首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vivo andin vitro techniques were used to examine the influence of various vertebrate peptides on growth hormone (GH) secretion in the goldfish. Tetradecapeptide somatostatin (SRIF-14) was found to inhibit GH secretionin vitro from perifused pituitary fragments, whereas similar concentrations of a salmonid SRIF peptide (sSRIF-25) did not affect GH secretion from the goldfish pituitary fragments. This indicates that SRIF receptors on the goldfish pituitary are very specific for SRIF-14-like peptides. Salmon gonadotropin (GTH)-releasing hormone (sGnRH) was found to elevate serum GH levels in male goldfish. The dopamine antagonist pimozide alone or injected in combination with sGnRH did not influence serum GH levels, although injection of pimozide alone significantly elevated serum GTH levels, in addition to potentiating the effects of sGnRH on GTH secretion. sGnRH stimulated GH secretion from goldfish pituitary fragmentsin vitro, indicating that sGnRH acts directly at the level of the pituitary to stimulate GH secretion in the goldfish. These results suggest that GnRH may also function as a GH-releasing factor in the goldfish, although the release-inhibitory factors for GH and GTH secretion do appear to be separate and distinct. Two human GH-releasing hormone (hGHRH) peptides were found to be ineffective in altering GH secretionin vitro from the perifused pituitary fragments. Consequently, a role for a mammalian GHRH-like peptide in the hypothalamic regulation of GH secretion in the goldfish remains questionable.  相似文献   

2.
The glutamate agonist, N-methyl-D,L-aspartate (NMA) stimulates the secretion of growth hormone (GH) from pituitary fragments in vitro and increases plasma GH levels in vivo in rainbow trout, Oncorhynchus mykiss (Flett et al. 1994; Holloway and Leatherland 1997a,b); however gonadal steroid hormones appear to modulate this response in experimental situations. This study examines whether steroid hormones also modulate the GH-regulatory actions of NMA during the normal reproductive cycle of rainbow trout by examining the relationship between the stage of sexual maturation and the pituitary release of GH in vitro in response to an NMA (10-8 M) challenge. NMA had no effect on mean GH release from the pituitary glands of fish that were immature (GSI <1.0), from males during early development (GSI 1.0-3.0), or from sexually mature males (with free running milt) and females (ovulated). However, NMA significantly increased GH release from pituitary glands taken from females during the early stages of gonadal growth (GSI 1.0-9.0) and from males and females sampled during the later stages of gonadal growth (males GSI 3.01-6.0; females GSI 9.01-15.0). The GH-stimulatory action of NMA in males and females progressed to a maximum effect during the late stages of gonadal growth, and disappeared in ovulated females and free running males. Moreover, in female fish, the maximal GH release in response to the NMA challenge is positively correlated with plasma 17β-estradiol levels; no such correlation was evident for plasma testosterone levels in males. Changes in the GH response to NMA during maturation while gonadal steroid levels fluctuate provides further evidence to suggest that the effects of NMA on GH secretion are intimately linked to endogenous gonadal steroid hormone levels. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
The biology of salmon growth hormone: from daylight to dominance   总被引:2,自引:0,他引:2  
The elucidation of the molecular structure of salmon growth hormone (GH) in the mid-1980's paved the way for a new era of endocrinological research. Establishment of homologous immuno- and receptor-assays have made studies of the secretion, tissue and plasma GH levels, GH turn-over and GH receptor concentrations possible. This overview attempts to summarize the present understanding of the biological roles of GH in salmon. Although the involvement of GH in the regulation of physiological processes throughout the salmon life history has yet to be comprehensively explored, the hormone has already been demonstrated to have several important functions. GH is a principal regulator of somatic growth in salmonids. The growth-stimulating effect of GH is probably integrated with that of insulin-like growth factor I (IGF-I), as in later vertebrates. GH stimulates protein synthesis and improves feed conversion during growth. The hormone also promotes lipid and glycogen breakdown as well as gluconeogenesis, functions which are probably of great importance during starvation when GH levels are seen to increase. During parr-smolt transformation of anadromous salmonids, circulating GH levels appear to be governed by environmental cues. Increasing springtime daylength elevates GH levels, and temperature modulates the photoperiod regulation of GH. The seawater-adapting role of GH during the parr-smolt transformation is complex. In freshwater, GH improves hypoosmoregulatory ability by stimulating branchial Na+,K+-ATPase activity and probably also acts in kidney and intestine. Following seawater entry, GH levels and turn-over increase transiently, probably to further increase seawater tolerance. Accumulating in vitro and in vivo data support the conclusion that GH is involved in the regulation of sexual maturation in salmonids although further studies are needed to establish the exact role of GH in this process. GH increases appetite but it is unclear whether the hormone effects the central nervous system directly, or acts indirectly through metabolic changes. GH increases swimming activity as well as dominant feeding behaviour and diminishes anti-predator behaviour of juvenile salmonids. The GH-induced changes of behavioural patterns imply that there exists an ecological trade-off between high growth rate and long-term survival which may explain why natural fish populations normally grow at sub-maximal rates. Current knowledge indicates that GH is an important and multi-functional hormone in salmon and a central mediator of seasonal changes in physiology and behaviour. The regulatory effects of GH are also of great applied interest as they are likely to affect both product quality in aquaculture and long-term survival of released fish.  相似文献   

