首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
[目的]揭示大花序桉的遗传多样性,为大花序桉群体资源的保存和育种潜力的评估提供理论基础。[方法]利用14个简单重复序列(SSR)标记对大花序桉4个主要分布地区进行变异检测,分析位点多态性和群体多样性,计算地区间的分化系数和遗传相似性以及地区间和地区内的分子方差分量,基于遗传相似性进行聚类分析。[结果]14个SSR标记共检测到249个等位片段,平均每个标记检测到18个等位片段。基于所有标记,大花序桉各地区的Shannon′s信息指数平均为1.785 4,观测杂合度平均为0.510 0,期望杂合度平均为0.788 2,表明遗传多样性较高。地区间平均遗传分化系数为0.071 6,分子方差分析(AMOVA)中群体间方差分量仅为6.8%,表明遗传分化水平中等、遗传变异主要存在于群体内。非加权分组算术平均法(UPGMA)聚类分析将大花序桉4个主要分布地区划分为北部和南部2大类。[结论]种质资源保存要优先考虑多样性较高的地区。大花序桉遗传多样性较高,进一步选育的潜力较大。  相似文献   

2.
大花黄牡丹遗传多样性的SRAP分析   总被引:2,自引:0,他引:2  
应用SRAP标记对西藏特有植物大花黄牡丹的遗传多样性进行研究。用16对引物从5个自然居群79个单株中共检测到396个有效位点,其中多态性位点357个。在物种水平上,多态位点百分率(Ppl)为90.15%,Shannon表型多样性指数(Ηsp)平均为0.2521;居群水平上的Ppl为31.82%,Shannon表型多样性指数(Ho)为0.0694~0.3428,平均值(Ηpop)为0.1307。上述遗传参数表明,大花黄牡丹具有丰富的物种遗传多样性,5个居群中自然居群C的遗传多样性最高(Ppl=82.32%,Ho=0.3428)。据AMOVA分析结果,总的变异中有41.58%的变异存在于居群间,58.42%的变异存在于居群内,居群分化较显著(ΦST=0.4158,P<0.001),由POPGENE1.32得到的居群间遗传分化系数GST(0.4309)和Shannon表型多样性指数计算的居群间遗传多样性所占比例(0.4816)也表明了类似的遗传结构。Mantel检测表明地理距离和Nei’s遗传距离间相关不显著(P>0.05)。利用NTSYSPC(2.1)软件构建大花黄牡丹5个居群79个个体的UPGMA聚类图,遗传相似系数变幅在0.47~0.99,大多数居群内的个体表现出较为密切的亲缘关系(如居群B,D,E),但也有一些居群的个体未聚在一起(如居群C)。依据大花黄牡丹居群遗传变异特点,初步探讨其保护和利用策略。  相似文献   

3.
花吊丝竹居群遗传多样性的ISSR分析   总被引:1,自引:0,他引:1       下载免费PDF全文
[目的]研究花吊丝竹居群遗传多样性和遗传结构,为种质资源有效利用和良种选育提供理论指导。[方法]利用12条ISSR引物对48份种质(共3个居群)花吊丝竹居群进行遗传多样性和遗传距离分析。[结果]共检测到124个位点,其中,多态性位点为102个,种质和居群水平上的多态位点百分比(PPB)分别为82. 26%和50. 27%,Ne’基因多样性指数(He)分别为0. 220 4和0. 206 6,Shannon’s信息指数(I)分别为0. 349 4和0. 300 5,表明花吊丝竹居群间存在中等水平的遗传变异。根据Nei’s遗传多样性计算出不同居群间分化水平(Gst)=0. 163 3,表明16. 33%的遗传变异存在于居群间,居群内的遗传变异为83. 67%。居群间的基因流Nm为2. 562 1,表明花吊丝竹居群间存在较大基因流,很大程度减少居群间遗传差异。基于遗传距离的UPGMA聚类结果表明,48份种质可分为3组,3个居群可分为2组,居群间地理距离与亲缘关系无显著相关性。[结论]虽然花吊丝竹主要靠营养生殖来繁衍后代,其居群遗传多样性较丰富,且居群内遗传多样性大于居群间。此外,福建居群遗传多样性明显高于广西和广东地区居群。  相似文献   

