首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary Immature embryos of seven rye inbred lines were cultured on modified MS medium containing 3 mg/dm–3 2,4-D. According to thein vitro response lines were divided into four groups: (1) those producing non-embryogenic callus (NEC) from above 30% of the embryos and having a high rate of non-responding (NR) embryos, (2) those producing non-embryogenic callus (NEC) from the majority of embryos, (3) those producing NEC by the majority of embryos with a high percentage of calli regenerating roots, (4) those producing embryogenic callus (EC) and regenerating plants by above 50% of the embryos. The inheritance of these response types was analysed in F1, F2, and F3 generations of crosses of some lines. The results obtained indicate that EC production and both plant and root regeneration are determined by recessive genes whereas the reduced ability for NEC production most probably by dominant genes. The lack of response is controlled by at least two interacting genes.  相似文献   

2.
绿色棉新彩棉7号体细胞胚胎发生及其植株再生   总被引:1,自引:1,他引:0  
以绿色棉新彩棉7号的子叶、下胚轴为外植体,MSB(MS培养基附加B5维生素)基本培养基附加不同激素组合,诱导愈伤组织及调控分化,通过体细胞胚胎发生方式获得再生植株.结果表明:0.1 mg· L-1 KT(Kinetin,激动素)+ 0.1 mg·L-12,4-D(2,4-dichlorophenoxyacetic,2,4-二氯苯氧乙酸)为诱导愈伤组织的最适植物激素组合,不同外植体处理出愈率均达到100%,但下胚轴纵切面背向培养基放置培养更有利于诱导愈伤组织形成;分化调控阶段的最佳植物激素组合为0.15 mg·L-1 KT+ 0.3 mg·L-1 IBA(Indole-3-butyric acid,吲哚丁酸),胚性愈伤分化率可达23.33%; MSB中去除NH4NO3同时KNO3加倍,附加0.5 g·L-1Asn(Asparagine,天冬酰胺)和lg· L-1 Gln(Glutamine,谷氨酰胺),胚性愈伤可进一步分化获得体细胞胚,将成熟的子叶胚接种于1/2MS获得完整的再生植株. 本研究通过体细胞胚发生途径获得了新彩棉7号的再生植株,为天然彩色棉基因工程研究奠定了一定基础.  相似文献   

3.
 利用已建立的叶柄组织培养体系,对大田棉株不同发育时期、不同部位的叶柄进行组织培养研究。叶柄和无菌苗下胚轴愈伤组织诱导培养基为MSB+IAA 0.1 mg·L-1+KT 0.1  mg·L-1+2,4-D 0.1 mg·L-1+Glucose 30 g·L-1+Gel 2 g·L-1(pH 5.8);叶柄愈伤组织分化培养基为MSB+IAA 0.05 mg·L-1+KT 0.05 mg·L-1+Glucose 30 g·L-1+Gel 2 g·L-1(pH 6.5);无菌苗愈伤组织分化培养基为MSB+IAA 0.02 mg·L-1+KT 0.04 mg·L-1+Glucose 30 g·L-1+Gel 2 g·L-1(pH 6.5)。研究发现棉花主茎叶叶柄、果枝叶叶柄、营养枝叶叶柄在愈伤组织生长速度方面有一定差异,在愈伤组织诱导和分化方面,除严重衰老叶片的叶柄外,其它部位差异不显著。不同来源的胚性愈伤组织在MSB+6-BA 0.05 mg·L-1+KT 0.02 mg·L-1+Sucrose 30 g·L-1+Gel 2 g·L-1(pH 6.5)培养基上,均能得到胚状体,并获得再生植株。可见棉花叶柄是优良的组织培养外植体。  相似文献   