4.
Studies in mammals have shown that synthetic Met-enkephalin derivatives, called growth hormone-releasing peptides (GHRPs), stimulate growth hormone (GH) release. In the present study, GHRP-6 action on GH secretion was examined in vivo and in vitro in sexually immature grass carp. GHRP-6 injected intraperitoneally had no influences on serum GH levels in juvenile grass carp. Following intraperitonal injection of GHRP-6 and dopamine (DA) or cysteamine hydrochloride (CSH), alone and in combination into juvenile grass carp, DA and CSH were effective in elevating serum GH levels, but GHRP-6 was not effective in this respect; in addition, the synergistic action of GHRP-6 and DA or CSH on GH secretion was not seen. In this work, we had adapted and validated a perifusion system and a culture system for GH regulation studies. In a perifusion system, GHRP-6 (1000 to 0.1 nM), GHRP-6 (0.1 to 1000 nM), GHRP-6 (1 μM), and Hexarelin (an analog of GHRP, 1 μM) had no action on GH release from juvenile grass carp pituitary fragments or cells. Under static incubation conditions, GHRP-6 was inactive on GH release from juvenile grass carp pituitary fragments after 1 h and 6 h incubation, but human growth hormone-releasing hormone (hGHRH; 1 to 100 nM) as positive control could stimulate GH release in a dose-dependent manner. Furthermore, when GHRP-6 (100 nM) in combination static incubation with neuropeptides [e.g., hGHRH (100 nM), salmon gonadotropin-releasing hormone analogue (sGnRH-A) (100 nM), or D-Ala6,Pro9-NEt-luteinizing hormone-releasing hormone (D-Ala6,Pro9-NEt-LHRH, LHRH-A) (100nM)], GHRP-6 did not strengthen GH secretion actions of neuropeptides, and at the same time neuropeptides also did not modify the effects of GHRP-6 on GH secretion. The present results obtained using in vivo and in vitro techniques adapted for GH regulation studies show that GHRP-6 does not function as a GH-releasing factor in juvenile grass carp as it does in tilapia, amphibians, chickens, and mammals.  相似文献   

5.
Juvenile rainbow trout (Oncorhynchus mykiss) were passively immunized by intraperitoneal immunization against somatostatin-14 (SS-14) using an antibody originating from egg-laying chicken (Gallus domesticus). Fish were immunized weekly (0, 7, 14, 21, 28, 35 days) with chicken egg yolk-derived immunoglobulin (IgY) against SS-14 (1:25 IgY, 5 mg mL?1), and growth performance, feed utilization as well as plasma concentrations and mRNA levels of growth hormone (GH) and insulin-like growth factor I (IGF-I) were compared to the control group that received placebo immunization with PBS. Passive immunization significantly increased weight gain of treated fish (67.7 ± 7.4 g) compared to the control group (40.1 ± 2.0 g) after 35 days (p < 0.05). Feed conversion ratio (FCR) was significantly improved in the immunized fish (0.7 ± 0.08) compared to control group (1.2 ± 0.06) (p < 0.05). The concentrations of GH and IGF-I in the blood plasma showed no significant differences between the fish treated with anti-SS-14 and those of control during the treatment (p > 0.05). In both groups, GH levels decreased over the 35 days of the experiment (p < 0.05). However, IGF-I level during the period of treatment remained unchanged in both control and immunized fish with the anti-SS-14. Similarly, no changes were observed in pituitary GH and liver IGF-I mRNA levels between treatment and control at each sampling time (p > 0.05). There was no indication of a cumulative, long-lasting effect of repeated immunization on GH or IGF-I plasma concentrations or mRNA expression. The present study shows that a passive immunization of rainbow trout against SS-14 using a chicken egg yolk-derived SS-14 antibody could increase growth rate and improved FCR.  相似文献   