4.
撑篙竹遗传变异的RAPD分析   总被引:14,自引:0,他引:14       下载免费PDF全文
采用随机扩增多态DNA(RAPD)方法对6个群体30丛撑篙竹个体进行了遗传变异的研究。28个随机引物共检测到173个位点,其中85个是多态位点,平均每个引物提供6.18个RAPD信息量,扩增出的DNA片段大小一般在200~2000bp范围之间;用POPGENE1.31版软件进行遗传多样性分析:平均Nei’s基因多样性为0.2114,Shannon’s信息指数为0.3277,基因分化系数0.1853,表明群体间有一定的分化;各群体平均遗传距离0.0350,表明群体亲缘关系较近;试用UPGMA方法对不同产地的撑篙竹群体作聚类分析,初步可将6个群体聚为3类。  相似文献   

5.
白皮松天然群体遗传多样性的EST-SSR分析   总被引:1,自引:0,他引:1       下载免费PDF全文
为探讨白皮松群体间遗传变异规律,使用7对EST-SSR引物对分布区内21个白皮松天然群体的遗传多样性及遗传分化水平进行了研究。结果表明:7对引物在21个白皮松天然群体的663个单株中共检测到14个多态性位点。各群体间有效等位基因数(Ne)、Shannon’s信息指数(I)、观测杂合度(Ho)、期望杂合度(He)、Nei’s期望杂合度(Nei’s)分别为1.156 5 1.601 9、0.133 5 0.492 5、0.138 4 0.397 3、0.0860 0.342 8、0.084 6 0.337 4。白皮松群体间遗传分化系数(Fst)平均为0.215 2,基因流(Nm)值平均为0.911 9,群体间基因交流总体较少,遗传分化较大。白皮松多样性水平在分布区内呈规律性变化,多样性分布的中心区域主要在西部、南部,具有从西向东,从南向北依次减少的趋势。  相似文献   

6.
天山樱桃野生居群遗传多样性SSR分析   总被引:1,自引:0,他引:1  
为给天山樱桃种质资源的保护和开发利用提供参考,应用SSR标记技术对新疆天山樱桃4个居群44份种质的遗传多样性进行分析。结果表明:筛选的14对SSR引物共检测到191个位点,包含148个多态性位点。Nei’s基因多样性指数和Shannon信息指数分别为0.239 8和0.367 6,各居群遗传分化系数为0.193 5,基因流为2.084 3。天山樱桃遗传分化水平较低,各居群间基因交流频繁,遗传变异主要存在于居群内。由基于遗传距离的聚类结果可知,裕民县与大西沟居群遗传关系最近,与特克斯居群遗传距离较远,4个天山樱桃居群中大西沟居群遗传多样性最高。  相似文献   

7.
红花石蒜遗传多样性的ISSR分析   总被引:2,自引:0,他引:2       下载免费PDF全文
利用ISSR分子标记技术对14个居群的红花石蒜进行遗传多样性研究,结果表明:POPGEN32分析显示红花石蒜物种的遗传多样性很高,多态位点百分率为92.31%,Shannon指数(H)为0.459 7,Ne i指数(I)为0.302 5;居群水平的遗传多样性较低,多态位点百分率平均为49.65%,Shannon指数(H)平均为0.262 0,Ne i指数(I)平均为0.176 3;居群间的遗传分化系数(Gst)为0.503 5,基因流(Nm)为0.698 3。AMOVA分子变异分析显示:居群间遗传分化程度高,46.12%的变异发生在居群内,53.88%的变异发生于居群间。生境的片段化使居群间的基因流受阻,可能是居群间高遗传分化和居群水平低遗传多样性的主要原因。  相似文献   