4.
【目的】研究脱落酸(Abscisic acid, ABA)对棉花体细胞胚胎发生过程中下胚轴脱分化和再分化的影响,优化体细胞胚胎发生体系和初步解析脱落酸调控棉花体细胞胚胎发生分子机制。【方法】以棉花品种中棉所24(CCRI 24)下胚轴为外植体,设置5个ABA浓度0、0.02、0.04、0.06、0.08μmol·L^-1,分别以A0、A1、A2、A3、A4表示,添加至MSB(MS培养基+B5维生素)培养基诱导愈伤和胚性愈伤,研究ABA对棉花下胚轴初始细胞脱分化、愈伤组织诱导和胚性愈伤组织诱导的影响。【结果】ABA促进下胚轴初始细胞脱分化;显著提高愈伤组织的脱分化率和增殖率;0.02μmol·L^-1ABA显著提高胚性愈伤分化率,0.04~0.08μmol·L^-1ABA显著降低胚性愈伤分化率。ABA处理后胚性愈伤和非胚性愈伤的增殖率均显著提高且质地受到影响。0.02~0.08μmol ABA处理下,LBD和LBD在愈伤起始期上调表达。0.02μmol·L^-1ABA处理下,在愈伤增殖早期和中期BBM、LEC1和AGL15上调表达,愈伤增殖后期FUS3、LEA、ABI3基因上调表达。【结论】脱落酸调控的棉花体细胞胚胎发生与相关标记基因的时空性表达密切相关,这些基因表达水平的增加是ABA调控愈伤和胚性愈伤分化的分子基础。  相似文献   

5.
棉花叶柄分化率主基因+多基因混合遗传分析   总被引:2,自引:1,他引:1  
 以2个叶柄分化率性状稳定的棉花材料W10、W12为亲本,构建了两个5个世代联合群体(P1、P2、F1、F2、F2:3), 采用植物数量性状主基因+多基因混合遗传模型对这2个群体(W10×TM-1, W12×CCRI12)的叶柄组织培养分化率进行多世代联合分析。结果表明,棉花叶柄组织培养分化率在2个群体中均表现为遗传受2对加性、显性、上位性主基因+加性、显性多基因(E-1模型)控制。2对主基因的加性效应均为正值,均使分化率提高。2个F2群体显示的主基因遗传率分别为83.22%和74.68%,多基因遗传率分别为10.47%和16.78%。  相似文献   

6.
N. Senthil  T. Komatsuda 《Euphytica》2005,145(1-2):215-220
Brittle rachis of wild barley is controlled by two dominant complementary genes, Btr1 and Btr2, and mutation in either locus (btr1 or btr2) results in the non-brittle rachis of cultivated barley. In this study, a simple monogenic inheritance of non-brittle rachis was demonstrated, and moreover differentiation of multiple dominant alleles for either Btr1 or Btr2 among cultivated and wild barley lines was suggested. Two amplified-fragment-length polymorphism (AFLP) linkage maps of the genes were constructed using wild × btr1-type cultivar and wild × btr2-type cultivar F2 populations. The order of AFLPs and the btr1/btr2 locus was constant between the wild × cultivar maps and a cultivar × cultivar map previously constructed. No suppression of recombination due to the inter-subspecific crosses was noticed in the interval studied. The btr1 locus and all AFLP loci were separated in the wild × btr1-type cultivar F2 map, but the btr2 locus and eight AFLP loci did not recombine in the wild × btr2-type cultivar F2 map, thus slightly different levels of affinity between parental cultivars with the wild line was suggested at the btr1/btr2 locus.  相似文献   

