首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
本研究旨在探讨低蛋白质日粮中不同净能水平和赖氨酸净能比对育肥猪生长性能和胴体性状的影响.选用(60.58±2.50)kg的杜×长×大三元杂交猪360头,随机分为9组,每组4个重复,每个重复10头猪.试验分为2阶段(第1阶段:60~80 kg;第2阶段:80~100 kg)饲养,2阶段日粮蛋白质水平分别为13.5%和11.2%,并适当补充氨基酸.每个阶段日粮净能水平分别为9.6、10.0和10.3 MJ/kg,60~80kg阶段的每个净能水平下的赖氨酸净能比分别为0.7、0.8、0.9 g/MJ;80~100 kg阶段的每个净能水平下的赖氨酸净能比分别为0.5、0.6和0.7 g/MJ.结果表明:在60~80 kg阶段,不同净能水平对平均日增重、平均日采食量和料重比有显著或极显著的影响(P<0.05或P<0.01);在80~100 kg阶段,不同净能水平和赖氨酸净能比对日增重、平均日采食量和料重比的影响均差异不显著(P0.05).净能和赖氨酸净能比的交互作用在各指标上均表现为差异不显著(P>O.05).综合考虑净能水平和赖氨酸净能比,育成猪低蛋白质日粮的适宜净能水平为10.3 MJ/kg,赖氨酸净能比在60~80 kg和80~100 kg阶段分别为0.9和0.6 g/MJ较合适.  相似文献   

2.
选取120头22kg左右的杜×长×大三元杂交健康生长猪,随机分成5个处理,每个处理6个重复,每个重复4头,探讨低蛋白不同净能水平(10.54、10.28、9.96、9.63、9.45MJ/kg)日粮对生长猪生长性能和养分消化率的影响。结果表明:日粮蛋白降低4个百分点,不同净能处理间的采食量和饲料转化率没有显著差异(P>0.05),日增重随净能的下降呈线性增加,以9.45MJ/kg组最高(P<0.05);养分消化率中,除钙的消化率外,其余养分的消化率均随净能水平的增加而线性下降(P<0.05)。降低净能水平后,血清赖氨酸含量线性增加(P=0.03),对其余氨基酸影响差异不显著(P>0.05);对血清尿素氮含量的影响不显著(P>0.05)。由此可得出,低蛋白日粮中净能水平的降低并不影响生长猪的生长性能和养分消化率。  相似文献   

3.
《养猪》2010,(5):14-14
为研究净能和赖氨酸净能比对肥育猪生长性能和胴体品质的影响,朱立鑫(2010)采用3×3两因素设计,选用61.08kg杜长大三元杂种猪540头,随机分为9个处理,每个处理6个重复,每个重复10头猪,公母各半,饲养在同一个幽内。  相似文献   

4.
本试验旨在研究饲粮消化能水平和可消化赖氨酸与消化能比值对长白×荣昌(长荣)杂交生长猪生长性能及胴体品质的影响。试验选用144头初始体重约为27.05 kg的健康长荣杂交猪,按体重相近、公母各占1/2的原则随机分为6个处理,每个处理6个重复,每个重复4头猪。采用2×3因子设计,即饲粮消化能水平分别为13.00和14.50 MJ/kg,饲粮可消化赖氨酸与消化能比值分别为0.50、0.60和0.70 g/MJ。分别测定生长猪的生长性能、胴体性状、肉品质和血清生化指标。结果表明:饲粮消化能水平升高,显著提高生长猪平均日增重、胴体重、屠宰率和血清尿素氮含量(P<0.05),显著降低平均日采食量、料重比和滴水损失(P<0.05),且有提高血清低密度脂蛋白胆固醇含量(P=0.07)及降低血清甘油三酯含量(P=0.06)的趋势。随着饲粮可消化赖氨酸与消化能比值的增加,生长猪眼肌面积、血清尿素氮和高密度脂蛋白胆固醇含量显著增加(P<0.05),肌内脂肪含量显著降低(P<0.05),且料重比有提高的趋势(P=0.05),平均背膘厚呈降低的趋势(P=0.09)。饲粮消化能水平和可消化赖氨酸与消化能比值对生长猪胴体瘦肉率、血清尿素氮、肌肉pH45 min和pH24 h的影响存在显著交互效应(P<0.05)。以上结果表明,在保持氨基酸模式一致条件下,饲粮消化能和可消化赖氨酸水平对长荣生长猪的生长性能和胴体品质影响显著,综合评定可知,生长阶段的长荣猪最佳生长潜能和最优胴体品质所需的饲粮消化能和可消化赖氨酸水平分别为14.50 MJ/kg和0.73%。  相似文献   

