首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 637 毫秒
1.
Streptococcus uberis, a well-known bacterial pathogen associated with bovine mastitis, appears to be biochemically and serologically almost indistinguishable from the closely related species Streptococcus parauberis. In the present study, species-specific oligonucleotide primers were designed using internal parts of the genes sodA, encoding superoxide dismutase A, and cpn60 encoding chaperonin 60 of S. uberis and S. parauberis, respectively. The two oligonucleotide primer pairs allowed a rapid and reliable PCR-mediated identification and differentiation of both species. These studies, performed with S. uberis and S. parauberis reference cultures and clinical isolates from routine diagnostics, revealed that the occurrence of S. parauberis as causative agent of bovine mastitis appears to be rare. In addition the sodA and cpn60 sequence data confirmed that both species could taxonomically be classified to the pyogenic group of genus Streptococcus.  相似文献   

2.
Streptococci are one among the major mastitis pathogens which have a considerable impact on cow health, milk quality, and productivity. The aim of the present study was to investigate the occurrence and virulence characteristics of streptococci from bovine milk and to assess the molecular epidemiology and population structure of the Indian isolates using multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). Out of a total of 209 bovine composite milk samples screened from four herds (A–D), 30 Streptococcus spp. were isolated from 29 milk samples. Among the 30 isolates, species-specific PCR and partial 16S rRNA gene sequence analysis identified 17 Streptococcus agalactiae arising from herd A and 13 Streptococcus uberis comprising of 5, 7, and 1 isolates from herds B, C, and D respectively. PCR based screening for virulence genes revealed the presence of the cfb and the pavA genes in 17 and 1 S. agalactiae isolates, respectively. Similarly, in S. uberis isolates, cfu gene was present in six isolates from herd C, the pau A/skc gene in all the isolates from herds B, C, and D, whereas the sua gene was present in four isolates from herd B and the only isolate from herd D. On MLST analysis, all the S. agalactiae isolates were found to be of a novel sequence type (ST), ST-483, reported for the first time and is a single locus variant of the predicted subgroup founder ST-310, while the S. uberis isolates were found to be of three novel sequence types, namely ST-439, ST-474, and ST-475, all reported for the first time. ST-474 was a double locus variant of three different STs of global clonal complex ST-143 considered to be associated with clinical and subclinical mastitis, but ST-439 and ST-475 were singletons. Unique sequence types identified for both S. agalactiae and S. uberis were found to be herd specific. On PFGE analysis, identical or closely related restriction patterns for S. agalactiae ST-483 and S. uberis ST-439 in herds A and B respectively, but an unrelated restriction pattern for S. uberis ST-474 and ST-475 isolates from herds D and C respectively, were obtained. This signifies that the isolates of particular ST may exhibit related PFGE patterns suggesting detection of a faster molecular clock by PFGE than MLST. Since all the isolates of both the species belonged to novel sequence types, their epidemiological significance in global context could not be ascertained, however, evidence suggests that they have uniquely evolved in Indian conditions. Further research would be useful for understanding the role of these pathogens in bovine sub-clinical mastitis and implementing effective control strategies in India.  相似文献   

3.
The in vitro susceptibility to penicillin G, erythromycin and clindamycin was determined by the disc diffusion test and by E‐test for a total of 47 streptococcal strains (three Streptococcus uberis, 36 Streptococcus agalactiae, eight Streptococcus dysgalactiae spp. dysgalactiae) isolated from bovine intramammary infections in Argentina. Moreover, resistance phenotypes of erythromycin‐resistant streptococcal isolates was characterized. MIC90 of penicillin G, erythromycin and clindamycin for S. agalactiae were 0.75, 8.0 and 12.0 μg/ml respectively. Resistance to erythromycin and clindamycin was detected in 13 (27.6%) and 12 (25.5%) isolates respectively. No isolate was resistant to penicillin G. Resistance against macrolides, lincosamides and streptogramin B (MLSB) represented by the constitutive MLSB phenotype was present in 11 (23.4%) erythromycin‐resistant isolates and two isolates (4.3%) expressed the M phenotype. The inducible MLSB phenotype was not identified. Results suggest that beta‐lactams are the first‐line antibiotics when treating streptococcal udder infections; however, the continuous monitoring of the antibiotic resistance is essential, as the emergence of resistant strains has become a growing concern on the therapy of bovine mastitis.  相似文献   

