首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
为了认识节节麦5t+12t亚基品质表现突出的分子基础,利用SDS-PAGE分析研究了该亚基组合中12t亚基的电泳迁移率并克隆和测序了该亚基基因。结果表明,该12t亚基在SDS-PAGE上的电泳迁移率与普通小麦中的Dy12具有一致的电泳迁移率,但与Dy10的电泳迁移率差异明显。而氨基酸序列比较结果显示,12t亚基的分子序列与Dy10的相似程度非常高,二者仅存在4个氨基酸的替换,而它与Dy12的分子序列存在较大的差异,不但包括12个氨基酸的替换,同时包括2个六肽氨基酸和另外4个氨基酸部位的插入和缺失变化。本研究结果表明,节节麦高分子量谷蛋白Dx5t+Dy12t亚基赋予小麦优良加工品质的主要原因可能与12t亚基与小麦Dy10非常相似,导致这一亚基组合更倾向与Dx5+Dy10有一定关系。  相似文献   

2.
利用y-型高分子量谷蛋白亚基的特异引物,对阿拉拉特小麦(PI427305)的基因组DNA进行PCR扩增,得到大小为2.2 kb的目的条带,将该条带回收纯化并克隆到pMD18-T载体中,经梯度亚克隆测序拼接,得到编码区的全序列为2 202 bp(GenBank登录号:HM131806),共编码732个氨基酸。它与1Gy7*序列的同源性高达99%,而且氨基酸序列结构与大多数y-型亚基相同,推断该基因为1Gy。1Gy的分子量比1Gy7*稍小,迁移率比1Gy7*慢。与小麦属其他基因组编码的y-型亚基相比,其在靠近C端的重复区多了一个半胱氨酸残基。利用在线PSIPRED对其二级结构预测结果显示,其重复区主要是无规则卷曲结构。这些结构都可能使得1Gy对小麦加工品质产生正面影响。  相似文献   

3.
利用小麦A、B基因组特异SSR标记扩增节节麦D基因组   总被引:2,自引:0,他引:2  
以节节麦SQ-214、中国春(CS)和四川育成品种SW3243为材料,利用192个小麦A和B基因组特异SSR标记,对节节麦D基因组进行了扩增,结果表明:有130个特异SSR标记(67.70%)可以在只含D基因组的节节麦上扩出产物,并对扩增效果进行了分析。  相似文献   

4.
用十二烷基硫酸钠-聚丙稀酰胺凝胶电泳方法(SDS-PAGE),分析了4份天然加倍形成的硬粒小麦-节节麦人工合成种的高分子量谷蛋白亚基(HMW-GS)组成。结果表明:4份硬粒小麦-节节麦人工合成双二倍体SHW—Z1,SHW—Z2,SHW—Z3,SHW—z4的HMW—GS分别为6+8、5+12;6+8、5+10;6+8、5+12和6+8、5+10。其中,6+8亚基来自硬粒小麦;5+12,5+10亚基分别来自节节麦As60与As65。硬粒小麦和节节麦的HMW—GS呈共显性遗传,在合成六倍体小麦背景中均得到了表达,且没有出现变异。表明可通过节节麦与二粒小麦杂交并天然加倍的途径创造桥梁种质,将节节麦的优质HMW—GS基因引入普通小麦。  相似文献   

5.
根据低分子量谷蛋白亚基(LMW-GS)基因编码区保守序列设计引物,用PCR方法从蛋白质含量低至13.17%的D81和高达27.20%的D42 2份野生二粒小麦(Triticumdicoccoides)中克隆得到2个LMW-GS基因序列LMW-D81和LMW-D42(GenBank上的序列号分别为FJ461691和FJ461690)。它们具有小麦低分子量谷蛋白基因的典型结构特征,其长度分别为1053bp和1011bp,并分别编码350和336个氨基酸残基的成熟蛋白。LMW-D42和LMW-D81的氨基酸序列估算分子量分别为38kDa和39kDa,说明二者均为C型亚基编码基因。LMW-D42和LMW-D81的N-末端序列都为METSHIP-,表明这2个C型亚基编码基因归属LMW-m型。同源性比对和聚类分析揭示,LMW-D81和LMW-D42均属于Glu-B3位点编码基因。LMW-D42和LMW-D81的核苷酸序列和推导的氨基酸序列一致性分别为93.94%和92.57%。与LMW-D81相比,LMW-D42除发生了22处间断性的碱基替换外,还存在一段42个碱基的缺失。对推导氨基酸序列进行的二级结构预测显示,LMW-D81和LMW-D42的蛋白质二级结构高度一致。其α-螺旋主要位于信号肽和C-末端,少量的α-螺旋和不规则卷曲构成了N-末端。大多数不规则卷曲位于重复区,仅有的一段β-折叠则出现在C-末端。同时,它们的编码区均具有分布一致的8个半胱氨酸残基,且第一和第七个半胱氨酸残基均位于无规则卷曲中。这些结构特点对小麦加工品质改良具有一定意义。  相似文献   