7.
Summary The segregation of 12 heterozygous isozyme markers was analyzed among F2 plants and 51 anther culture (AC)-derived lines obtained from the japonica × indica cross of rice, IRAT 177 × Apura. All the lines except two were homozygous products of recombination of the two parental phenotypes. Doubled haploid (DH) lines derived from plants regenerated from the same callus were identical, confirming previously obtained results in rice. Surprisingly, some lines derived from different calli were also identical, suggesting a phenomenon of early callus fragmentation. All these observations at the isozyme level were confirmed by field evaluation. Deviations of segregations from the expected 1 : 1 ratio were observed at 4 loci among the DH lines. Among these, two were also noted among the F2 plants. The two other distortions, both in favor of the japonica allele, were observed specifically in the AC-derived materials.Although this concerns a small proportion of the genes under study, it suggests that the embryogenic microsporal population does not represent a random gametic array. On the other hand, evaluation of recombination between isozyme genes located on chromosome 6 appears consistent with F2 data and data previously recorded on the other japonica × indica crosses. The potential use of isozymes in breeding doubled haploids derived from remote crosses in rice is discussed.Abbreviations MCPA = 2-methyl-4-chlorophenoxyacetic acid - IAA = indolacetic acid - AC plant or line = anther culture-derived plant or line - DH line = doubled haploid line  相似文献   

8.
Summary In alfalfa (Medicago sativa) regeneration is genotype-specific. In order to study the genetic control of somatic embryogenesis and to constitute a synthetic cultivar characterized by its high regeneration ability, 2 embryogenic plants selected from the cv. Adriana were selfed, intercrossed and also crossed in both directions with 5 non-embryogenic genotypes of the same cultivar.Progenies of all crosses were scored for their regeneration ability and results indicate that somatic embryogenesis is under the control of 2 dominant loci. However some non-embryogenic genotypes prevent regeneration when crossed with embryogenic ones and this characteristic is not under the control of a single dominant gene.When plants chosen for their capacity to regenerate within F1 and S1 progenies were freely intercrossed the regeneration efficiency dropped to 2% (1 plant out of 50). This result indicates that if the genetic background of the population is changed the regeneration is greatly affected and therefore some other mechanism could play a role in determining plant regeneration.  相似文献   

9.
Summary The mode of inheritance for resistance to zucchini yellow mosaic virus (ZYMV) in Cucurbita moschata was determined from F1, F2, and backcross progenies of the cross between the susceptible cultivar Waltham Butternut from the U.S.A. and a resistant inbred line of the Menina cultivar from Portugal. Resistance to ZYMV in Menina was conferred by a single dominant gene designated Zym.  相似文献   

10.
S. Gupta    R. G. Saini  A. K. Gupta 《Plant Breeding》1995,114(2):176-178
Genetic analysis of leaf-rust resistance was conducted on two durum wheats. Triticum durum cvs. ‘PBW 34’ and ‘DWL 5023’ were crossed with the leaf-rust-susceptible durum wheat ‘Malvi Local’. The F1, F2 and F3 generations were tested against leaf-rust pathotypes 1, 77A and 108. In ‘PBW 34’, a single dominant gene was effective against each of the pathotypes 1 and 108, whereas two independently inherited dominant genes were effective against pathotype 77A. In ‘DWL 5023’, two independently inherited dominant genes were operative against pathotypes 1 and 77A, whereas a single dominant gene was identified as being operative against pathotype 108. Allelic tests on F2 generation and joint segregation analysis on F3 generation seedlings, suggested that two different genes in each cultivar are effective against these three leaf-rust pathotypes. Cultivar ‘PBW 34’ has Lrd1 and Lrd2 genes whereas Lrd1 and Lrd3 genes are present in ‘DWL 5023’.  相似文献   

11.
Summary When subjected to micropropagation by tissue culture, the two reputed cultivars of date palm (Phoenix dactylifera L.); Bou-Sthammi noire, resistant to Bayoud disease and Bou-Feggous, of high fruit quality, give rise to three types of calli, called white and root-forming callus, hyperhydric and degenerating callus and friable and embryogenic callus. All explant sources, calli and germinated embryos were analysed by denaturing polyacrylamide gel electrophoresis (SDS-PAGE) for acid soluble protein composition. Phenol-oxidizing enzymes; peroxidase and polyphenoloxidase, were also, evaluated and the isoforms separated by polyacrylamide gel electrophoresis. When compared with the explant and germinated embryos, embryogenic calli of the two date palm cultivars could be identified by a concentrated polypeptide of molecular weight 27 500 and polypeptides of molecular weights 70 000 and 11 500. Hyperhydric and degenerating callus contained the polypeptide exhibiting the molecular weight 32 000. Embryogenic calli showed high levels of soluble, ionically and covalently bound peroxidases. The soluble acidic isoperoxidase of R f 0.60, revealed in these calli and germinated embryos could be a marker of the two tissues. White and root-forming calli of Bou-Feggous cultivar were typified by soluble acidic isoperoxidases with high mobility (R f 0.75) and anodic ionically wall-bound polyphenoloxidases similar to those of the explant sources. Polyphemoloxidase activities detected in calli and embryos were very low when compared with those of explants. Used as an early test to screen embryogenic calli of date palm, acid soluble proteins, peroxidase and polyphenoloxidase data could lead to introduce lightening and economy in the tissue culture technique.  相似文献   