5.
试验按15~30 kg体重(仔猪)和30~70 kg(生长猪)两个阶段进行,试验选择发育正常、健康良好的三元杂交猪(杜×长×大),初始体重为(15±1.1)kg和(30±1.6)kg的猪只各48头,采用单因子试验设计,按体重、窝别等因素两个阶段各随机分成2组,每组设3个重复,每个重复8头。Ⅰ组以消化能体系确定饲养标准设计饲粮配方,Ⅱ组以净能体系确定饲养标准设计饲粮配方,试验结果表明:利用猪净能体系配制日粮,在仔猪及生长猪阶段,净能指标分别设定为9.948 MJ/kg和9.823 MJ/kg,并考虑可消化氨基酸的平衡,可取得以消化能13.794 MJ/kg和13.585 MJ/kg为能量基础配制日粮同样的生长效果,并可使饲料成本明显降低。  相似文献   

6.
试验旨在研究不同净能水平的日粮对不同体重阶段猪的生长性能和能量摄入量的影响。试验1选择12头初始体重(24.50±0.96)kg的杜×长×大三元杂交健康去势公猪,随机分为3组,每组4个重复,每个重复1头猪。3个日粮处理分别为低净能水平日粮(9.63 MJ/kg)、中净能水平即对照组日粮(10.26 MJ/kg)和高净能水平日粮(10.89 MJ/kg)。试验采用拉丁方设计连续进行7期,每6天为1期。试验2选择180头体重(75.4±1.4)kg的三元杂交健康猪,按体重和性别将猪随机分为5个组,每组5个重复,每个重复6头猪(3公3母),日粮净能水平分别为8.87、9.14、9.41、9.69、9.96 MJ/kg。试验1结果表明:相较于对照组,高净能组与低净能组猪的日采食量下降(P<0.05);高净能组的饲料转化率和日增重均高于低净能组(P<0.05)。试验2结果表明:猪日粮净能值为9.69、9.96 MJ/kg时,猪的耗料增重比最低(P=0.09)。由此可见,日粮净能水平的增加会降低猪的采食量,改善饲料转化率;猪体重阶段在75~100 kg时,适宜的日粮净能水平为9.69 ...  相似文献   

7.
辜玉红  王康宁 《饲料工业》2005,26(11):11-15
试验选用30头杜洛克×太湖和汉普夏×太湖二元杂仔猪,平均44日龄断奶,体重10.30kg±1.80kg,研究了经腿部肌肉注射0、0.25、0.5、1.0和2.0mgpGRF基因质粒对猪生产性能、胴体品质及内脏器官的影响。猪达100kg体重时结束试验,各处理组各选3头猪屠宰。0mg,1mg,2mg组3头屠宰猪进行胴体分割。试验结果表明,10 ̄20kg阶段以0.5mg的效果最佳,日增重(ADG)和每千克增重耗料(F/G)较对照组分别提高28.3%(P<0.10)和减少12%(P<0.05),0.5mg与1mg和2mg之间无显著差异。20 ̄40kg阶段以1mg最佳,ADG较对照组提高17.51%(P<0.05),F/G减少15.7%(P<0.05);1mg与2mg之间无显著差异;40 ̄100kg阶段以2mg最佳,ADG较对照组高5.38%(P>0.05),F/G减少14%(P<0.05),2mg与1mg无显著差异。100kg屠宰,2mg组对胴体品质改善最明显,瘦肉率提高3.59%,眼肌面积提高11.8%,三点膘厚降低6.2%;内脏器官的大小、重量与对照组均无显著差异。  相似文献   