4.
The ermB gene was identified in 111 erythromycin resistant isolates of Streptococcus uberis from cases of bovine mastitis associated either with a constitutive (47/111) or an inducible (64/111) phenotype, as well as a phenotypic resistance to all macrolides tested. Resistance to lincosamides was identified in 14 other isolates of S. uberis from bovine mastitis cases and was mainly mediated by the linB gene; resistance conferred by a combination of two genes (linBlnuD, ermBlinB) was also detected.  相似文献   

5.
Streptococcus spp. and related bacteria form a large group of organisms which are associated with bovine intramammary Infections (IMI). Some of them are the well-known mastitis pathogens Streptococcus uberis and Streptococcus agalactiae. In addition, there are a considerable number of these gram-positive, catalase-negative cocci (PNC) with unclear mastitic pathogenicity such as Aerococcus viridans which make the conventional diagnostics of PNC difficult. One diagnostic, API 20 Strep (API, Biomérieux) is recommended which, as a phenotypic assay, involves a series of miniaturized biochemical tests. Recently, preference is given to genotypic identification methods. In particular, sequencing of the 16S rRNA gene allows highly reproducible and accurate identification of bacteria and permits discovery of novel, clinically relevant bacteria. As a consequence, the aim of the present study was to compare identification of IMI-associated PNC by the API method as well as by sequencing of their 16S rRNA gene (16S). Furthermore, the correlation of these bacteria to bovine chronic mastitis and their phylogeny was investigated.102 PNC isolated from single quarter milk samples were identified by API and 16S sequencing. Considering Streptococcus uberis, Streptococcus dysgalactiae subsp. dysgalactiae and Streptococcus agalactiae, both methods generated fully concordant results. In contrast, a very high disconcordance was observed for most of the other PNC, in particular Enterococcus spp., Aerococcus viridans and the viridans streptococci were shown as apathogenic. Lactococcus garvieae was found to be an opportunistic pathogen causing IMI during late lactation. In addition, PNC isolated from milk were frequently observed together with other bacteria, in particular with Staphylococcus spp. In these cases, the levels of somatic cell counts (SCC) were determined by the specific PNC present in the sample. Considering PNC phylogeny based on 16S sequencing, 3 major clusters were observed. They included all the common mastitis pathogens (cluster I), the Lactococcus spp., Enterococcus spp. and Aerococcus spp. (cluster II) and all the viridans streptococci (cluster III).  相似文献   

6.
In the present study three phenotypically CAMP‐negative Streptococcus agalactiae, isolated from three cows with mastitis, were characterized by molecular analysis. An identification of the S. agalactiae was performed by conventional methods and by PCR amplification of species specific parts of the 16S rRNA gene and the 16S‐23S rDNA intergenic spacer region. In addition all three phenotypically CAMP‐negative isolates harboured a normal sized CAMP‐factor encoding cfb gene indicating a reduced expression of CAMP‐factor or a gene defect elsewhere along the pathway of expression. The clonal identity of the three isolates could be demonstrated by macrorestriction analysis of their chromosomal DNA.  相似文献   