6.
节节麦及其在小麦生物技术育种中的研究与应用   总被引:7,自引:2,他引:5  
节节麦是六倍体普通小麦的祖先种之一,D染色体组的供体种;但其遗传变异远比普通小麦的D染色体组丰富。由于节节麦的优异基因可以通过与小麦远缘杂交,染色体同源配对、基因交换的方式转育至现代高产小麦中,因而越来越受到育种家的重视。本文综述近20年来国内外对节节麦遗传评价、研究应用等方面的进展。同时,报道了本课题组近年利用生物技术转育节节麦优良基因,培育优质、抗小麦新品系(种)方面的进展。  相似文献   

7.
高抗条锈和白粉病节节麦资源SQ-214遗传背景的SSR标记分析   总被引:1,自引:0,他引:1  
以四川地方品种中国春(CS)和育成普通小麦品种SW3243为对照,选用D基因组118个SSR标记,对双抗(条锈、白粉)节节麦资源SQ-214的遗传背景进行了比较分析,结果表明:节节麦SQ-214与中国春在D基因组上91.50%的SSR位点有差异;与SW3243的位点88.96%有差异;研究结果为进一步鉴定SQ-214高抗条锈衍生系遗传背景中节节麦片段(或遗传位点)奠定了基础。  相似文献   

8.
利用长休眠节节麦(Ae.tauschii)与四川的四倍体小麦地方品种矮兰麦(T.turgidum)杂交并加倍合成的新的抗穗发芽普通小麦"RSP"与"绵阳11"D染色体组的单体系列杂交,对来源于节节麦的晚生育期基因进行定位分析,以期在利用其穗发芽抗性时,克服其生育期较晚的特性。结果表明:该节节麦的2D和5D染色体上均存在晚生育期基因,2D的作用较5D更强。  相似文献   

9.
节节麦是普通小麦的供体祖先种,具有丰富的遗传变异和优良性状,可用于拓宽现代小麦的遗传基础。本试验利用22个小麦D染色体组特异微卫星标记,对国内外的85份节节麦材料进行遗传多样性分析,结果共检测出195个等位变异,平均每个标记8.86个。节节麦染色体间平均等位变异顺序为6D>2D>5D>1D>7D>3D>4D;22个标记揭示的多态性信息指数——PIC值,分布在0.3385和0.8129之间,染色体间大小顺序为1D>5D>2D>4D>3D>6D>7D。研究表明,85份节节麦材料遗传多样性较高,为节节麦的有效利用提供了依据。  相似文献   

10.
 采用PCR方法对普通小麦、斯卑尔脱小麦及密穗小麦在Glu A1、Glu B1和Glu D1位点上 y型高分子量谷蛋白亚基基因的多态性进行了分析。研究结果显示 ,y亚基基因在分子水平上的多态性与SDS PAGE分析结果完全吻合 ,其中以Glu B1位点上的遗传变异类型最多。研究还发现 ,针对y亚基基因重复区域设计的特异引物能够将Glu 1Dy12和Glu 1Dy10亚基明显区分开来。由于Glu1 Dx5与Glu 1Dy10亚基及Glu 1Dx2与Glu 1Dy12亚基紧密连锁 ,因此可以利用该引物进行优质亚基的分子标记辅助选择工作  相似文献   

11.
粗山羊草中含有丰富的高分子量谷蛋白亚基的变异类型,山羊草属中的山羊草组(2n=14,DD)是普通小麦(2n=42,AABBDD)D染色体组的供体。并且1D染色体上编码的HMW-GS与小麦烘烤品质最为密切。与普通小麦G lu-D1位点相似,粗山羊草1D染色体上也编码了迁移率不同的两个HMW-GS,但粗山羊草不同种间存在更丰富的HMW-GS变异类型。现在粗山羊草中所发现的HMW-GS远高于小麦,粗山羊草中的亚基类型除了2+12,5+10常见于普通小麦,5+12亚基仅存在于意大利个别小麦品种外,其余为粗山羊草所特有的亚基类型。对粗山羊草进行SDS-PAGE凝胶电泳,并对所提供的粗山羊草的HMW-GS进行鉴定分析,得到一些粗山羊草中所特有的优质亚基类型,其中有目前认为更为优秀的1.5+10亚基,为创造新的人工合成六倍体小麦提供了材料基础。  相似文献   