12.
Summary Six chickpea lines resistant to Ascochyta rabiei (Pass.) Lab. were crossed to four susceptible cultivars. The hybrids were resistant in all the crosses except the crosses where resistant line BRG 8 was involved. Segregation pattern for diseases reaction in F2, BCP1, BCP2 and F3 generations in field and glasshouse conditions revealed that resistance to Ascochyta blight is under the control of a single dominant gene in EC 26446, PG 82-1, P 919, P 1252-1 and NEC 2451 while a recessive gene is responsible in BRG 8. Allelic tests indicated the presence of three independently segregating genes for resistance; one dominant gene in P 1215-1 and one in EC 26446 and PG 82-1, and a recessive one in BRG 8.Research paper No. 3600  相似文献   

13.
A Dactylis glomerata L. genotype that produces somatic embryos in vitro was tested for the ability to sexually transmit the embryogenic trait. Reciprocal crosses were performed between the embryogenic and two non-embryogenic genotypes. Leaf segments from 69 F1 plants were cultured on Schenk and Hildebrandt medium amended with 30 μM 3,6-dichloro-o-anisic acid (dicamba). Somatic embryogenesis was expressed in 39 of the F1 plants. The embryogenic parent was female for 18 of these plants and male for the other 21. The 39:30 ratio of embryogenic: non-embryogenic fits an expected 1:1 for tetrasomic inheritance of a dominant nuclear gene.  相似文献   

14.
Summary Genetics of four in vitro characters was studied using immature inflorescence-derived callus from four inbred lines. The number of genes controlling total callus quantity varied from 5–11, those for embryogenic(E) callus quantity from 4–7, for callus growth rate from 3–12 and those for regeneration frequency varied from 4–9 in the three segregating F2 populations. Callus derived from the dwarf plants (d2 d2) was phenotypically distinguishable from that of the tall accessions. The association between d2 locus and the in vitro characters was analysed using three different approaches. It is suggested that d2 locus might be closely linked to majority of the loci governing E callus production.  相似文献   