7.
Streptococcus spp. and related bacteria form a large group of organisms which are associated with bovine intramammary Infections (IMI). Some of them are the well-known mastitis pathogens Streptococcus uberis and Streptococcus agalactiae. In addition, there are a considerable number of these gram-positive, catalase-negative cocci (PNC) with unclear mastitic pathogenicity such as Aerococcus viridans which make the conventional diagnostics of PNC difficult. One diagnostic, API 20 Strep (API, Biomérieux) is recommended which, as a phenotypic assay, involves a series of miniaturized biochemical tests. Recently, preference is given to genotypic identification methods. In particular, sequencing of the 16S rRNA gene allows highly reproducible and accurate identification of bacteria and permits discovery of novel, clinically relevant bacteria. As a consequence, the aim of the present study was to compare identification of IMI-associated PNC by the API method as well as by sequencing of their 16S rRNA gene (16S). Furthermore, the correlation of these bacteria to bovine chronic mastitis and their phylogeny was investigated.102 PNC isolated from single quarter milk samples were identified by API and 16S sequencing. Considering Streptococcus uberis, Streptococcus dysgalactiae subsp. dysgalactiae and Streptococcus agalactiae, both methods generated fully concordant results. In contrast, a very high disconcordance was observed for most of the other PNC, in particular Enterococcus spp., Aerococcus viridans and the viridans streptococci were shown as apathogenic. Lactococcus garvieae was found to be an opportunistic pathogen causing IMI during late lactation. In addition, PNC isolated from milk were frequently observed together with other bacteria, in particular with Staphylococcus spp. In these cases, the levels of somatic cell counts (SCC) were determined by the specific PNC present in the sample. Considering PNC phylogeny based on 16S sequencing, 3 major clusters were observed. They included all the common mastitis pathogens (cluster I), the Lactococcus spp., Enterococcus spp. and Aerococcus spp. (cluster II) and all the viridans streptococci (cluster III).  相似文献   

8.

Background

Streptococcus dysgalactiae and Streptococcus uberis are common causes of clinical mastitis (CM) in dairy cows. In the present study genotype variation of S. dysgalactiae and S. uberis was investigated, as well as the influence of bacterial species, or genotype within species, on the outcome of veterinary-treated CM (VTCM). Isolates of S. dysgalactiae (n = 132) and S. uberis (n = 97) were genotyped using pulsed-field gel electrophoresis. Identical banding patterns were called pulsotypes. Outcome measurements used were cow composite SCC, milk yield, additional registered VTCMs and culling rate during a four-month follow-up period.

Results

In total, 71 S. dysgalactiae pulsotypes were identified. Nineteen of the pulsotypes were isolated from more than one herd; the remaining pulsotypes were only found once each in the material. All S. uberis isolates were of different pulsotypes. During the follow-up period, the SCC of S. dysgalactiae-cows was significantly lower than the SCC of S. uberis-cows (P <0.05). Median SCC of S. dysgalactiae-cows was 71 500 cells/ml and of S. uberis-cows 108 000 cells/ml. No other differences in outcome parameters could be identified between species or genotypes.

Conclusions

Identical S. dysgalactiae genotypes were isolated from more than one herd, suggesting some spread of this pathogen between Swedish dairy herds. The genetic variation among S. uberis isolates was substantial, and we found no evidence of spread of this pathogen between herds. The milk SCC was lower during the follow-up period if S. dysgalactiae rather than S. uberis was isolated from the case, indicating differences in treatment response between bacterial species.

Electronic supplementary material

The online version of this article (doi:10.1186/s13028-014-0080-0) contains supplementary material, which is available to authorized users.  相似文献   

9.
The presence, phenotype and function of Streptococcus uberis-specific T cells in the mammary gland secretion (MGS) and blood of cows exposed to S. uberis were assessed. MGS T cells in the udder were purified and incubated with autologous blood monocytes as antigen-presenting cells (APC). Most cows, irrespective of prior S. uberis infection status and lactation status, were shown to have S. uberis-specific T cells both in MGS and in the blood. When cells from a subgroup of cows were studied, it was found that the S. uberis-specific T cells produced high levels of interferon-gamma (IFN-γ), but low levels of interleukin-10 (IL-10). A high percentage of responding T cells were of the CD8 + memory (CD45RO) subset. T cells from the MGS specific for S. uberis were propagated from animals during the drying off period and expanded in vitro using interleukin-2 (IL-2) and S. uberis antigens. This led to the accumulation of T cells of the CD8 + subset bearing memory cell markers (CD45A , CD45RO + ), which released high levels of IFN-γ. Four of the five T cell lines derived from the MGS of three animals had substantial direct killing activity towards S. uberis in vitro. It is concluded that there is an emergence of S. uberis-specific bactericidal T cells in the MGS of cows after infection or environmental exposure to S. uberis. Vaccines aimed at activating and expanding this T cell population in the mammary glands of cattle may offer an avenue for the prevention of mastitis caused by S. uberis.  相似文献   