8.
运用AFLP技术分析筇竹种群遗传多样性   总被引:6,自引:1,他引:5       下载免费PDF全文
利用AFLP分子标记技术对筇竹2个种群的遗传多样性进行了分析,筛选出10对多态性和清晰度较高的引物组合,共获得680个AFLP位点,其中多态性位点662个,平均多态性检出率为97.20%,并用PopGen32软件对AFLP多态性数据进行分析,结果表明,供试2个筇竹种群均具有丰富的遗传多样性,多态位点百分率分别为89.86%和91.95%,等位基因数分别为1.898 6和1.919 5,有效等位基因数分别为1.585 0和1.568 3,种群内遗传多样性为0.332 1,种群水平平均Nei’s 遗传多样性为0.394 9,Shannon信息指数为0.575 4,基因流为2.900 9,遗传一致度为0.821 9,遗传距离平均值为0.196 1。并根据遗传距离进行了UPGMA聚类分析。  相似文献   

9.
不同种源印楝遗传多样性的ISSR分析   总被引:2,自引:0,他引:2  
利用ISSR分子标记技术对印楝进行遗传多样性分析,用9条引物进行扩增,共检测出81条清晰的位点,其中79条具有多态性,多态位点百分率为97.53%,Nei's基因多样性指数为0.3803,Shannon信息指数为0.5537,表明印楝遗传多样性很丰富。种源间遗传分化系数为0.4702,Shannon’s居群分化系数为0.4677,表明印楝种源内的遗传分化大于种源间的分化。聚类分析将13个种源分为2大类,来自缅甸的11个种源聚成一类,来自澳大利亚和印度的种源聚成另外一类。结果表明,ISSR分子标记技术适合于印楝的遗传多样性分析。  相似文献   

10.
为更有效地保护和利用土沉香(Aquilaria sinensis)遗传多样性,以广西、海南和云南13个土沉香居群的147个家系为材料,采用简单序列重复区间(Inter-Simple Sequence Repeat,ISSR)分子标记技术和POPGEN 32软件对土沉香进行多态性分析和遗传多样性比较,采用NTSYS软件进行聚类分析,采用Mantle检验分析遗传距离与地理距离的相关性。结果表明,筛选出的34条引物共获得291个扩增位点数,其中多态性位点数230个,多态性位点百分率均值为78.97%。Nei’s基因多样性指数均值为0.226 1,香农信息指数均值为0.332 0,遗传分化系数均值为0.265 0,基因流均值为1.387 1,表明13个土沉香居群具有较高的遗传多样性和极高的遗传分化水平。海南屯昌与海南澄迈居群间的遗传距离最小、遗传一致度最大,海南乐东与广西浦北居群间的遗传距离最大、遗传一致度最小。以遗传距离0.90为阈值,可将13个土沉香居群划分为3大类;遗传距离与地理距离的解释率为3.1%,表现为不相关。  相似文献   

11.
[目的]探讨基于微卫星标记分析刺槐叶瘿蚊遗传多样性指数与样本量的相关关系。[方法]设置了12个样本量梯度,选取11对微卫星引物分析了我国刺槐叶瘿蚊5个种群的遗传多样性指数。[结果]表明,样本量的大小与平均等位基因数(Na)呈显著正相关,与有效等位基因数(Ne)呈中度正相关,与观测杂合度(Ho)呈负相关,而与期望杂合度(He)、Nei’s遗传多样性指数(H)和多态信息含量(PIC)没有明显相关性。此外,当样本量小于25时,随着样本量的增加,有效等位基因数增幅明显,观测杂合度起伏变化较大,但当样本量大于30时,随着样本量的增加,上述两个指数增(降)幅度平缓。[结论]在利用微卫星DNA标记对我国刺槐叶瘿蚊种群的遗传多样性研究中,选取的最适样本量应为25~30,分析的最适遗传多样性指数应为期望杂合度、Nei’s遗传多样性指数和多态信息含量。该研究结果将为我们后续研究提供科学数据,并有助于分析其他入侵昆虫种群遗传结构的研究,同时可为其他双翅目昆虫的遗传多样性研究提供样本量参考。  相似文献   