15.
F. J. Novak    S. Daskalov    H. Brunner    M. Nesticky    R. Afza    M. Dolezelova    S. Lucretti    A. Herichova  T. Hermelin 《Plant Breeding》1988,101(1):66-79
Sixteen inbred lines and one hybrid of manse were tested for their capability of somatic embryogenesis, and fully developed plants could be regenerated, from ten inbred, lines. The highest frequency of plant regeneration was expressed in the inbred line CHI 31, and when this line was crossed with a recalcitrant, non-regenerating line, the F1 and BC hybrids were regenerable. The results of reciprocal crosses demonstrated that dominant nuclear genes and cytoplasmic factors are primarily responsible for the heritable determination of embryogenic callus proliferation and in vitro regeneration of maize plants. Somaclonal and radiation-induced variability was studied in maize to assess their nature and potential contribution to plant breeding., The inbred line CHI 31 possessing a high in vitro capacity of somatic embryo formation was used as experiments.] material. CHI 31 plants were selfed and twelve-day old zygotic embryos irradiated with 60Co gamma radiation in situ. Mature caryopses were harvested and assigned as M1 material. In another series, immature zygotic embryos (size 1.2—1.5 mm) were cultured in vitro on N-6 medium supplemented with 2,4-D (2.5 μM), and somatic embryos regenerated into plants; these were transplanted into soil and self-pollinated. Regenerants from non-irradiated cultures were grown as R1 generation, while regenerants from irradiated explants were considered as M1R1 generation. The genetic variability was evaluated in the M2, R2 and M2R2 generations, respectively, and compared with a non-treated seed control. Irradiation induced a variety of chlorophyll and morphological variants segregating in the M; generation; however, the frequency of deviant types obtained in the R: generation (somaclonal variation) was significantly exceeding the one derived from the M2 populations. The combination of expert irradiation and in vitro regeneration was most effective for the manifestation of chlorophyll and morphological o if types in the M2R2 generation, and increased drastically the frequency of early flowering variants. Differences in the segregation patterns of mutant phenotypes amonsister somaclones in the R3 and M3R3 generations indicate a different genetic basis, of plants originating from the same explant. This phenomenon suggests a mutational sectoring of the callus during culture. Radiation induced and somaclonal variation exerted a similar spectrum of chlorophyll and morphological deviants.  相似文献   

16.
The aim of this study was to induce embryogenic callus from various cultivars of cotton in tissue culture, so that a stable and efficient regeneration system could be developed to produce new cotton varieties for cultivation in Xinjiang. The explant materials were hypocotyls of the main cotton cultivars grown in Xinjiang, i. e. Xinhai 25, Xinhai 16, Xinluzao 39, and Xinluzao 42. We tested the effects of different combinations of two hormones (kinetin, KT; 2,4-dichlorophenoxyacetic acid, 2,4-D) on induction of callus from these explants. Calli were produced by the explants under four different combinations of hormones in the media. The optimal hormone combination to induce callus from Gossypium hirsutum explants was 0.1 mg·L-1 KT + 0.05 mg·L-1 2,4-D, while that to induce callus from Gossypium barbadense explants was 0.1 mg·L-1 KT + 0.1 mg·L-1 2,4-D. Hormone-free medium and medium containing double to the normal concentration of KNO3 promoted the emergence of embryogenic callus. Filter paper placed under the medium promoted somatic embryo growth and regeneration of the root system. The differentiation and embryogenesis processes occurred more rapidly in G. hirsutum explants than those in G. barbadense explants. Using this protocol, normal plantlets of these cotton cultivars with strong roots were produced within 10 to 12 months. These methods could be used to increase the number of cotton genotypes that can be regenerated in tissue culture.  相似文献   

17.
Summary A spring wheat genotype which produces somatic embryos in vitro, after short and long-term culture, was tested for its ability to sexually transmit this embryogenic trait. Reciprocal crosses were performed between a embryogenic line and a nonembryogenic variety.Immature embryos were cultured on Murashige and Skoog medium plus 2 mg/l 2,4-dichlorophenoxyacetic acid, gelled with 5.5 g/l agarose. Somatic embryogenesis was not expressed in the F1's. In contrast, from several hundred immature embryos of the F2 generation of one cross, 10.7% and 1.6% expressed somatic embryogenesis in short and long-term cultures respectively. These percentages of embryogenic: non-embryogenic fits a model of a few complementary genes. The embryogenic capacity of the F2 genotypes depends on the presence of recessive alleles at these gene loci. The long-term wheat somatic embryogenesis capacity requires a more complex mechanism than the short-term one.Abbreviations CS Chinese Spring - Aq Aquila - E Embryogenic - NE Nonembryogenic - SC Subculture  相似文献   

