首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 257 毫秒
1.
免疫佐剂研究进展   总被引:4,自引:0,他引:4  
佐剂的主要作用是提高抗原(免疫原)的免疫原性和免疫反应的可持续性,它能引导机体的免疫系统对抗原产生体液免疫或细胞免疫反应.对佐剂的选择取决于免疫的目的,从用途上分,佐剂可分为试验用佐剂和疫苗用佐剂.前者主要用于特异性抗体的制备,而后者则作为疫苗的必要成分.文章主要介绍目前常用的几种佐剂包括铝盐佐剂、弗氏佐剂、免疫刺激复合物(ISCOM)、脂质体和CpG及其在科研和疫苗中的应用.  相似文献   

2.
These studies were done to develop a subunit vaccine for swine that would protect against disease, but not create unacceptable tissue reactions at the immunization site. Swine were used to evaluate the local effects of subunit vaccines prepared from extracts of Actinobacillus pleuropneumoniae serotype 1 containing one of a wide variety of adjuvants. The antigen was an anionic fraction of a saline extract of A. pleuropneumoniae (ANEX). The adjuvants used were vegetable oils (peanut, sesame, canola, or corn oils, vitamin E, or Lipposyn II emulsion); mineral oil (Marcol-52) and other materials (aluminum hydroxide, polyethylene glycol, Quil-A, Amphigen, or Emulsigen-Plus). Two types of experiments were done. In the 1st set of experiments, pigs were given multiple simultaneous injections in different sites and euthanized on days 1, 3, 7, 14, 21, or 28. Tissues were examined for gross and histopathological lesions. In the 2nd set of experiments, 48 pigs were allocated to 6 groups and vaccinated twice with a vaccine containing ANEX antigen combined with one of various adjuvants. Antibody responses and protection from challenge were evaluated. Among the adjuvants that were tested, mineral oils induced protective immunity, although the mineral oil Marcol-52 resulted in severe tissue reactions. The vegetable oils induced little protective immunity, and some of them were quite irritating. The response to the other materials ranged from little irritation or protection induced by the vaccine containing aluminum hydroxide to effective protection without irritation after vaccination with ANEX/Amphigen or ANEX/Emulsigen-Plus combinations. In conclusion, swine were protected against disease by a subunit vaccine that did not create unacceptable tissue reaction at the immunization site.  相似文献   

3.
日本血吸虫病核酸疫苗的研究   总被引:5,自引:0,他引:5  
核酸疫苗能同时诱发体液免疫和细胞免疫 ,具有众多传统疫苗无法比拟的优点 ,并且佐剂的应用能增强核酸疫苗的免疫效果。抗日本血吸虫核酸疫苗的研究在实验动物和牛、羊等大家畜上取得一定进展 ,混和或多价疫苗是未来核酸疫苗的发展方向  相似文献   

4.
佐剂是疫苗的重要组成部分,不同佐剂对体液免疫会产生不同的作用.选择合适的佐剂不仅可以增强疫苗的免疫效果,而且可以提高机体的抵抗力.本试验选用白油佐剂、弗氏佐剂和蜂胶佐剂分别与灭活的新城疫病毒制成疫苗,免疫雏鸡,探讨不同佐剂对鸡体液免疫的影响.结果表明,试验组鸡抗体水平高,饲养至61日龄均未发生新城疫,其中弗氏佐剂的效果最好,蜂胶佐剂的效果次之,油佐剂的效果最次.  相似文献   

5.
用三个血清型的菌株,分别是JYL-1、JYL-2、JYL-7,用两种佐剂,分别是蜂胶和油乳剂共制备了两种多价菌苗,即JYL-1、JYL-2、JYL-7(1、2、7三个血清型)三个RA血清型混合多价蜂胶苗和油乳剂苗。试验结果表明。蜂胶复合佐剂多价苗具有产生免疫保护速度快,免疫持续时间长的优点,接种后第3天即产生部分免疫保护力,第120天时仍具有完全保护力;油乳剂多价苗产生保护力的速度较慢,接种后第10天时开始表现出部分免疫保护,其完全保护力也可持续到接种后第120天。免疫后13d时,免疫保护率可达90%左右。免疫后16d时保护率为100%。免疫后120d时,两种多价菌苗的免疫保护率均可达到100%,免疫后150~180d时,免疫保护率可达800左右。统计学分析证明,菌苗的安全性良好。用3个免疫剂量的菌苗所做的安全试验表明无明显不良反应,菌苗在4℃保存一年,18~22℃室温保存4个月不影响菌苗的免疫效力。田间试验表明,用菌苗免疫鸭群后,可有效地使鸭群抵抗鸭疫里默氏杆菌的感染。  相似文献   

