首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fusarium wilt (FW; caused by Fusarium oxysporum f. sp. ciceris) and Ascochyta blight (AB; caused by Ascochyta rabiei) are two major biotic stresses that cause significant yield losses in chickpea (Cicer arietinum L.). In order to identify the genomic regions responsible for resistance to FW and AB, 188 recombinant inbred lines derived from a cross JG 62 × ICCV 05530 were phenotyped for reaction to FW and AB under both controlled environment and field conditions. Significant variation in response to FW and AB was detected at all the locations. A genetic map comprising of 111 markers including 84 simple sequence repeats and 27 single nucleotide polymorphism (SNP) loci spanning 261.60 cM was constructed. Five quantitative trait loci (QTLs) were detected for resistance to FW with phenotypic variance explained from 6.63 to 31.55%. Of the five QTLs, three QTLs including a major QTL on CaLG02 and a minor QTL each on CaLG04 and CaLG06 were identified for resistance to race 1 of FW. For race 3, a major QTL each on CaLG02 and CaLG04 were identified. In the case of AB, one QTL for seedling resistance (SR) against ‘Hisar race’ and a minor QTL each for SR and adult plant resistance against isolate 8 of race 6 (3968) were identified. The QTLs and linked markers identified in this study can be utilized for enhancing the FW and AB resistance in elite cultivars using marker-assisted backcrossing.  相似文献   

2.
Genetic mapping for resistance to gray leaf spot in maize   总被引:1,自引:0,他引:1  
The molecular marker technology has been used on mapping of quantitative trait loci (QTLs) associated with plant resistance. The objectives of this research were to estimate genetic parameters and to map genomic regions involved in the resistance to gray leaf spot in maize. Ninety F3 families from the BS03 (susceptible) and BS04 (resistant) cross were used. Field trials were performed using a 10 × 10 square lattice design with three replications. Data from 62 SSR markers were used for linkage analysis. The locations of the QTLs on the linkage groups were determined by composite interval mapping method and the phenotypic variance explained by each marker was determined by regression analysis. Several QTLs associated to disease resistance were identified in the population BS03 × BS04. Some QTLs showed significant effects over the different environments studied. The existence of significant QTLs in common among different environments indicates these genomic regions as possible new tools for marker-assisted selection in maize breeding programs.  相似文献   

3.
Fusarium wilt is a worldwide disease that affects cotton production. Molecular markers tightly linked to resistance genes can be used for marker-assisted and/or genomic selection. We performed both family-based linkage mapping and population-based association mapping (AM) to detect quantitative trait loci (QTLs) conferring resistance against Fusarium oxysporum f. sp. vasinfectum race 7 (FOV 7) in Upland cotton. To identify QTLs underlying FOV 7 resistance by linkage mapping, three Upland cotton cultivars/lines, Xuzhou 142, Yumian 21 and Shang 9901, were used to obtain the composite cross population, designated as Xuzhou 142/Yumian 21//Xuzhou 142/Shang 9901. A linkage map containing 185 simple sequence repeat loci and 40 linkage groups was constructed with an average distance of 7.5 cM between adjacent markers. Seven QTLs were detected by linkage mapping, explaining 2.9–6.6 % of the total phenotypic variance. We also performed marker–trait AM with the MLM model (Q + K) in a panel composed of 356 Upland cotton cultivars. In total, 27 loci were significantly associated with FOV 7 resistance at the α = 0.01 level (?log10 P ≥ 2), which were distributed on 16 chromosomes and explained 1.48–12.99 % of phenotypic variation. Three of the 7 QTLs identified by linkage mapping could be detected in AM. We identified the favorable allele for each of the 27 associated loci and investigated the number of favorable alleles in each accession. The results should increase our understanding of the genetic basis of FOV resistance and facilitate future resistance breeding in Upland cotton.  相似文献   

4.
Y. B. Li    C. J. Wu    G. H. Jiang    L. Q. Wang    Y. Q. He 《Plant Breeding》2007,126(5):541-547
A doubled haploid population was employed to characterize the dynamic changes of the genetic components involved in rice blast resistance, including main-effect quantitative trait loci (QTLs), epistatic QTLs and QTL-by-environment interactions. The study was carried out at three different developmental stages of rice, using natural infection tests over 2 years. The number of main-effect QTLs, epistatic QTLs and their environmental interactions differed across the various measuring stages. One QTL ( d12 ) on chromosome 12 was detected at all stages, whereas most QTLs were active only at one or two stages in the population. These findings suggest that the unstable expression of most QTLs identified for blast resistance was influenced by the developmental status of the plants, epistatic effects between different loci and the environments in which they were grown. These findings demonstrate the complexity of expression of rice blast resistance and have important implications for durable resistance-breeding and map-based cloning of quantitative traits.  相似文献   