10.
The prophylactic use of a dry-cow antibiotic for reducing the incidence of mastitis due to Streptococcus uberis was studied in four seasonally calving dairy herds involving 378 cows. The treatment was a long-acting dry-cow antibiotic preparation administered immediately after the last milking of lactation. New intramammary infections were identified by comparing the bacteriological status of quarters at drying off with that after calving, or through manual udder palpation during the dry period. The administration of dry-cow antibiotic to uninfected quarters at drying off reduced the overall incidence of new infections with Streptococcus uberis from 12.3% for untreated quarters to 1.2% of quarters (p<0.01). The reduction was significant (p<0.01) for both dry-period and post-calving infections. The susceptibility of uninfected quarters to new infection by Streptococcus uberis appeared to be unrelated to the infection status of a cow at drying off. Clinical infections during the dry period were most prevalent (97%) in quarters identified as having open teat canals. Fewer open teat canals (p<0.05) were observed among antibiotic treated quarters over the first 4 weeks of the dry period. Treated quarters had a lower (p<0.05) incidence of new clinical infection during the ensuing lactation and lower somatic cell counts. This did not affect production levels of milk, milk fat or protein. The results clearly indicated a prophylactic benefit for the dry cow antibiotic treatment against new Streptococcus uberis infections during the dry period.  相似文献   

11.
Streptococcus dysgalactiae serogroup C, G and L strains were investigated by polymerase chain reaction (PCR) using oligonucleotide primers designed according to species‐specific parts of the 16S–23S rDNA intergenic spacer region. The oligonucleotide primers with specificity for the 16S–23S rDNA intergenic spacer region allowed a correct identification of all S. dysgalactiae serogroups C, G and L strains investigated. No cross‐reactivities could be observed with any of the control strains indicating the usefulness of PCR‐technology to identify the serologically heterogeneous species S. dysgalactiae.  相似文献   

12.
AIM: To compare the ability of four strains of Streptococcus uberis at two doses to induce clinical mastitis in lactating dairy cows after intramammary inoculation in order to evaluate their usefulness for future experimental infection models.

MATERIALS AND METHODS: Four field strains of S. uberis (26LB, S418, and S523 and SR115) were obtained from cows with clinical mastitis in the Wairarapa and Waikato regions of New Zealand. Twenty-four crossbred lactating cows, with no history of mastitis and absence of major pathogens following culture of milk samples, were randomly allocated to four groups (one per strain) of six cows. Each cow was infused (Day 0) in one quarter with approximately 104 cfu and in the contralateral quarter with approximately 106 cfu of the same strain. The other two quarters remained unchallenged. All four quarters were then inspected for signs of clinical mastitis, by palpation and observation of the foremilk, twice daily from Days 0–9, and composite milk samples were collected from Days 0–8 for analysis of somatic cell counts (SCC). Quarters were treated with penicillin when clinical mastitis was observed. Duplicate milk samples were collected and cultured on presentation of each clinical case and on Day 4 from challenged quarters with no clinical signs.

RESULTS: Clinical mastitis was diagnosed in 26/48 (54%) challenged quarters. Challenge with strain S418 resulted in more cases of mastitis (12/12 quarters) than strains SR115 (7/12), 26LB (6/12) or S523 (1/12), and the mean interval from challenge to first diagnosis of mastitis was shorter for S418 than the other strains (p<0.001). The proportion of quarters from which S. uberis could be isolated after challenge was less for strain 26LB (1/6) than SR115 (6/7) (p<0.05), and SCC following challenge was lower for strain S523 than the other strains (p<0.05).