6.
Septicemic strains of Escherichia coli cause systemic infection in chickens after the intra-airsac inoculation. We have investigated whether levels of immunity can be determined by the viable organism count in the internal organs of infected birds. The intra-airsac inoculation of O1:K1 strain caused acute systemic infection in 6 hr. The viable count was highest in the lung followed by the liver, spleen, and blood. The count was significantly (P < 0.05) lower in the liver or spleen of vaccinated birds at 6, 12, or 24 hr after inoculation than in controls. Vaccines containing various adjuvants were tested in this system, and three oil-based adjuvants demonstrated significant (P < 0.05) immunity, whereas an alum-precipitated vaccine or one without an adjuvant failed to do so compared with nonvaccinated controls. An oil-adjuvanted vaccine showed some deterioration in its immunogenicity after prolonged storage or heating at 100 C. The acute phase response induced by intravenous injection of killed O1: K1 cells or lipopolysaccharide purified from Salmonella typhimurium in aqueous suspension induced significant immunity against the E. coli infection. These results indicate that the method referred to as "in vivo viable count method" produces quantitative results in a reproducible manner and suggest that it may be used as an alternative method to mortality measurement.  相似文献   

7.
同戈  孙瑶 《中国畜牧兽医》2010,37(9):183-187
在细菌和DNA病毒的基因组中广泛存在着以非甲基化的胞嘧啶—鸟嘌呤核苷酸为核心的CpG基序。作为一种病原相关的分子模式(pathogen-associated molecular pattern, PAMP),含有CpG基序的寡聚脱氧核苷酸(CpG oligodeoxynucleotides,CpG ODN)能激活包括B淋巴细胞和类浆细胞在内的多种免疫细胞,并诱导产生以Th1型细胞免疫反应为主的免疫应答。CpG ODN在哺乳动物细胞中的受体是Toll样受体(Toll-like receptors, TLRs)家族中的Toll样受体 9(TLR9)。TLR9所介导的免疫激活作用在某些传染病的预防、新型疫苗佐剂的开发及过敏性疾病和癌症的治疗中有着巨大的应用前景。  相似文献   

8.
Enteric viruses are a major cause of diarrhea in animals and humans. Among them, rotaviruses are one of the most important causes of diarrhea in young animals and human infants. A lack of understanding of mechanisms to induce intestinal immunity and the correlates of protective immunity in neonates has impaired development of safe and effective vaccines against enteric viruses. Studies of candidate vaccines using an adult mouse model of subclinical enteric viral infections often do not predict vaccine efficacy against disease evaluated in neonatal large animals. A series of studies have been conducted using a neonatal gnotobiotic pig model of rotavirus infection and diarrhea to identify correlates of protective immunity and to evaluate traditional and novel vaccine approaches for the induction of mucosal immune responses and protection to enteric viruses. Gnotobiotic pigs recovered from infection with virulent Wa human rotavirus (HRV) (mimic natural infection) had high numbers of intestinal IgA rotavirus-specific primary antibody-secreting cells (ASCs) and memory B-cells (to recall antigen) measured by ELISPOT assay, which correlated with complete protection against rotavirus challenge. Most short-term IgA memory B-cells were resident in the ileum, the major site of rotavirus replication. Spleen, not the bone marrow, was the major resident site for longer-term IgG memory B-cells. Candidate rotavirus vaccines evaluated in pigs for their ability to induce intestinal or systemic ASC and protection against rotavirus infection and diarrhea included attenuated live virus, inactivated virus, and baculovirus-expressed double-layered rotavirus-like particles (2/6-VLPs). In combination with those candidate vaccines, various adjuvants, delivery systems, and immunization routes were tested, including incomplete Freund's adjuvant for i.m. immunization, and a mutant Escherichia coli heat labile enterotoxin R192G (mLT) for i.n. immunization. It was shown that orally administered replicating vaccines were most effective for priming for intestinal IgA ASC and memory B-cell responses, but i.n. administered non-replicating 2/6-VLPs plus mLT were effective as booster vaccines. We conclude that protective immunity depends on the magnitude, location, viral protein-specificity, and isotype of the antibody responses induced by vaccination. Therefore highly effective enteric viral vaccines should: (i) induce sufficient levels of intestinal IgA antibodies; (ii) include viral antigens that induce neutralizing antibodies; and (iii) require the use of effective mucosal adjuvants or antigen delivery systems for non-replicating oral or i.n. vaccines.  相似文献   