6.
In this study the effects of growth hormone (GH) on silver sea bream branchial heat-shock protein 70 (HSP70) expression was investigated using in-vivo and in-vitro experiments. For in-vivo experiments, sea bream were administered recombinant bream GH or the GH secretagogue hexarelin. Pituitary levels of GH were unchanged in fish administered exogenous GH but decreased on hexarelin administration, in comparison with saline controls. Levels of HSP70 were measured using immunoanalysis and it was found that both GH and hexarelin administration caused a significant decrease in branchial HSP70 abundance. For in-vitro analysis, branchial filaments were exposed to a range of GH concentrations (1, 10, and 100 ng/ml) and it was found that HSP70 levels were significantly lowered in all cases. This study adds to the growing body of evidence surrounding the importance of hormones in regulating heat-shock protein expression in fish.  相似文献   

7.
Previous work has shown that somatostatins (SS) affect teleost lipid metabolism indirectly by inhibition of insulin (INS) and directly by stimulation of hepatic lipolysis. In the present study, rainbow trout (Oncorhynchus mykiss) were used to characterize further the lipid-SS relationship by evaluating how lipid, contributes to SS secretion bothin vivo andin vitro. In vivo hyperlipidemia was induced for up to 3 h by short-term (2 min) infusion of a triacylglycerol (TG)-rich lipid emulsion (20% Intralipid®). Plasma total lipid concentration increased 118 and 155% over control levels 1 h and 3 h, respectively, after infusion; much of this increase was due to elevated plasma fatty acids (FA), which increased 39 and 520%, respectively, over the same time-frame. The hyperlipidemic pattern was attended by a significant increase in the plasma concentration of SS. The specific effects of fatty acids were evaluated on isolated Brockmann bodies. Palmitic acid and oleic acid stimulated SS release 378 and 82%, respectively, over baseline levels. These results indicate that lipids, and in particular fatty acids, modulate SS secretion in rainbow trout.  相似文献   

8.
Growth hormone (GH) secretion from organ-cultured pituitaries of the eel (Anguilla japonica) was studied during incubation in a defined medium for 2 weeks, using a homologous radioimmunoassay which does not distinguish between the two molecular forms of eel GH. The total amount of GH secreted increased gradually during the incubation period; so that the amount of GH released on day 14 was about 30 times greater than that on day 1. On day 14, the proportion of GH released relative to the total amount of GH present (the sum of GH released into the medium and residual content in the pituitary) was 96% and the amount produced on day 14 was 4 times greater than the content in the unincubated pituitary. Somatostatin (SRIF, 1.8 × 10-7 M) inhibited the increase in GH release. On day 7, the proportion of GH released by pituitaries treated with SRIF (28%) was less than that released by the control pituitary (91%). There was no significant difference in GH release between the pituitaries incubated in isotonic medium (300 mOsm) and those in hypotonic medium (240 mOsm) for 2 weeks except for the first 3 days, when the pituitaries in hypotonic medium secreted significantly greater amounts of GH than those incubated under isotonic condition. Hypertonic medium (350 mOsm) had no effect on GH release except for significant inhibition on days 6 and 14. When secretion of the two forms of GH (GH I and II) was examined after separation by polyacrylamide gel electrophoresis followed by densitometry, slightly more GH I tended to be secreted than GH II during the culture period, although the effects of SRIF and osmolality of the media on GH I release were similar to those on GH II. It is concluded that GH secretion and production in the eel is mainly under the inhibitory control of hypothalamus, and that osmolality has a minimum influence on the GH release.  相似文献   