12.
[目的]研究毛红椿天然群体遗传多样性取样策略,为其种质资源收集、保存和遗传多样性保护等提供参考依据。[方法]利用8对微卫星分子标记进行毛红椿天然群体遗传多样性和空间自相关分析,综合制定其天然群体合理取样策略。[结果]毛红椿天然群体等位基因数平均为7.5个,期望杂合度(H_e)和多态性信息指数(PIC)均值分别为0.643 7和0.636 0,基因分化系数(G_(ST))均值为0.290 7。在遗传多样性取样策略方面,提出了根据毛红椿群体基因分化系数来确定取样群体遗传变异所占总变异比例的运算公式为1-(G_(ST))~(n-1),其中,n为取样群体的数量。当取样群体达到4个时,基本上能包括该树种97.5%的遗传变异;同时确定了目标群体的选择方法,应选择与其它群体间基因分化系数均值较大的4个群体,即贵州册亨(CH)、浙江遂昌(SC)、浙江仙居(XJ)和云南师宗(SZ)。通过构建云南宾川(BC)、云南师宗(SZ)和江西宜丰(YF)群体内取样单株数量与基因多样性和等位基因之间的捕获曲线,确定了群体内取样单株数量应达到15个以上;毛红椿天然群体内300~520 m范围内的单株间存在相似关系,超出此范围个体间差别较大,说明在进行群体内单株取样时,单株间距应大于520 m。[结论]取样群体数量、群体间遗传分化系数、群体内单株数量以及单株间距离等影响了毛红椿取样群体的遗传多样性。毛红椿天然群体遗传多样性取样策略为取样群体4个、每个群体最少取样15个单株,单株间距大于520 m。  相似文献   

13.
无患子天然居群遗传多样性研究   总被引:3,自引:0,他引:3       下载免费PDF全文
[目的]通过我国无患子主要分布区的居群样本,研究无患子天然居群的遗传多样性和遗传结构.[方法]采用ISSR分子标记技术,利用12条ISSR引物分析18个天然居群的265株个体样本.[结果]表明无患子遗传多样性水平较高,物种和居群水平上的多态位点百分率 (PPB)分别为95.37%和57.82%,Shannon's信息指数(I)分别为0.256 9和0.199 8,Nei's遗传多样性指数(H)分别为0.390 9和0.298 0.AMOVA分析表明,18个居群间出现一定程度的遗传分化,且遗传变异主要发生在居群内.UPGMA聚类和Mantel检验结果表明,18个天然居群可分为2大组群,且居群间的地理距离与遗传距离之间不存在显著相关性(r=0.066 7,P=0.541 7>0.05).[结论]无患子以自交为主,其天然居群遗传多样性丰富,居群内的遗传多样性高于居群间.研究结果可为无患子育种策略的科学制定和种质资源的有效保护及利用提供理论依据.  相似文献   

14.
大别山不同龄级映山红种群遗传多样性的SSR分析   总被引:1,自引:0,他引:1       下载免费PDF全文
[目的]利用SSR标记比较大别山黄狮寨不同年龄级映山红(Rhododendron simsii Planch.)种群的遗传多样性及遗传结构,探究映山红不同世代间遗传多样性的变化规律,为大别山野生映山红资源的合理利用和高效保护提供科学依据。[方法]按照基径大小和丛枝多少将大别山黄狮寨典型映山红种群划分为老树、成树、小树、幼苗4个年龄级,筛选出12对多态性强的SSR引物用于PCR扩增,扩增产物经6%变性聚丙烯酰胺凝胶电泳检测并银染。构建"0/1"矩阵,利用POPGENE 32. 0软件分析种群遗传多样性。基于Nei's遗传距离,采用软件MEGA5. 0进行UPGMA聚类。[结果]不同龄级的映山红遗传多样性差别较大,幼苗和老树种群多样性最差,小树种群多样性最丰富。12个微卫星标记观测等位基因数为3~9个,平均5. 08;有效等位基因数为2. 254 9 6. 129 7,平均3. 460 5;观察杂合度HO和期望杂合度HE分别为0. 676 4~0. 881 2和0. 607 7~0. 690 7。Shannon信息指数(I)以小树群体最高,成树次之,幼苗最低。近交系数Fis为-0. 638 3~0. 174 4,平均为-0. 294 6;总近交系数Fit为-0. 615 1~0. 270 6,平均为-0. 162 1,表明各龄级种群内主要繁殖方式为杂交。分子方差分析(AMOVA)表明89. 76%的遗传变异存在于年龄级内,仅10. 24%存在于年龄级间。基因流水平高,仅1个位点Nm 1。遗传一致度最高的为小树和成树种群。[结论]大别山黄狮寨映山红种群遗传多样性丰富,种群间中度分化,遗传变异主要存在于年龄级内。  相似文献   