9.
The effect of a novel bovine mastitis trivalent vaccine, containing Staphylococcus aureus capsular polysaccharide type 5 (T5), 8 (T8), and 336 (T336), on lymphocyte subpopulations, antibody production, and neutrophil phagocytosis was evaluated. Twenty pregnant heifers were immunized with either the trivalent alone, trivalent emulsified in Freund's incomplete adjuvant (FICA), trivalent in aluminum hydroxide, or adjuvant only (FICA). Immunization was done 30 d before the expected calving date followed by 2 boosts in a 2-week interval. Compared to FICA, serum antigen-specific immunoglobulin (Ig)G1 and IgG2 were significantly increased in all the vaccinated groups before parturition and sustained until 3 wk postpartum. In comparison with the trivalent alone, formulation with either adjuvant enhanced production of IgG2, but not IgG1. Immune sera, which contained the highest amount of antibodies, slightly increased neutrophil phagocytosis to the 3 serotypes of killed S. aureus, but most of the differences were not significant due to large variation between the cows. The percentage of CD4+ lymphocyte was significantly higher in vaccinated groups than that of FICA 4 wk after the primary immunization. In comparison with FICA, cows inoculated with trivalent vaccine and adjuvants had an increased percentage of CD8+ lymphocytes at 2 time points, 2 wk before and after calving. Our results indicated that the whole cell trivalent vaccine, with or without adjuvants, is able to elicit antibody responses specific to the 3 capsular polysaccharide antigens. The increase of T8-specific IgG2 was more noticeable when the vaccine was emulsified with adjuvants.  相似文献   

10.
疫苗佐剂是使疫苗免疫原性充分发挥的工具,目前动物疫苗佐剂主要以铝盐佐剂和油乳佐剂为主。近年来基因重组疫苗和亚单位疫苗发展迅猛,而这些新型疫苗与传统疫苗相比免疫原性较弱,这就对佐剂提出了更高的要求。当前针对佐剂的研究层出不穷,部分佐剂如MF59、AS01、AS03等已经在人用疫苗中成功应用,但应用于动物疫苗还有技术难题需要攻破。蜂胶佐剂目前在动物疫苗中应用较广,且已经占有了一定的市场份额。为充分比较现有新型疫苗佐剂的优缺点,为后续疫苗佐剂的研究提供参考,就目前广泛研究的新型动物疫苗佐剂进行综述。  相似文献   

11.
This study investigated the effect of swine interleukin 2 (IL-2) and swine interleukin 4 (IL-4) on the development of immune responses induced by a PRRSV-ORF7 DNA vaccine (phCMV-ORF7). The two cytokines were cloned separately in the eukaryotic expression vector phCMV, and delivered via gene gun as adjuvants for the DNA vaccine. Groups of 3-week-old certified PRRSV-free, castrated male, Yorkshire crossbred pigs, were vaccinated with or without the IL-2 or IL-4. The ensuing humoral and cellular immune responses were analyzed by a PRRSV-specific ELISA, and by an in vitro blastogenic response of peripheral blood mononuclear cells (PBMC) stimulated by viral antigen, respectively. The animals were boosted 21 days post-vaccination and challenged 28 days afterward. The virus loads post-challenge were measured by real time PCR. The group of swine receiving the vaccine plus IL-2 had significant virus-specific blastogenic responses 3 weeks after the vaccine-cytokine boost, when compared to those of the experimental pigs that received the vaccine plus IL-4, vaccine alone, unvaccinated controls or the pigs vaccinated with the DNA vaccine cloned in the reverse orientation (phCMV-ORF7(Rev)). None of the experimental swine had detectable specific antibodies against the virus during the vaccination phase. The virus load peak in vaccinated animals was delayed by about 72h as compared to that of the control pigs (unvaccinated and vaccinated with the phCMV-ORF7(Rev) construct). Interestingly, animals that received the phCMV-ORF7 vaccine alone consistently had low virus loads throughout the study. These results demonstrate that IL-2 has a positive inductive effect on the activation of vaccine-induced virus-specific cellular immunity, while IL-4 appeared to have a suppressive effect. Our data also suggest that ORF7 may play a role in reducing the virus load in PRRSV infected animals.  相似文献   