9.
采用脑垂体离体灌流孵育系统,研究细胞外 Ca~(2+)和 K~+对鲤鱼脑垂体基础的和鲑鱼促性腺激素释放激素(sGnRH)刺激的生长激素(GH)分泌的影响。离体灌流孵育的鲤鱼脑垂体基础 GH分泌和 sGnRH 刺激的 GH 分泌都是细胞外 Ca~(2+)依赖的,缺细胞外 Ca~(2+)存在时,基础 GR分泌显著下降,2分钟脉冲式 sGnRH 刺激的 GH 分泌反应接近消失。Ca~(2+)通道阻滞剂异搏定以剂量依存形式显著抑制基础的和2分钟脉冲式sGnRH 刺激的 GH 分泌,表明细胞外 Ca~(2+)的作用至少部分通过细胞膜电位敏感性 Ca~(2+)通道。50mM K~+显著刺激基础GH 分泌,并显著加强高剂量sGnRH 刺激的GH 分泌,且K~+的作用是细胞外 Ca~(2+)依赖的。  相似文献   

10.
ABSTRACT:   Specific antibodies against follicle-stimulating hormone β subunit (FSHβ), prolactin (PRL), and somatolactin (SL) of the Japanese eel Anguilla japonica were produced. These antibodies, as well as antibodies against luteinizing hormone β subunit (LHβ) and growth hormone (GH) produced previously, were used to examine changes in the production of pituitary hormones in female eels during maturation induced by salmon pituitary homogenate (SPH) injection. Immunohistochemical observations showed a decrease in FSH production after SPH injection, suggesting that SPH inhibits FSH production. In contrast, LH production increased markedly with maturation. The number of GH producing cells decreased gradually during maturation, possibly because of inhibition by exogenous GH present in the SPH and/or endogenous insulin-like growth factor-I produced by the stimulation of salmon GH. Although changes in the number of PRL producing cells with maturation were not evident, the number of SL producing cells showed a peak at the late vitellogenic stages, and thereafter decreased to the migratory nucleus stage. These results suggest that GH and SL are involved in sexual maturation in SPH injected eels, as in other fishes.  相似文献   

11.
12.
Growth hormone (GH) is an essential polypeptide required for the normal growth and development of vertebrates. We have studied the effects of light-emitting diodes (LEDs) emitting different spectra (red, green, and blue) on the GH of yellowtail clownfish Amphiprion clarkii. Full-length GH cDNA from the pituitary of the yellowtail clownfish was first cloned and then the expression of GH mRNA under different light spectra was measured. GH mRNA expression was significantly higher under green and blue light than under red light spectra. These results indicate that in yellowtail clownfish, short-wavelength LED enhances growth more than long-wavelength LED, and that LED lights are more effective for enhancing growth than white fluorescent bulbs. Injection of melatonin resulted in significantly higher expression levels of GH mRNA compared to the control. We therefore conclude that green and blue light enhance GH levels and that melatonin plays a role in modulating growth of the yellowtail clownfish.  相似文献   