CONCLUSIONS: There were significant differences between the strains in the proportion of quarters developing clinical mastitis, the interval to mastitis onset, SCC following challenge and the proportion of clinical cases from which S. uberis could be isolated. These results illustrate the difference in the ability of S. uberis strains to cause mastitis and the severity of the infections caused.

CLINICAL RELEVANCE: Experimental challenge models can be used to compare infectivity and pathogenicity of different strains of mastitis-causing bacteria, the efficacy of pharmaceutical products and host-responses in a cost-effective manner.  相似文献   


13.
From 1987 to 1991, almost 36 000 quarter samples of mammary secretion representing 1790 lactations of 510 dairy cows from a research herd were collected for bacteriological examination. The percentage of cows infected with Streptococcus uberis ranged from 12 to 16 % of cows/year. S. uberis was isolated from 14.2 % of lactations over the 5-year period. The prevalence of S. uberis intramammary infection (IMI) was significantly higher in cows with ≥4 lactations than in cows with 3 or fewer lactations. Regardless of lactation number, the prevalence of S. uberis was highest before parturition, during early lactation and near drying off. The prevalence of S. uberis infected quarters ranged from 1.3 to 2.3 % of quarters/year; the prevalence rate for the 5-year period was 2 % of quarters. The quarter prevalence of S. uberis was lowest in cows with ≤3 lactations, increased significantly with lactation number and was highest in cows with ≥6 lactations. The percentage of quarters infected with S. uberis varied significantly by year. The majority (95 %) of S. uberis IMI were subclinical. The ratio of subclinical IMI to clinical IMI was lowest during early lactation, and increased with days in milk, and with lactation age except for cows in their 5th and 6th lactations. Results of this epidemiological investigation suggest that opportunities exist where suitable control measures could be applied to reduce the impact of S. uberis infections in the dairy herd.  相似文献   

14.
Streptococcus uberis, strain 0140J, contains a single copy sortase A (srtA), encoding a transamidase capable of covalently anchoring specific proteins to peptidoglycan. Unlike the wild-type, an isogenic mutant carrying an inactivating ISS1 insertion within srtA was only able to infect the bovine mammary gland in a transient fashion. For the first 24 h post challenge, the srtA mutant colonised at a similar rate and number to the wild type strain, but unlike the wild type did not subsequently colonise in higher numbers. Similar levels of host cell infiltration were detected in response to infection with both strains, but only in those mammary quarters infected with the wild type strain were clinical signs of disease evident. Mutants that failed to express individual sortase substrate proteins (sub0135, sub0145, sub0207, sub0241, sub0826, sub0888, sub1095, sub1154, sub1370, and sub1730) were isolated and their virulence determined in the same challenge model. This revealed that mutants lacking sub0145, sub1095 and sub1154 were attenuated in cattle. These data demonstrate that a number of sortase anchored proteins each play a distinct, non-redundant and important role in pathogenesis of S. uberis infection within the lactating bovine mammary gland.  相似文献   

15.
Despite much success in the control of mastitis in dairy cattle, intramammary infection with Streptococcus uberis remains a threat to herd health. This organism is a frequent cause of mastitis worldwide. Recent advances in the ability to genetically manipulate this bacterium, coupled to the determination of a representative genome sequence have already enabled the investigation of certain aspects of disease pathogenesis. Further use of such technology coupled to reliable models of disease and post-genomic analysis will permit the elucidation of further interactions between pathogen and host. This additional information can be usefully targeted at identification of candidates for inclusion in effective vaccines. This communication reviews the current, reported progress using this technology for S. uberis.  相似文献   

16.
The aim of this study was to determine whether lymphocyte apoptosis is modulated by infections caused by Staphylococcus aureus and Streptococcus uberis. Samples of cell populations were obtained by lavage of the mammary glands at 4 intervals (24, 48, 72 and 168 h) following infection. The percentage of apoptotic lymphocytes peaked at 168 h after challenge with S. aureus or S. uberis. Subsequent experiments focused on in vitro cultivation of mammary gland lymphocytes with S. aureus and S. uberis. These experiments showed a lower percentage of apoptotic lymphocytes following 3 h of cultivating cells with bacteria than after cultivation without bacteria. The results demonstrate that during both experimental infection of bovine mammary glands with S. aureus or S. uberis and during in vitro cultivation of lymphocytes with S. aureus or S. uberis, apoptosis of lymphocytes is delayed.  相似文献   