12.
疫苗免疫是预防和控制传染病的主要措施,但对于猪繁殖与呼吸综合征,疫苗免疫存在免疫效率低与安全性差的问题,效果并不理想。因此,如何在安全剂量下提高动物机体的免疫力,成为疫苗研究的热点之一。试验证明细胞因子、化学试剂和微生物产物等几种免疫佐剂可以增强猪繁殖与呼吸综合征疫苗的免疫效果。在研究的9个疫苗佐剂中,IL-2、IL-12、IFN-α、poly IC和poly ICLC、CpG ODN等能增强猪繁殖与呼吸综合征疫苗的细胞免疫效应;CpG ODN和霍乱毒素能显著提高猪繁殖与呼吸综合征疫苗的抗体产生水平;IL-2和CpG ODN在临床实验中能增强疫苗对实验动物的保护,是最具潜力的免疫佐剂。  相似文献   

13.
Vaccine approaches against AIDS have focused on inducing cellular immune responses, since many studies revealed the role of T cell responses in the control of human immunodeficiency virus or simian immunodeficiency virus (SIV) infections. The experimental infection of rhesus macaques with SIV or chimeric SHIV is routinely used as a model for AIDS. In such models, DNA immunization is a tool to elicit specific T cell responses and to study their protective efficacy. DNA immunogenicity in primates depends on parameters such as level of antigen expression, choice of the antigen among SIV proteins, use of fusion proteins, route of immunization, and addition of adjuvants. Recent results suggest that priming with DNA and boosting with attenuated recombinant viral vectors, each expressing corresponding SIV antigens, leads to improved specific immunity and, in some cases, affords protection against pathogenic challenge. After preclinical evaluations, DNA has entered clinical trials for a therapeutic or prophylactic gene-based AIDS vaccine.  相似文献   

14.
An inactivated vaccine containing BVDV I and II strains (PT810; BVDV I, and 890; BVDV II) and using different adjuvants and antigen dosages was tested in a cattle challenge model. Groups of six healthy, seronegative cattle were vaccinated twice with a low dose (10(6.6) TCID(50) PT810 and 10(7.2) TCID(50) 890) vaccine with the adjuvant Bay R1005 or a high dose (10(7.8) TCID(50) PT810 and 10(8. 2) TCID(50) 890) vaccine with two different adjuvants (Bay R1005 or Polygen). Thirty-eight days after the second vaccination, immunised animals (n=18) and non-vaccinated control animals (n=3) were challenged intranasally with 10(6) TCID(50) BVDV strain PT810. For a period of 16 days, virus was isolated from blood leukocytes and nasal swabs, and neutralising antibody titres were determined.The induction of antibodies following immunisation was strongly dependent on the antigen dosage in the vaccine. The high dose formulation induced high serum neutralising antibody titres against both genotypes of up to 32000 after the second immunisation. Animals with neutralising antibody titres >512 (n=14) did not show any marked leukopenia after challenge and only very little or no virus could be isolated from blood leukocytes and/or nasal swabs when compared to control cattle. Furthermore, some of these animals did not show any boost of neutralising or even NS3-specific antibodies, which renders viral replication unlikely and thus would prevent infection of the fetus. Both adjuvants (Bay R1005 or Polygen) were similarly efficient and induced nearly identical antibody responses. In contrast, four of the six low dosage vaccinates had a marked leukopenia and viraemia as well as detectable nasal virus shedding for several days.We conclude that the selected strains and the system of vaccine preparation with high BVDV antigen dosages and highly efficient new adjuvants provide an effective means of protection against BVDV I infections. Investigations to demonstrate the protection against BVDV II infections, the duration of immunity and the ability of fetal protection by using the high dose vaccine in a fetal challenge model will follow.  相似文献   