8.
为了研究不同的能量和蛋白质水平对早期断奶仔猪生长性能和腹泻的影响,试验选用体重7.30kg左右的杜×长×大(23±2)日龄断奶健康仔猪288头,随机分为9个处理组,每个处理4个重复,每个重复8头猪(公、母各半)。9组试验日粮为3个能量水(平13.60、14.02、14.43MJ/kg)×3个蛋白质水平(19.5%、20.5%、21.5%)。结果表明:仔猪平均日增重各组间差异显著(P<0.05),其中处理6组(蛋白20.5%,能量14.43MJ/kg)最高437g/d,处理7组(蛋白21.5%,能量13.60MJ/kg)为424g/d和处理9组(蛋白21.5%,能量14.43MJ/kg)为396g/d。9个处理组间耗料/增重比经统计分析差异显著(P<0.05),并以处理7组最低1.229,处理4组(蛋白20.5%,能量13.60MJ/kg)为1.233和处理6组1.260次之。因此,最适宜的能量蛋白水平组合是能量为14.43MJ/kg,蛋白质为20.5%,二者互作效应效果不显著。  相似文献   

9.
该文旨在研究利用净能体系配制低蛋白质日粮对商业条件下生长和育肥猪生长性能和胴体品质及肉品质的影响.生长阶段(试验1)与育肥阶段(试验2)分别选择杜洛克×长白×大约克三元杂交生长猪(30~55 kg)和育肥猪(50~100 kg)各216头,随机分为正常蛋白质组和低蛋白质组2个组,每组6个重复,每个重复18头,试验2结束后每组选30头育肥猪进行屠宰.结果表明,低蛋白质组生长猪和育肥猪的平均日增重、平均日采食量和料重比与正常蛋白质组相比差异均不显著(P>0.05),生长猪增重成本降低6.80%/kg(P<0.05),育肥猪增重成本降低9.49%/kg(P<0.05);除失水率显著高于正常蛋白质组外(P<0.05),低蛋白质组育肥猪胴体品质和肌肉品质与正常蛋白质组相比,差异均不显著(P>0.05).综上所述,商业化条件下,利用净能体系配制生长和育肥猪低蛋白质日粮可获得与传统日粮相近的生产性能、胴体品质和肌肉品质,增重成本能够显著下降.  相似文献   

10.
为研究日粮消化能水平和赖氨酸与消化能比值对荣昌猪胴体品质的影响,试验选用96头荣昌阉公猪(20±2)kg,当试验猪平均体重达到90kg时进行屠宰。结果表明:日粮消化能水平提高,荣昌猪的饲料转化率显著(P<0.05)提高;肩、腰、荐三点均膘厚显著(P<0.05)增加,失水率显著提高(P<0.05),24h时的pH值也有增加的趋势(P>0.05);随着赖氨酸与消化能比的增加,1h和24h的pH值均显著增加(P<0.05),肌内脂肪含量显著降低(P<0.05),眼肌面积有增加的趋势(P>0.05),并且消化能水平和赖氨酸与消化能比值存在交互作用。  相似文献   

11.
We conducted two experiments to evaluate the effects of dietary energy density and lysine:calorie ratio on the growth performance and carcass characteristics of growing and finishing pigs. In Exp. 1, 80 crossbred barrows (initially 44.5 kg) were fed a control diet or diets containing 1.5, 3.0, 4.5, or 6.0% choice white grease (CWG). All diets contained 3.2 and 2.47 g of lysine/Mcal ME during growing (44.5 to 73 kg) and finishing (73 to 104 kg), respectively. Increasing energy density did not affect overall ADG; however, ADFI decreased and feed efficiency (Gain:feed ratio; G:F) increased (linear, P < .01). Increasing energy density decreased and then increased (quadratic, P < .06) skinned fat depth and lean percentage. In Exp. 2, 120 crossbred gilts (initially 29.2 kg) were used to determine the effects of increasing levels of CWG and lysine:calorie ratio fed during the growing phase on growth performance and subsequent finishing growth. Pigs were fed increasing energy density (3.31, 3.44, or 3.57 Mcal ME/kg) and lysine:calorie ratio (2.75, 3.10, 3.45, or 3.80 g lysine/Mcal ME). No energy density x lysine:calorie ratio interactions were observed (P > .10). Increasing energy density increased ADG and G:F and decreased ADFI of pigs from 29.5 to 72.6 kg (linear, P < .05). Increasing lysine:calorie ratio increased ADG and ADFI (linear, P < .01 and .07, respectively) but had no effect on G:F. From 72.6 to 90.7 kg, all pigs were fed the same diet containing .90% lysine and 2.72 g lysine/Mcal ME. Pigs previously fed with increasing lysine:calorie ratio had decreased (linear, P < .02) ADG and G:F. Also, pigs previously fed increasing CWG had decreased (linear, P < .03) ADG and ADFI. From 90.7 to 107 kg when all pigs were fed a diet containing .70% lysine and 2.1 g lysine/Mcal ME, growth performance was not affected by previous dietary treatment. Carcass characteristics were not affected by CWG or lysine:calorie ratio fed from 29.5 to 72.6 kg. Increasing the dietary energy density and lysine:calorie ratio improved ADG and G:F of growing pigs; however, pigs fed a low-energy diet or a low lysine:calorie ratio from 29 to 72 kg had compensatory growth from 72 to 90 kg.  相似文献   