18.
H. Dong    J. S. Quick  Y. Zhang 《Plant Breeding》1997,116(5):449-453
The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko) has caused serious reduction in wheat production in 17 Western states of the United States since 1986. Inheritance of resistance to RWA in seven wheat lines and the allelism of the resistance genes in these lines with three known resistance genes Dn4, Dn5, and Dn6 were studied. The seven resistant lines were crossed to a susceptible wheat cultivar ‘Carson’ and three resistant wheats: CORWA1 (Dn4), PI 294994 (Dn5), and PI 243781 (Dn6). Seedlings of the parents, F1, and F2 were screened for RWA resistance in the greenhouse by artificial infestation. Seedling reactions were evaluated 21–28 days after the infestation using a 1–9 scale. The resistance level of all the F1 hybrids was similar to that of the resistant parent, indicating dominant gene control. Only two distinctive classes were present and no intermediate types were observed in the F2 population, suggesting qualitative, nonadditive gene action, in which the presence of any one of the dominant alleles confers complete resistance to RWA. Resistance in CI 2401 is controlled by two dominant genes. Resistance in CI 6501 and PI 94365 is governed by one dominant gene. Resistance in PI 94355 and PI 151918 may be conditioned by either one dominant gene or one dominant and one recessive gene. No conclusion can be made on how many resistance genes are in AUSVA1-F3, since the parent population was not a pure line. Allelic analyses showed that one of resistance genes in CI 2401 and PI 151918 was the same allele as Dn4, the resistance gene in CI 6501 was the same allele as Dn6, and AUS-VA1-F3 had one resistance gene which was the same allele as one of the resistance genes in PI 294994. One non-allelic resistance gene different from the Dn4, Dn5, and Dn6 genes in CI 2401, PI 94355, PI 94365, and PI 222668 was identified and should be very useful in diversifying gene sources in wheat breeding.  相似文献   

19.
K. Murai 《Plant Breeding》2002,121(4):363-365
A ‘two‐line system’ using photoperiod‐sensitive cytoplasmic male sterility (PCMS) caused by Aegilops crassa cytoplasm under a long‐day photoperiod ( 15 h) has been proposed as a new means of producing hybrid varieties in common wheat. The PCMS line is maintained by self‐pollination under short‐day conditions, and hybrid seeds can be produced through outcrossing of the PCMS line with a pollinator under long‐day conditions. Two kinds of fertility restoration systems against the PCMS are known. One is involved with a set of multiple fertility‐restoring (Rf) genes in the wheat cultivar ‘Norin 61’ located on (at least) chromosomes 4A, 1D, 3D and 5D. The other is controlled by a single dominant major Rf gene, Rfd1, located on the long arm of chromosome 7B in the wheat cultivar ‘Chinese Spring’. To examine the degree of fertility restoration by these two systems, nine PCMS lines were crossed with ‘Norin 61’ and ‘Chinese Spring’ as the restorer lines, and the F1 hybrids were investigated. The degree of fertility restoration was estimated by comparing the seed set rates in the F1 hybrids having the Ae. crassa cytoplasm and those with normal cytoplasm. The results revealed that the fertility restoration ability of a set of multiple Rf genes in ‘Norin 61’ was higher than that of the Rfd1 gene in ‘Chinese Spring’.  相似文献   

20.
Summary Studies were conducted to determine the inheritance and allelic relationships of genes controlling resistance to the Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), in seven wheat germplasm lines previously identified as resistant to RWA. The seven resistant lines were crossed to a susceptible wheat cultivar Carson, and three resistant wheats, CORWA1, PI294994 and PI243781, lines carrying the resistance genes Dn4, Dn5 and Dn6, respectively. Seedlings of the parents, F1 and F2 were screened for RWA resistance in the greenhouse by artificial infestation. Seedling reactions were evaluated 21 to 28 days after the infestation using a 1 to 9 scale. All the F1 hybrids had equal or near equal levels of resistance to the resistant parent indicating dominant gene control. Only two distinctive classes were present and no intermediate types were observed in the F2 segregation suggesting major gene actions. The resistance in PI225262 was controlled by two dominant genes. Resistance in all other lines was controlled by a single dominant gene. KS92WGRC24 appeared to have the same resistance gene as PI243781 and STARS-9302W-sib had a common allele with PI294994. The other lines had genes different from the three known genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号