15.
Yang P  Tang C  Luo D  Zhan Z  Xing L  Duan Y  Jia W  Peng D  Liu X  Wang X 《Veterinary microbiology》2010,146(1-2):17-23
The avian H5N1 influenza virus has the potential to cause a new pandemic. The increasing number of recent outbreaks of highly pathogenic avian influenza H5N1 in birds and humans emphasizes the urgent need to develop a potent H5N1 vaccine. Here, we studied the immunogenicity and protective effect of a vaccine prepared from H5N1 inactivated whole virus. This vaccine was intranasally co-administered in mice with phosphate buffered saline, recombinant cholera toxin B subunit (rCTB), cholera toxin (CT), rCTB containing a trace amount of holotoxin (rCTB/CT), polyinosinic:polycytidylic acid double-stranded RNA (polyI:C), or MF59 as an adjuvant. Intranasal administration of H5N1 inactivated whole virus vaccine with rCTB, CT, rCTB/CT, polyI:C, and MF59 elicited an immunological response with both secretory IgA (sIgA) in nasal, lung, and vaginal lavage, and IgG antibody in serum, showing protective immunity against lethal H5N1 infection. Cross-clade protection was also observed in animals immunized with a vaccine derived from Anhui/01/2005(H5N1) with rCTB, CT, rCTB/CT, polyI:C, or MF59 as adjuvants that were subsequently challenged with the A/OT/SZ/097/03 influenza strain.  相似文献   

16.
犬瘟热的诊断及其预防免疫的研究进展   总被引:36,自引:7,他引:29  
本文对犬瘟热(CD)的诊断、预防免疫和免疫失败的影响因素及犬瘟热病毒(CDV)的宿主范围进行了综述。CDV不仅感染陆生食肉动物,而且也感染水生食肉动物,并且其宿主范围还在不断扩大。CDV感染主要采用病毒分离、特异性病毒抗原或特异性核酸检测等方法确诊。疫苗包括灭活的CDV疫苗、麻疹病毒(MV)异源苗及CDV弱毒活苗。疫苗接种犬的免疫反应主要取决于毒株特性及犬的应答能力,只有弱毒活苗能诱导产生持久而坚强的保护力。尽管多年来CDV弱毒活苗的使用控制了CD的发生,但最近免疫过的犬发生CD的病例并不少见。分析免疫失败的原因,主要是母源抗体干扰、疫苗质量差、其它病毒的免疫抑制以及CDV流行株可能发生了变异等因素的影响。  相似文献   

17.
The immune system evolved to free the host from invading noxious pathogens. Vaccines are inoculated as a prophylactic measure in order to program the immune system for accelerated recognition and elimination of specific pathogens. During vaccination the immune system is exposed to attenuated or inactivated microorganisms, or their fragments. The immune response to these structures, in contrast to virulent pathogens, is often inadequate for the generation of memory cells or immune effector elements such as antibodies, perforines, granzymes or cytokines. Vaccine adjuvants help to overcome these limited responses. They provide instructive signals for the host immune system by mimicking the conditions associated with virulent infection. Hence, they either enhance and prolong expression of antigen components to reactive T cells in lymph nodes (signal 1) or they increase expression of membrane-bound or soluble costimulatory molecules (signal 2). The enhancement of both signals by vaccine adjuvants is not mutually exclusive. Moreover, adjuvants may encode a third signal instructing the type of immune reaction to be generated. Supported by animations this presentation addresses putative immunological concepts of vaccine adjuvant activity, a phenomenon long been known as "the immunologist's dirty little secret". Insight in the mechanisms that underlie adjuvant-induced immunostimulation and generation of memory cells will facilitate rational vaccine design.  相似文献   