12.
半胱胺和酵母铬对生长肥育猪生产性能和胴体品质的影响   总被引:1,自引:0,他引:1  
试验选择25 kg左右的"杜长大"三元杂交猪96头,采用2×2析因设计分成4组,每组6个重复,每个重复4头。对照组喂基础饲粮,酵母铬(Cr)组在基础饲粮中添加酵母铬(生长期和肥育期分别添加Gr 200、300μg/kg),半胱胺(CS)组在基础饲粮中添加半胱胺(生长期和肥育期分别添加CS 120、170 mg/kg),复合组在基础饲粮中同时添加酵母铬和半胱胺(生长期和肥育期分别添加Gr 200μg+CS 120 mg/kg、Gr300μg+CS 170 mg/kg)。试验分生长期和肥育期两阶段进行,研究半胱胺和酵母铬对生长肥育猪生长性能、胴体和肌肉品质的影响。结果表明,生长肥育猪饲粮中分别添加半胱胺和酵母铬,一定程度上可改善生产性能,提高日增重、降低饲料/增重比;二者同时添加时有提高日增重的趋势,但统计分析差异不显著(P>0.05)。饲粮中分别或同时添加半胱胺和酵母铬对胴体肌肉品质也有一定的改善作用,但统计分析差异不显著(P>0.05)。  相似文献   

13.
Two experiments were conducted to determine the optimal apparent ileal digestible lysine:ME (Lys:ME) ratio and the effects of lysine and ME levels on N balance (Exp. 1) and growth performance (Exp. 2) in growing pigs. Diets were designed to contain Lys:ME ratios of 0.6, 0.7, 0.8, and 0.9 g/MJ at 13.5 and 14.5 MJ of ME/kg of diet in a 4 x 2 factorial arrangement. In Exp. 1, conventional N balances were determined on 48 crossbred barrows (synthetic line 990, initial BW = 13.1 +/- 0.7 kg) at approximately 15, 20, and 25 kg of BW with six pigs per diet. At 15 kg of BW, an energy density x Lys:ME ratio interaction on daily N retention was observed (P < 0.05). At each BW, N retention improved with an increase in N intake associated with increasing ME concentration. In 15-kg BW pigs, increasing the Lys:ME ratio increased daily N retention at the 13.5 (linear, P < 0.001) and 14.5 MJ of ME level (linear, P < 0.01; quadratic, P < 0.05). In 20-kg BW pigs, N retention (g/d) increased (linear, P < 0.001; quadratic, P < 0.01) and N retention (percentage) increased (linear, P < 0.001) as the Lys:ME ratio increased. At 25 kg of BW, N retention (g/d) increased quadratically (P < 0.05) with an increase in Lys:ME ratio. The Lys:ME ratios that maximized daily N retention at 15 kg of BW were 0.88 and 0.85 g/MJ at the 13.5 and 14.5 MJ of ME levels, respectively and 0.81 and 0.77 g/MJ (for both ME levels) at 20 and 25 kg of BW, respectively. Over the 28-d trial, an energy density x Lys:ME ratio interaction on ADG was observed (P < 0.05). Increasing energy density increased growth performance, whereas increasing the Lys:ME ratio in high-energy diets increased ADG (linear, P < 0.05; quadratic, P < 0.01) and gain:feed ratio (G/F) quadratically (P < 0.01). Average daily gain and G/F ratio were greatest in pigs fed the 14.5 MJ of ME diet and the Lys:ME ratio of 0.82 g/MJ. In Exp. 2, 128 individually housed crossbred barrows and gilts (initial BW = 12.8 +/- 1.6 kg) were used to determine the effect of diets used in Exp. 1 on growth performance in a 4 x 2 x 2 factorial arrangement. The ME level increased ADG and G/F from d 0 to 14 and from d 0 to 28. Increasing the Lys:ME ratio increased ADG from d 0 to 14, whereas growth performance was maximized in pigs fed Lys:ME ratio of 0.82 g/MJ. These results suggest that pigs from 13 to 20 and from 20 to 30 kg of BW fed diets containing 14.5 MJ of ME/kg had maximum N retention and ADG at 0.85 and 0.77 g of apparent ileal digestible lysine/MJ of ME, respectively.  相似文献   