13.
In this study, the direct actions of serotonin (5HT) on gonadotropin (GTH)-II and growth hormone (GH) release in the goldfish were tested at the pituitary cell level. 5HT (10 nM - 10 µM) stimulated GTH-II but inhibited GH release from perifused goldfish pituitary cells in a dose-dependent manner. The minimal effective dose of 5HT tested to suppress basal GH secretion (10 nM) was 10-fold lower than that to stimulate GTH-II release (100 nM). The GTH-II releasing effect of 5HT was abolished by repeated 5HT treatment (10 µM) whereas the corresponding inhibition on GH release was unaffected. These results suggest that 5HT receptors on goldfish gonadotrophs and somatotrophs exhibit intrinsic differences in terms of sensitivity to stimulation and resistance to desensitization. Salmon GTH-releasing hormone (sGnRH, 100 nM) stimulated GTH-II and GH release from goldfish pituitary cells. The GTH-II releasing action of sGnRH was unaffected by simultaneous treatment of 5HT (1 µM). However, the corresponding GH response to sGnRH (100 nM) was inhibited. In the goldfish, dopamine is known to stimulate GH release through activation of pituitary D1 receptors. In the present study, the GH-releasing action of dopamine (1 µM) and the D1 agonist SKF38393 (1 µM) was significantly reduced by 5HT (1 µM). To examine the receptor specificity of 5HT action, the effects of 5HT1 and 5HT2 analogs on GTH-II and GH release were tested in goldfish pituitary cells. The 5HT1 agonist 8OH DPAT (0.1 and 1µM) and 5HT2 agonist methyl 5HT (0.1 1µM) mimicked the GTH-II releasing effect of 5HT. The 5HT1 agonist 8OH DPAT (0.1 and 1µM) also stimulated GH release but the 5HT2 agonist methyl 5HT (0.1 and 1µM) was inhibitory to basal GH secretion. In addition, 5HT (1µM) -stimulated GTH-II release was abolished by the 5HT1 antagonist methiothepin (10µM) and 5HT2 antagonist mianserin (10µM). Similarly, the inhibitory action of 5HT (1µM) on basal GH release was blocked by the 5HT2 antagonist mianserin (10µM). The 5HT1 antagonist methiothepin (10µM) was not effective in this regard. These results, taken together, indicate that 5HT exerts its regulatory actions on GTH-II and GH release in the goldfish directly at the pituitary cell level, probably through interactions with other regulators including sGnRH and dopamine. The GTH-II releasing action of 5HT is mediated through 5HT2 and possibly 5HT1 receptors. The inhibition of 5HT on basal GH release is mediated through 5HT2 receptors only. Apparently, 5HT1 receptors are not involved in this inhibitory action. In this study, a paradoxical stimulatory component of 5HT on GH release by activating 5HT1 receptors is also implicated.  相似文献   

14.
15.
16.
Using rainbow trout plasma protein (IGF-BP) which specifically binds human insulin-like growth factor (IGF) (Niu and Le Bail 1993), we have developed an assay to measure plasma IGF-like levels in different teleost species. Before the assay and to prevent interference by IGF-BP, IGF-like was extracted from all samples, using SP Sephadex C-25 in acidic conditions. After this treatment, contamination of the IGF fraction by IGF-BP which was estimated by binding assay, was approximately 5%, and was not detectable by western ligand blot. Human IGF-I was used as standard and labelled hormone. Sensitivity of the assay was 0.15–0.40 ng/ml (ED90) and ED50 was 1–3 ng/ml. hIGF-II crossreaction was partial and no significant displacement was observed with Insulin from different species or with other hormones. Inhibition curves were obtained with plasma IGF fractions (but not with tissue extracts) from teleost and mammals and are parallel to the standard curve. These results suggest that the protein binding assay can quantify an IGF-like factor in the plasma of teleost and that the binding sites of IGF are well conserved during vertebrate evolution. Using this IGF binding assay, IGF-like was measured in parallel with growth hormone (GH) in plasma from young rainbow trout killed every 1.5h throughout one day. The daily profiles for both hormones, which appear pulsatile, are similar. A significant correlation was observed between GH levels and IGF-like levels with a 1.5h delay. Analogous observations were obtained in individual catheterized adult rainbow trout. Although plasma GH levels differ greatly between fish, less variability is found with IGF-like. In a third experiment, rainbow trout were starved or submitted to bovine GH treatment for four weeks. Starved fish, in which plasma GH levels increased, had plasma IGF-like level significantly lower than in fed fish. In bGH injected fish, plasma IGF-like level was significantly higher than in non-injected fish. These results suggest that, as in mammals, IGF-like secretion depends on plasma GH level and could be modulated by the nutritional status of fish.  相似文献   

17.
We have studied the seasonal relationship between growth and circulating growth hormone (GH), hepatic GH-binding and plasma insulin-like growth factor-I immunoreactivity in gilthead sea bream,Sparus aurata. The seasonal increase in plasma GH levels preceded by several weeks the summer increase in growth rates. In contrast, a marked increase in hepatic GH-binding with a high degree of endogenous GH occupancy was found during the period of maximum growth which suggests an enhanced sensitivity of liver to GH action. Thus, circulating levels of immunoreactive IGF-I, probably derived from the liver in response to GH action, were positively correlated with growth throughout the experimental period although a consistent relationship between growth and circulating GH was not found. In spite of this, we consider that, in gilthead sea bream, as in several other teleosts, the availability of endogenous GH can limit growth. Thus, under environmental conditions of suboptimal growth, a single intraperitoneal injection of recombinant rainbow trout GH (rtGH) induced over the dose range tested (0.75, 1.5, 3 μg g BW−1) an increase in plasma IGF-I-like immunoreactivity comparable to that seen during the period of maximum growth.  相似文献   