12.
粗山羊草高分子量麦谷蛋白新型亚基的筛选和鉴定   总被引:15,自引:0,他引:15  
利用SDS -PAGE和Western Blotting分析与鉴定技术 ,从 5 1份粗山羊草中共发现了 2种新型亚基Tx >2和Ty <12 ,被命名为Dx2 1t 和Dy13t;7种亚基组合类型 2 +12、5 +10、2 +10、5 +12、2 1t+10、2 1t+12和 2 +13t,这7种亚基组合的频率分别是 2 7 5 %、2 5 5 %、31 4%、3 9%、2 0 %、2 0 %和 7 8%。已将新型亚基Dx2 1t 和Dy13t的编码基因进行了分子克隆  相似文献   

13.
粗山羊草苗期抗叶锈性鉴定及抗叶锈基因推导   总被引:4,自引:1,他引:3  
普通小麦D基因组的供体材料粗山羊草含有丰富的抗叶锈病基因资源,而且具有较好的农艺性状,在抗病育种中具有重要的应用价值。本研究旨在了解粗山羊草的抗叶锈性以及准确了解其中所含抗叶锈基因。选取25株小麦叶锈菌株对6个粗山羊草品系进行抗叶锈性离体鉴定,筛选出4个在苗期对22个和23个菌株表现中到高抗的品系。试验选用18个不同毒力类型的小麦叶锈菌株和44个已知的抗叶锈单基因品系对其进行了抗叶锈基因推导,推导出粗山羊草4254-Y206可能含有Lr1,Lr10和Lr29或其他未用于本次研究的抗叶锈基因;4255-Y212可能含有Lr10和Lr29抗叶锈基因或其他未用于本次研究的抗叶锈基因;Y192可能含有Lr41抗叶锈基因或其他未用于本次研究的抗叶锈基因;Y201可能含有其他未用于本次研究的抗叶锈基因。  相似文献   

14.
粗山羊草(Aegilops tauschii)是普通小麦D基因组的供体。D基因组的加入,增强了小麦的适应性,改善了小麦的品质,使其成为世界第一大粮食作物。简要介绍了D基因组的结构,重点探讨了基因组测序结果如何用于小麦的基因发掘、资源的多样性与单倍型研究、品种改良、比较基因组学以及进化与多倍体研究。最后提出了对我国小麦基因组研究的建议。  相似文献   

15.
八倍体节节麦-燕麦部分双二倍体的细胞遗传学鉴定   总被引:3,自引:0,他引:3  
通过对节节麦、野燕麦、八倍体节节麦-燕麦部分双二倍体的C分带的研究,表明八倍体节节麦-燕麦部分双二倍体中含有小麦的B组和A组染色体。通过对节节麦、野燕麦、八倍体节节麦-燕麦部分双二倍体与中国春小麦回交后代的花粉母细胞减数分裂过程中染色体配对行为的研究,表明回交一代中含有14个左右的二价体,而不是预期的7个二价体;通过对八倍体节节麦-燕麦部分双二倍体与中国春小麦回交后代花粉母细胞中染色体的原位杂交研究,表明八倍体节节麦-燕麦部分双二倍体中含有14条左右的燕麦染色体。因此,认为八倍体节节麦-燕麦部分双二倍体不是真正的节节麦与野燕麦的杂种,而可能是某一四倍体小麦与燕麦的杂交后代。  相似文献   

16.
人工合成六倍体小麦与黑麦的可杂交性研究   总被引:1,自引:0,他引:1  
利用102份从CIMMYT引进的人工合成六倍体小麦与黑麦杂交,分析了人工合成六倍体小麦的可杂交性,结果表明:人工合成小麦的可杂交能力变异很大,从0%~72.49%;其中有11份人工合成小麦的可杂交率超过50%以上,1份人工合成小麦YAR/Aegilops tauschii518的杂交结实率达到72.49%,与中国春相似。通过比较同一个硬粒小麦与不同节节麦或同一个节节麦与不同硬粒小麦的可杂交性,发现硬粒小麦和节节麦都对人工合成小麦的可杂交性具有较强的作用。本实验所筛选的具有高亲和性的人工合成小麦,可作为远缘杂交的新材料,用于转育小麦近缘属种优良基因。  相似文献   

17.
 【目的】鉴定在西藏小麦地方品种中发现的特有高分子量谷蛋白亚基组合“Tibetan Dx5*+Tibetan Dy10”中的Tibetan Dy10亚基是否与普通小麦Dy10亚基为同一亚基。【方法】利用SDS-PAGE分析和Tibetan Dy10亚基基因的克隆和测序。【结果】表明Tibetan Dy10亚基与普通小麦中Dy10亚基广泛存在的Dx5+Dy10组合形式中的Dy10亚基的分子序列非常相似,但分别在2个六肽中的1个氨基酸部位发生替换,第335位的甘氨酸(G)和第451位的谷氨酰氨(Q)在Tibetan Dy10 中均被替换为精氨酸(R)。【结论】Tibetan Dy10与普通小麦中常见的Dy10亚基基因的DNA序列存在微小差异,属于Dy10位点的一个新变异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号