14.
Ninety-six female pigs comprising equal numbers of purebred Large White and crossbred Large White × Pietrain were used to assess the effect of genotype and the response of growing-f inishing pigs to dietary amino acid concentration according to a 2 genotypes × 4 dietary treatments factorial design. Four sequences of two diets (one growing and one finishing diet) all based on cereals, peas, peanut meal and amino acids, with increasing contents of essential amino acids but with the same crude protein content and balance between essential amino acids were compared. Lysine contents ranged from 7.6 to 10.5 g/kg (2.3 to 3.2 g/Meal DE) during the growing period (25-60 kg) and 6.6 to 9.6 g/kg (2.0 to 2.9 g/Meal DE) during the finishing period (60-100 kg). The crude protein content was 155 g/kg during the growing period and 145 g/kg during the finishing period. Pigs were housed individually and fed the experimental diets twice daily according to a low energy feeding scale. Crossbred pigs had a lower feed conversion ratio and a higher growth rate, and at slaughter leaner carcasses than Large White pigs. No genotype × dietary sequence interaction was detectable in any criteria measured. In both periods, increasing the essential amino acid content led to a significant increase in growth rate up to a plateau. However, there were few differences in carcass composition, according to dietary sequence. It seems that with fast-growing pigs, under restricted feeding, the use of high levels of balanced amino acids can be advised, up to about 9.5 g lysine/kg (2.9 g/Meal DE) during the growing period and 8.5 g lysine/kg (2.65 g/Meal DE) during the finishing period.  相似文献   

15.
This study aimed to evaluate the effects of dietary lysine/protein ratio and fat levels on the growth, carcass characteristics and meat quality of finishing pigs fed feed made from food waste, including noodles and chocolate. Four dietary treatments, 2 levels of lysine/protein ratio (0.035 and 0.046) and 2 levels of fat (3.3% and 6.0%), were adapted to a 2 × 2 factorial arrangement. Each diet for the finishing pigs contained the same levels of adequate crude protein (16%) and lysine (0.58–0.75%), and similar levels of high total digestible nutrients (90.2–92.6%). In total, 32 LWD pigs with an average body weight of 57.2 kg were assigned to 4 dietary groups. The pigs were slaughtered at about 115 kg. Growth performance was not influenced by the dietary treatments. Carcass characteristics were slightly influenced by the dietary fat level. As the dietary lysine/protein ratio decreased, the marbling score of Longissimus dorsi muscle increased and the intramuscular fat (IMF) increased from 6.82% to 9.46%. Marbling score was not significantly influenced by the dietary fat level. These results indicate that IMF increased without adverse effects on growth, carcass characteristics and meat quality, when pigs were fed a diet with low lysine/protein ratio.  相似文献   

16.
This study investigated the effects of amino acids (AA) supplementation in low crude protein (CP) diets on growth performance and carcass characteristics in finishing gilts. One hundred and eighty gilts (59.1 ± 5.1 kg) were randomly allotted to one of five diets which consisted of a high CP (15.6%) diet or four low CP (11.6%) diets for 50 days. The low CP diets were supplemented with lysine + threonine + methionine (LCM), LCM + tryptophan (LCT), LCT + valine (LCV) or LCV + isoleucine (LCI), respectively. Gilts were housed at six pigs per pen with six pens per treatment. At the end of the 50‐day experiment, 30 gilts (one pig per pen) with average body weight (BW) of 98 kg were killed to evaluate carcass traits. The pigs fed the diet supplemented with LCV obtained the highest average daily gain (ADG), which was higher than those of pigs fed the diet supplemented with LCM (P < 0.05). Dietary supplementation with tryptophan, valine and isoleucine in low CP diets increased ADG (linear and quadratic effect, P < 0.05), serum levels of valine (quadratic effect, P < 0.05) and isoleucine (linear and quadratic effect, P < 0.05) and immunoglobulin G (IgG) and IgA (linear and quadratic effect, P < 0.05) in finishing gilts. © 2016 Japanese Society of Animal Science  相似文献   