18.
We examined trends in the growth regulatory hormones growth hormone (GH) and insulin-like growth factor-I (IGF-I) from August to December in chinook salmon. Fish on 100% (ad libitum) and 64% rations of a low fat high protein diet, and a 64% ration of commercial feed (BioOregon-grower) were sampled twice a month. Fish were kept on simulated natural photoperiod at constant temperature. GH declined in late August and early September, consistent with photoperiodic regulation. No effects of ration or diet composition on GH were found. IGF-I increased to a peak on 4 October 1998 and declined thereafter. High dietary ration and the higher fat commercial diet increased IGF-I. Fish length and IGF-I level were positively correlated. This study shows that a peak in IGF-I may occur in the fall in chinook salmon. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
The focus of this review is on the regulatory mechanisms and the mode of action of GH in salmonids. To stimulate further research, it aims at highlighting areas where numerous important breakthroughs have recently been made, as well as where data are currently lacking. The regulation of GH secretion is under complex hypothalamic control, as well as under negative feedback control by GH and IGF-I. Further, the recently characterized ghrelin is a potent GH secretagogue, and may prove to be a link between feed intake and growth regulation. GH plasma profiles show indications of diurnal changes, but whether salmonids have true pulsatile GH secretion remains to be elucidated. The recent cloning and characterization of the salmon GH receptor (GHR) is a major research break-through which will give new insights into the mechanisms of GH action. It should also stimulate research into circulating GH-binding proteins (GHBPs), as they appear to be a soluble form of the GHR. The salmonid GHR sequences show evolutionary divergence from other fish species, but with a high degree of identity within the salmonid group. Radioreceptorassay studies have found GHR present in all tissues examined, which is in line with the highly pleiotropic action of GH. Data are currently scarce on the plasma dynamics of GH in salmonids, and further studies on GHR and GHBPs dynamics coupled to assessments of GH clearance rates and pathways are needed. The direct versus indirect nature of GH action remains to be clarified, but GH appears to act both locally at the target tissue level to stimulate the autocrine/paracrine action of IGF-I, as well as on the liver to increase plasma IGF-I levels. In addition, GH interacts with other hormones such as cortisol, thyroid hormones, insulin, and reproductive hormones, generating a wide range of physiological effects. GH may act both peripherally and directly at the level of the central nervous system to modify behavior, probably by altering the dopaminergic activity in the brain.  相似文献   

20.
Atlantic halibut, Hippoglossus hippoglossus L., larvae were reared under four different Artemia feeding regimes for 40 days from day 20 post first feeding. Three Artemia enrichments were used: Super Selco? (SS), AlgaMac 2000? (AM) and a particulate mix of AlgaMac 2000? with tuna orbital oil (TOO/AM). The SS and AM Artemia were tested in three different combinations: (1) a 1:1 ratio continuously to day 60 (AM/SS); (2) a 1:1 ratio to day 41, then AM only (AM/SS-41): and (3) AM only to day 41, then a 1:1 ratio (AM-41). The fourth treatment comprised TOO/AM Artemia, which was fed continuously. At day 60 post first feeding, measurements were made of survival and growth rates, postmetamorphic characteristics (i.e. eye migration and pigment distribution), and lipid composition. The mean survival rates ranged from 65.1% to 84.5%. Specific growth rates varied from 7.64 to 8.13. The eye migration indices were between 2.3 and 2.6. These parameters did not differ significantly among treatments (P 0.05). A significantly greater proportion of fry (P<0.05) exhibited‘perfect metamorphosis’(correct pigment distribution and complete eye migration) in the AM/ SS-41 and AM-41 treatments (59.8 ± 3.03% and 54.6 ± 1.08%, respectively) compared to the AM/SS and TOO/AM treatments (35.9 ± 4.02% and 39.9 ± 6.43%, respectively). The fatty acid compositions of livers and eyes varied according to feeding regime, but did not correspond to the metamorphosis characteristics of the fry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号