15.
[目的]研究红豆树优树自由授粉子代遗传多样性及其对生长的影响,比较天然居群子代和孤立木子代遗传多样性差异,揭示子代遗传多样性的变化规律及天然居群在子代遗传多样性维持中的作用,为红豆树遗传保育和优异种质挖掘提供科学依据。[方法]以来自浙、闽、赣、川等26个红豆树优树自由授粉家系为研究对象,利用11对SSR引物对765个子代群体进行遗传多样性评价,同时分析子代遗传多样性参数与种子、生长性状的相关性。[结果](1)红豆树优树子代群体具有较高的遗传多样性,有效等位基因数为7.766个,观测杂合度(H_O)和期望杂合度(H_E)分别为0.469和0.865。(2)除SSR8外,其余位点的观测杂合度均小于期望杂合度,表明子代群体绝大多数位点处于杂合子缺失状态。(3)红豆树不同家系的遗传多样性存在明显差异,12号家系的遗传多样性水平最高,8号家系则最低。(4)比较发现,天然居群子代的遗传多样性显著或极显著地高于孤立木子代。(5)F统计量和分子方差分析(AMOVA)均表明,红豆树优树子代群体的遗传变异主要存在于家系内,家系间的遗传分化相对较小。(6)相关性分析发现,子代遗传多样性参数与种子性状、子代年高生长量呈显著正相关(r=0.378~0.527)。[结论]较大的红豆树天然居群在维持其子代较高遗传多样性中发挥了重要作用,子代遗传多样性显著影响苗木生长,这为红豆树遗传保育和优良家系选择提供了理论依据。  相似文献   

16.
[目的]对香椿无性系的苗期生长进行分析,筛选优良香椿无性系,奠定遗传改良的基础。[方法]以49个香椿无性系为对象,分别于2015、2016、2017年测量其1、2、3 a生株高、胸径,计算材积,对表型性状及其增长量进行方差分析和遗传参数估算,采用独立淘汰法筛选排名前20%的无性系为优良,对中选无性系进行遗传增益等参数估算,并将试验地不同年份特征气象因子与无性系表型性状进行相关分析。[结果]株高、胸径及材积的生长连续3 a在无性系间存在显著差异,且生长性状的遗传变异系数、表型变异系数逐年减小,而变异幅度、重复力逐年增大;3 a生时,株高、胸径及材积的无性系重复力分别为0.55、0.50、0.67,重复力高。2015—2017年,49个香椿无性系之间胸径、材积增长量分别呈显著、极显著差异,3 a生材积与材积、胸径增长量呈高度正相关关系。以3 a生香椿无性系材积及其增长量为2组指标,独立筛选出优良无性系10个,中选无性系群体平均材积大于0.010 4 m~3·株~(-1),增长量大于0.009 7 m~3·株~(-1)。3 a生材积的遗传增益为17.38%,中选香椿无性系的稳定性系数b值均大于1,对年份环境敏感。气象因子-表型性状相关性分析显示,材积与年总降水量、日均降水量有显著正相关关系。[结论]参试香椿无性系间材积差异极显著,选择潜力大;中选的优良香椿无性系遗传增益超过15%,但其在不同年份差异大且稳定性差,这可能与年份降水量有关。  相似文献   