17.
Two hundred sixteen crossbred barrows and gilts (84.3 kg BW) were used to test the effects of dietary energy density and lysine:energy ratio (Lys:ME) on the performance, carcass characteristics, and pork quality of finishing pigs fed 10 ppm ractopamine. Pigs were blocked by BW and gender, allotted to 36 pens (six pigs per pen), and pens were assigned randomly within blocks to dietary treatments (as-fed basis) arranged in a 2 x 3 factorial design, with two levels of energy (3.30 or 3.48 Mcal/kg) and three Lys:ME (1.7, 2.4, or 3.1 g lysine/Mcal) levels. Pigs were fed experimental diets for 28 d, and weights and feed disappearance were recorded weekly to calculate ADG, ADFI, and G:F. Upon completion of the feeding trial, pigs were slaughtered and carcass data were collected before fabrication. During carcass fabrication, hams were analyzed for lean composition using a ham electrical conductivity (TOBEC) unit, and loins were collected, vacuum-packaged, and boxed for pork quality data collection. Energy density had no (P > 0.22) effect on ADG or ADFI across the entire 28-d feeding trial; however, pigs fed 3.48 Mcal of ME were more (P < 0.02) efficient than pigs fed 3.30 Mcal of ME. In addition, ADG and G:F increased linearly (P < 0.01) as Lys:ME increased from 1.7 to 3.1 g/Mcal. Carcasses of pigs fed 3.48 Mcal of ME were fatter at the last lumbar vertebrae (P < 0.08) and 10th rib (P < 0.04), resulting in a lower (P < 0.03) predicted fat-free lean yield (FFLY). Conversely, 10th-rib fat thickness decreased linearly (P = 0.02), and LM depth (P < 0.01) and area (P < 0.01) increased linearly, with increasing Lys:ME. Moreover, FFLY (P < 0.01) and actual ham lean yield (P < 0.01) increased as Lys:ME increased in the diet. Dietary energy density had no (P > 0.19) effect on pork quality, and Lys:ME did not (P > 0.20) affect muscle pH, drip loss, color, and firmness scores. Marbling scores, as well as LM lipid content, decreased linearly (P < 0.01) as Lys:ME increased from 1.7 to 3.1 g/Mcal. There was a linear (P < 0.01) increase in shear force of cooked LM chops as Lys:ME increased in the finishing diet. Results indicate that 3.30 Mcal of ME/kg (as-fed basis) is sufficient for optimal performance and carcass leanness in pigs fed ractopamine. The Lys:ME for optimal performance and carcass composition seems higher than that currently used in the swine industry; however, feeding very high Lys:ME (> 3.0 g/Mcal, as-fed basis) to ractopamine-fed pigs may result in decreased marbling and cooked pork tenderness.  相似文献   

18.
This study was designed to investigate the effects of dietary lysine level on the intramuscular fat content of the longissimus in finishing pigs reared at two environmental temperatures. Seventy-two hybrid gilts were individually penned and given ad libitum access to either a diet formulated to meet their lysine requirement (6.4 g/kg lysine) or a lysine-deficient diet (4.8 g/kg). Pigs were held at one of two environmental temperatures (thermoneutral [18 degrees C] or hot [32 degrees C]). The study was carried out between approximately 90 and 126 kg live weight; pigs in the thermoneutral and hot environments were on test for 5 and 7 wk, respectively. There were no interactions between dietary lysine level and environmental temperature. Dietary lysine content did not influence feed intake or average daily gain; however, pigs on the lysine-deficient diet had a poorer gain:feed ratio than those fed to requirement (P < .01). High environmental temperature decreased feed intake (P < .001) and average daily gain (P < .01) but improved gain:feed ratio (P < .01). Backfat at the 10th rib was increased and loin eye area and estimated percentage lean in the carcass were decreased for pigs on the lysine-deficient diet. The higher environmental temperature resulted in an increase in carcass length but had no effect on other carcass measurements or intramuscular fat. Feeding the lysine-deficient diet resulted in an increase of .55 percentage unit in longissimus intramuscular fat content (P < .01); however, there was no difference in subjective marbling scores between the diets. Warner-Bratzler shear force values were not affected by dietary lysine level or environmental temperature. Results from this study suggest that feeding of lysine-deficient diets at the end of the finishing period can increase intramuscular fat deposition under thermoneutral and hot conditions.  相似文献   