17.
A multiplex PCR protocol was established to simultaneously detect major bacterial pathogens in olive flounder (Paralichthys olivaceus) including Edwardsiella (E.) tarda, Streptococcus (S.) parauberis, and S. iniae. The PCR assay was able to detect 0.01 ng of E. tarda, 0.1 ng of S. parauberis, and 1 ng of S. iniae genomic DNA. Furthermore, this technique was found to have high specificity when tested with related bacterial species. This method represents a cheaper, faster, and reliable alternative for identifying major bacterial pathogens in olive flounder, the most important farmed fish in Korea.  相似文献   

18.
The aim of this study was to estimate heritabilities of and genetic correlations between pathogen‐specific subclinical mastitis (SCM) traits and lactation mean somatic cell score (LSCS) in Norwegian Red cattle. Based on data from 130 733 first‐lactation cows four binary pathogen‐specific SCM traits, Staphylococcus aureus, Streptococcus dysgalactiae, Streptococcus uberis and coagulase‐negative staphylococci SCM, were analysed together with unspecific SCM and LSCS using a multivariate sire model with threshold models for binary traits and a linear model for LSCS. Posterior means (SD) of heritabilities were 0.17 (0.01) for LSCS, 0.11 (0.01) for liability to unspecific SCM and ranged from 0.04 (Staph. aureus) to 0.14 (Strep. dysgalactiae) for liability to pathogen‐specific SCM. Genetic correlations were positive and moderate to high, ranging from 0.37 to 0.98. All genetic correlations except the one between LSCS and unspecific SCM were lower than 1, indicating that SCM caused by different pathogens can be considered as partly different traits.  相似文献   

19.
Two dry-cow therapy products were evaluated in seven factory-supply dairy herds in the Waikato area. A product containing neomycin sulphate and the benzathine salt of penicillin (Neopen D.C. White; Smith-Biolab) was used in five herds, and one containing benzathine cloxacillin (Orbenin, Beecham) was used in two herds. Non-treated control cows were included in each herd. Both products were effective in eliminating intramammary infections with Staphylococcus aureus, Streptococcus uberis, and Streptococcus agalactiae. Efficacy of dry-cow therapy against S. aureus was 83.8% and 85.2% respectively. Spontaneous cure rate among controls was 30.8% for S. aureus during the dry period. Spontaneous cure rate for Str. uberis was 50%, while dry-cow therapy eliminated 100% and 77.8%, respectively, for the two products. Dry-cow therapy with either product eliminated more than 90% of Str. agalactiae infections while spontaneous cure rate was only 28.6%. These results further support the effectiveness of dry-cow therapy in reducing the level of subclinical mastitis in dairy herds by shortening the duration of intramammary infections.  相似文献   

20.
Streptococcus sp. is gram-positive coccus that causes streptococcal infections in fish due to intensification of aquaculture and caused significant economic losses in fish farm industry. A streptococcal infection occurred from cultured diseased olive flounder (Paralichthys olivaceus) in May, 2005 at a fish farm in Jeju Island, Korea. The diseased flounder exhibited bilateral exophthalmic eyes and rotten gills; water temperature was 16~18℃ when samples were collected. Of the 22 fish samples collected, 3 samples were identified as Lactococcus garvieae and 18 samples were identified as Streptococcus parauberis by culture-based, biochemical test. Serological methods such as slide agglutination, hemolysis and antimicrobial susceptibility test were also used as well as multiplex PCR-based method to simultaneously detect and confirm the pathogens involved in the infection. S. parauberis and L. garvieae have a target region of 700 and 1100 bp., respectively. One fish sample was not identified because of the difference in the different biochemical and serological tests and was negative in PCR assay. In the present study, it showed that S. parauberis was the dominant species that caused streptococcosis in the cultured diseased flounder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号