17.
[目的]通过对引种的云杉种和种源试验林的适应性和生长变异研究,选育出最适合当地栽培的优良种和种源。[方法]以甘肃省小陇山沙坝试验基地引种的欧洲云杉、黑云杉、白云杉、蓝云杉、红皮云杉和青海云杉6个树种20个种源为研究对象,分别对6、7、9 a幼林龄的生长性状(树高、地径、新梢和冠幅)进行方差分析和相关性分析,以早期评价云杉种和种源。[结果]6、7、9 a生长期内不同云杉种间和种源间的差异多数达到极显著,表明不同种间和种源间存在较大的遗传变异。利用树高兼地径为主要指标筛选出7个优良种源,分别为欧洲云杉加拿大AB01、AB03种源、白云杉加拿大GL01种源;黑云杉加拿大MA05、MA07、MA08和MA10种源,树高、地径现实增益均超过11%。欧洲云杉、白云杉种源树高与经纬度呈极显著的正相关,与海拔呈极显著的负相关;黑云杉种源树高也与经纬度呈极显著的正相关,但与海拔相关不显著。[结论]在原产地纬度49°16'~58°38'N,经度68°13'~118°24'W区域范围内引进欧洲云杉、白云杉、黑云杉种源,是适宜在甘肃小陇山栽培的云杉树种。  相似文献   

18.
凉山州核桃坚果表型多样性研究   总被引:1,自引:1,他引:0       下载免费PDF全文
[目的]以四川省凉山州核桃和泡核桃农家类型的坚果为样本,研究其表型丰富度和变异特点,为其资源挖掘和合理利用提供理论依据。[方法]以15个核桃和泡核桃居群的330棵实生单株为研究材料,利用18个坚果表型相关性状进行多样性和聚类分析。[结果]表明:(1)凉山州核桃和泡核桃实生居群坚果表型性状变异系数为8.46%59.47%,平均为35.26%,单果质量极大(20.0 g)和极小(5.0 g)的资源均占一定比例;该地区坚果资源在《植物新品种特异性、一致性和稳定性测试指南-核桃属》中所描述坚果表型性状的基础上,新增了3个垂直于缝合线纵切面形状和1个核仁皮色特征;居群遗传性状Simpson指数为0.201 0.855,Shannon-Wiener指数为0.649 2.873,说明凉山州核桃和泡核桃坚果表型多样性比较丰富。(2)18个坚果表型性状的居群内变异均大于居群间,居群间的表型分化系数为6.03%,说明居群内变异是凉山州坚果表型多样性的主要来源。(3)UPGMA聚类分析结果表明,凉山州坚果表型性状Manhattan距离表现出与地理距离或气候条件显著正相关的趋势。[结论]凉山州核桃和泡核桃资源坚果表型丰富度高,是重要的核桃资源多样性分布地区。  相似文献   

19.
The genetic diversity of the mangrove tree speciesKandelia candel andBruguiera gymnorrhiza in the Southwest Islands of Japan was investigated. These islands are located at the periphery of the distribution area of the two species, and their populations are relatively small. Allozyme analyses of 17 loci inK. candel and 13 loci inB. gynmorrhiza revealed very little genetic variation in both species. At the species level, the proportion of polymorphic loci was 4.2%, the average effective number of alleles per locus was 1.02, and the average expected heterozygosity was 0.012 inK. candel. The corresponding figures forB. gymnorrhiza were 9.0%, 1.06 and 0.035, respectively. However, the coefficients of genetic differentiation among the populations were high (G ST=0.165 forK. candel and 0.253 forB. gymnorrhiza). The genetic variation and habitat area ofK. candel on Amami Island is greater than on the islands Okinawa and Iriomote. The genetic variation and habitat area ofB. gymnorrhiza is greater on Iriomote Island than on the islands Okinawa and Amami. The level of genetic variation in both of the species might be related to their population sizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号