18.
Influenza A viruses of the H3N8 subtype are a major cause of respiratory disease in horses. Subclinical infection with virus shedding can occur in vaccinated horses, particularly where there is a mismatch between the vaccine strains and the virus strains circulating in the field. Such infections contribute to the spread of the disease. Rapid diagnostic techniques are available for detection of virus antigen and can be used as an aid in control programmes. Improvements have been made to methods of standardising inactivated virus vaccines, and a direct relationship between vaccine potency measured by single radial diffusion and vaccine-induced antibody measured by single radial haemolysis has been demonstrated. Improved adjuvants and antigenic presentation systems extend the duration of immunity induced by inactivated virus vaccines, but high levels of antibody are required for protection against field infection. In addition to circulating antibody, infection with influenza virus stimulates mucosal and cellular immunity; unlike immunity to inactivated virus vaccines, infection-induced immunity is not dependent on the presence of circulating antibody to HA. Live attenuated or vectored equine influenza vaccines, which may better mimic the immunity generated by influenza infection than inactivated virus vaccines, are now available. Mathematical modelling based upon experimental and field data has been applied to examine issues relating to vaccine efficacy at the population level. A vaccine strain selection system has been implemented and a more global approach to the surveillance of equine influenza is being developed.  相似文献   

19.
The protective immunity induced by 3 experimental FeLV vaccines were evaluated: Prototype inactivated FeLV vaccine developed from a molecularly cloned FeLV isolate (FeLV-FAIDS-61E-A); a mixture of immunodominant synthetic peptides corresponding to regions of the FeLV-Gardner-Arnstein-B (FeLV-GA-B) envelope proteins; and an adjuvant-disrupted but non-activated virus prepared from a non-cloned FeLV field isolate comprised of subgroup A and B viruses (FeLV-05821-AB). Included as controls were parallel groups of cats inoculated with adjuvants alone or with an established commercial FeLV vaccine. After each inoculation and after virulent virus challenge exposure, sera from all cats were assayed for ELISA-reactive antibody against purified FeLV, FeLV neutralizing (VN) antibody, and FeLV antigenemia/viremia--viral p27 antigen in serum and within circulating leukocytes. Immunity was challenged by oral/nasal exposure of vaccinated and control cats with FeLV-FAIDS-61E-A or FeLV-05821-AB, an infective, noncloned, tissue-origin, FeLV field isolate containing subgroup-A and -B viruses. Vaccine-induced immunity was assessed by comparing the postchallenge-exposure incidence of persistent viremia and the pre- and postchallenge exposure titers of VN and ELISA antibody in cats of the control and vaccine groups. The percentage of cats, that resisted development of persistent viremia after FeLV challenge exposure and the preventable fraction (PF) for the vaccine groups (which adjusts for the severity of the challenge and the degree of innate resistance in the controls) were as follows: adjuvant controls, 26%; FeLV-FAIDS-61E-A inactivated virus vaccine, 95% (PF = 93.2%); FeLV-GA-B peptide vaccine, 5% (-28.4%); FeLV-05821-AB noninactivated vaccine, 67% (55.4%); and commercial FeLV vaccine, 35% (12.2%). The prechallenge exposure mean VN antibody titer for each group was: less than 1:8 in the adjuvant controls; 1:43 in the FeLV-FAIDS-61E-A-vaccinated cats; less than 1:8 in the peptide-vaccinated cats; 1:38 in the noninactivated virus-vaccinated cats group; and 1:12 in the cats vaccinated with the commercial vaccine. Thus, induction of VN antibody in the vaccinated cats, although modest, appeared to be correlated with induction of protective immunity as defined by resistance to FeLV challenge exposure. Results of these studies indicate that inoculation of cats with an experimental inactivated virus vaccine prepared from a molecularly cloned FeLV isolate was most effective in stimulating protective immunity against heterologous and homologous FeLV challenge exposure.  相似文献   

20.
Ten inactivated vaccines containing one of four adjuvants and varying concentrations of pseudorabies virus (PRV) antigens were compared in order to select a vaccine suitable for commercial production. A genetically engineered strain of PRV lacking the gene coding for glycoprotein X (gpX) was used in these vaccines. Vaccinated pigs were challenged intranasally with virulent PRV to determine the efficacy of vaccines. Vaccination of pigs with one dose of experimental vaccines adjuvanted with 50% Montanide ISA 50 or 20% Syntrogen induced a protective immunity at least equal to that induced by two commercially available killed PRV vaccines also evaluated. An experimental vaccine containing 20% Syntrogen was selected and further evaluated according to United States Department of Agriculture licensing requirements. None of the pigs vaccinated with this vaccine produced gpX antibodies detectable by the HerdChek: Anti-PRV-gpX assay. Therefore, this assay could differentiate PRV vaccine induced antibodies from antibodies induced by natural exposure when used in conjunction with this killed gpX deleted PRV vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号