of blastocyst formation when compared to the control group and other treatments (p < 0.05). The embryos from BL‐I and ROS+BL‐I groups presented higher number of cells and lower rates of cellular apoptosis compared to other groups, either for the fresh or for post‐thawing embryos. Embryos from ROS+BL‐I group showed to be more resistant to the vitrification process, presenting a higher rate of embryonic re‐expansion (p < 0.05). In conclusion, block of meiosis using BL‐I or its association with ROS increased the rate of blastocyst formation, and the association of ROS+BL‐I resulted in a better resistance to the embryo cryopreservation process.  相似文献   

17.
Spermatogonial stem cells (SSC) are promising resources for genetic preservation and restoration of male germ cells in humans and animals. However, no studies have used SSC as donor nuclei in pig somatic cell nuclear transfer (SCNT). This study investigated the potential for use of porcine SSC as a nuclei donor for SCNT and developmental competence of SSC‐derived cloned embryos. In addition, demecolcine was investigated to determine whether it could prevent rupture of SSC during SCNT. When the potential of SSC to support embryonic development after SCNT was compared with that of foetal fibroblasts (FF), SSC‐derived SCNT embryos showed a higher (p < .05) developmental competence to the blastocyst stage (47.8%) than FF‐derived embryos (25.6%). However, when SSC were used as donor nuclei in the SCNT process, cell fusion rates were lower (p < .05) than when FF were used (61.9% vs. 75.8%). Treatment of SSC with demecolcine significantly (p < .05) decreased rupture of SSC during the SCNT procedure (7.5% vs. 18.8%) and increased fusion of cell‐oocyte couplets compared with no treatment (74.6% vs. 61.6%). In addition, SSC‐derived SCNT embryos showed higher blastocyst formation (48.4%) than FF‐derived embryos without (28.4%) and with demecolcine treatment (17.4%), even after demecolcine treatment. Our results demonstrate that porcine SSC are a desirable donor cell type for production of SCNT pig embryos and that demecolcine increases production efficiency of cloned embryos by inhibiting rupture of nuclei donor SSC during SCNT.  相似文献   

18.
This study was conducted to evaluate the microtubule distribution following control of nuclear remodeling by treatment of bovine somatic cell nuclear transfer (SCNT) embryos with caffeine or roscovitine. Bovine somatic cells were fused to enucleated oocytes treated with either 5 mM caffeine or 150 µM roscovitine to control the type of nuclear remodeling. The proportion of embryos that underwent premature chromosome condensation (PCC) was increased by caffeine treatment but was reduced by roscovitine treatment (p < 0.05). The microtubule organization was examined by immunostaining β- and γ-tubulins at 15 min, 3 h, and 20 h of fusion using laser scanning confocal microscopy. The γ-tubulin foci inherited from the donor centrosome were observed in most of the SCNT embryos at 15 min of fusion (91.3%) and most of them did not disappear until 3 h after fusion, regardless of treatment (82.9-87.2%). A significantly high proportion of embryos showing an abnormal chromosome or microtubule distribution was observed in the roscovitine-treated group (40.0%, p < 0.05) compared to the caffeine-treated group (22.1%). In conclusion, PCC is a favorable condition for the normal organization of microtubules, and inhibition of PCC can cause abnormal mitotic division of bovine SCNT embryos by causing microtubule dysfunction.  相似文献   

19.
Trichostatin A (TSA), a histone deacetylase inhibitor, has been widely used to improve the cloning efficiency in several species. This brings our attention to investigation of the effects of TSA on developmental potential of swamp buffalo cloned embryos. Swamp buffalo cloned embryos were produced by electrical pulse fusion of male swamp buffalo fibroblasts with swamp buffalo enucleated oocytes. After fusion, reconstructed oocytes were treated with 0, 25 or 50 nM TSA for 10 h. The results showed that there was no significant difference in the rates of fusion (82–85%), cleavage (79–84%) and development to the 8-cell stage (59–65%) among treatment groups. The highest developmental rates to the morula and blastocyst stages of embryos were found in the 25 nM TSA-treated group (42.7 and 30.1%, respectively). We also analyzed the DNA methylation level in the satellite I region of donor cells and in in vitro fertilized (IVF) and cloned embryos using the bisulfite DNA sequencing method. The results indicated that the DNA methylation levels in cloned embryos were significantly higher than those of IVF embryos but approximately similar to those of donor cells. Moreover, there was no significant difference in the methylation level among TSA-treated and untreated cloned embryos. Thus, TSA treatments at 25 nM for 10 h could enhance the in vitro developmental potential of swamp buffalo cloned embryos, but no beneficial effect on the DNA methylation level was observed.  相似文献   

20.
为了研究血清饥饿和接触抑制2种常用的处理方法对供核细胞周期的影响,试验采用血清饥饿和接触抑制2种方法处理经过纯化的供核细胞,并用流式细胞仪检测处理后的供核细胞的细胞周期,通过Modfit软件分析不同处理方法对细胞周期产生的具体影响。结果表明:血清饥饿和同接触抑制2种方法处理过的细胞停留在G0/G1期和S期的细胞百分数差异不显著,但是同对照组细胞相比差异显著(P<0.05);停留在G2/M期的细胞百分数差异显著(P<0.05),但是同对照组细胞相比差异不显著(P>0.05)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号