19.
Sixty-four individually housed pigs were used to investigate the effect of amino acid content of finisher diets on growth performance of pigs subjected to marginal dietary amino acid restrictions (80% of the 1988 NRC lysine recommendation) during the grower phase. In each of the two trials, low- and high-amino-acid grower diets (.421 and .765 g lysine/MJ DE, respectively) and four finisher diets (.421, .516, .612, and .707 g lysine/MJ DE) were randomly assigned within sex to 16 gilts and 16 castrated males weighing 23.0 +/- 2.0 kg in a 2 x 4 factorial arrangement of treatments. The average weight of pigs after a completion of diet change was 50.4 +/- 2.1 kg. All pigs were slaughtered at an average weight of 105.2 +/- 4.1 kg. Ultrasound backfat thickness was measured at the time of diet change and before slaughter. Pigs were allowed ad libitum access to feed and water. During the grower phase, pigs fed the high-amino-acid diet grew faster (P < .001) and more efficiently (P < .001) and had less ultrasound backfat (P < .001) than those fed the low-amino-acid diet. The grower diet had no effect on weight gain during the finisher phase. Consequently, pigs fed the high-amino-acid grower diet had better overall weight gain (P < .01) than those fed the low-amino-acid diet. The rate of lean accretion was, however, similar between the two groups of pigs. Furthermore, pigs fed the low-amino-acid grower diet seemed to have better carcass quality, as indicated by less ultrasound backfat (P < .01) and larger carcass longissimus muscle area (P < .05). Average and 10th rib carcass backfat decreased linearly (P < or = .05) and lean accretion rate improved linearly (P < .05) as the amino acid content of finisher diets increased, but there was no grower x finisher diet interaction in these and other response criteria. Although no evidence of compensatory weight gain was observed, it is possible that compensatory lean tissue growth may have occurred in pigs subjected to early amino acid restrictions at the expense of fatty tissue growth.  相似文献   

20.
Crossbred barrows (n = 336 Newsham Hybrids) initially 9.9 kg and 31+/-2 d of age were used to evaluate the effects of energy density and lysine:calorie ratio on growth performance. Pigs were allotted by initial weight in a 3 x 4 factorial arrangement of treatments in a randomized complete block design with six replicate pens per treatment. Each pen had four or five pigs with an equal number of pigs per pen within replicate. Pigs were fed increasing dietary energy densities (3.25, 3.38, and 3.51 Mcal ME/kg) and lysine:calorie ratios (3.00, 3.45, 3.90, and 4.35 g lysine/Mcal ME). Energy density was changed by levels of choice white grease (0, 3, and 6%), and lysine:calorie ratio was changed by altering the corn:soybean meal ratio. Over the 21-d trial, an energy density x lysine:calorie ratio interaction was observed for ADG (P < .05). Pigs fed diets containing 3.25 or 3.51 Mcal ME/kg had increasing ADG with increasing lysine:calorie ratio, whereas ADG of pigs fed 3.38 Mcal ME/kg was not affected by lysine:calorie ratio. Feed efficiency (gain:feed ratio) increased and ADFI decreased as lysine:calorie ratio increased (linear, P < .01) and as energy density increased (quadratic, P < .01 and .10, respectively). On d 21, two pigs per pen were scanned ultrasonically for backfat depth. An energy density x lysine:calorie ratio interaction (P < .06) was observed. Pigs fed diets containing 3.25 and 3.38 Mcal ME/kg had decreasing fat depth as lysine:calorie ratio increased; however, backfat depth was not affected by lysine:calorie ratio and was greatest for pigs fed 3.51 Mcal ME/kg. These results suggest that 10- to 25-kg pigs fed diets containing 3.38 Mcal ME/kg had maximum feed efficiency and that they required at least 4.35 g lysine/Mcal ME. However, pigs fed 3.51 Mcal ME/kg had increased fat depth regardless of calorie:lysine ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号