5.
I. Simko    S. Costanzo    V. Ramanjulu    B. J. Christ    K. G. Haynes 《Plant Breeding》2006,125(4):385-389
Potato tuber blight is a disease caused by the oomycete Phytophthora infestans (Mont.) de Bary. Due to the significant economic impact of this disease, introgression of durable resistance into the cultivated potato is one of the top priorities of breeding programmes worldwide. Though numerous resistance loci against this devastating disease have already been mapped, most of the detected loci are contributing towards foliar resistance while specific information on tuber resistance is limited. To identify the genetic components of tuber resistance and its relationship to foliar resistance and plant maturity we have investigated the host‐pathogen interaction in a segregating diploid hybrid Solanum phureja × S. stenotomum family. Mature tubers from this mapping family were inoculated with a sporangial suspension of P. infestans (US‐8 clonal lineage) and evaluated for lesion expansion. No significant correlation was detected between late blight resistance in foliage and tubers, and between plant maturity and tuber resistance. Four chromosomal regions were significantly associated with tuber resistance to the disease. The largest effect was detected near the marker locus PSC (LOD 10.7) located on chromosome 10. This locus explained about 63% of the total phenotypic variation of the trait. The other three resistance‐related loci were mapped on chromosomes 8 (GP1282, LOD 4.4), 6 (CP18, LOD 4.0) and 2 (CP157, LOD 3.8). None of the four tuber resistance loci coincides with the foliage resistance loci detected in this same family. Tuber blight resistance quantitative trait loci (QTL) on chromosomes 2, 8 and 10 are distinct from the maturity QTLs and have an additive effect on tuber resistance. These results indicate that different genes are involved in foliar and tuber resistance to P. infestans in the present family and that some of the resistance genes might be associated with late maturity.  相似文献   

6.
A genetic analysis of blast resistance in upland rice variety is very crucial. In this study, we performed a linkage mapping of quantitative trait loci (QTLs) for blast resistance using an advanced backcross population from a cross between Way Rarem (susceptible indica variety) and Oryzica Llanos 5 (durable resistant indica variety). A transgressive segregation was observed in the advanced backcross population of Way Rarem//Oryzica Llanos 5. A total of 16 QTLs have been identified along chromosomes 1, 3, 5, 6, 7, 8, 9, and 11 against eight blast pathogen isolates. Each QTL accounted from 11.31 to 45.11% of the variation in blast resistance. Most QTLs showed race specificity, demonstrating the small effect of such QTLs. Unexpectedly, several superior blast resistance alleles were contributed by Way Rarem, the susceptible-recurrent parent. Among eight candidate defense response genes detected in several loci, a single gene (oxalate oxidase) present on chromosome 3 was found to be associated with blast resistance in upland indica rice. Ultimately, these advanced backcross lines with resistance to blast tagged by markers might be useful for pyramiding blast resistance alleles in upland rice.  相似文献   

7.
Stripe (yellow) rust, caused by Puccinia striiformis Westend. f. sp. tritici Eriks. (Pst), is an important disease of wheat (Triticum aestivum L.) globally. Use of host resistance is an important strategy to manage the disease. The cultivar Flinor has temperature-sensitive resistance to stripe rust. To map quantitative trait loci (QTLs) for these temperature-sensitive resistances, Flinor was crossed with susceptible cultivar Ming Xian 169. The seedlings of the parents, and F1, F3 progeny were screened against Chinese yellow rust race CYR32 in controlled-temperature growth chambers under different temperature regimes. Genetic analysis confirmed two genes for temperature-sensitive stripe rust resistance. A linkage map of SSR markers was constructed using 130 F3 families derived from the cross. Two temperature-sensitive resistance QTLs were detected on chromosome 5B, designated QYr-tem-5B.1 and QYr-tem-5B.2, respectively, and are separated by a genetic distance of over 50 cM. The loci contributed 33.12 and 37.33% of the total phenotypic variation for infection type, respectively, and up to 70.45% collectively. Favorable alleles of these two QTLs came from Flinor. These two QTLs are temperature-sensitive resistance loci and different from previously reported QTLs for resistance to stripe rust.  相似文献   

8.
In order to characterise quantitative trait loci (QTLs) for Type I and Type II resistance against Fusarium head blight (FHB) in wheat, a population of recombinant inbred lines derived from the cross Cansas (moderately resistant)/Ritmo (susceptible) was evaluated in spray-inoculated field trials over three seasons. Map-based QTL analysis across environments revealed seven QTLs on chromosomes 1BS, 1DS, 3B, 3DL, 5BL, 7BS and 7AL (QFhs.whs-1B, QFhs.whs-1D, QFhs.whs-3B, QFhs.whs-3D, QFhs.whs-5B, QFhs.whs-7A, QFhs.whs-7B) associated with FHB resistance. They accounted for 56% of the phenotypic variance. QFhs.whs-1D primarily appeared to be involved in resistance to fungal penetration, whereas the other QTLs mainly contributed to resistance to fungal spread. FHB resistance was significantly correlated with plant height (PH) and heading date (HD). Including all single environments, corresponding overlaps of QTLs for FHB resistance and QTLs for PH/HD occurred at six loci, among them two consistently detected QTLs, QFhs.whs-5B and QFhs.whs-7A. When significant effects of PH and HD on FHB resistance were eliminated by covariance analysis, a second QTL analysis revealed possible escape mechanisms for the majority of the coincidental loci.  相似文献   

9.
J. Zhao  J. Meng 《Plant Breeding》2003,122(1):19-23
A genetic linkage map of Brassica napus constructed from a cross between a low glucosinolate cultivar ‘H5200’ and a high glucosinolate line ‘NingRS‐1’ was used to identify loci associated with seed glucosinolate content and to understand the association between specific glucosinolate components and Sclerotinia resistance. Seed glucosinolate content was assessed by standard High pressure Liquid Chromatogram (HPLC) protocol. Seven components of seed glucosinolate, including four types of aliphatic glucosinolate, two types of indolyl glucosinolates and one aromatic glucosinolate were detected in the seeds. Three quantitative trait loci (QTLs) were identified for seed total glucosinolate content. From three to 15 loci were found to be responsible for different types of glucosinolates, and by comparing the overlapped intervals, eight genomic regions were defined. One of the nine loci associated with aliphatic glucosinolate content was found to be associated with Sclerotinia resistance on the leaf at the seedling stage, and one locus, responsible for 3‐indolyl‐methyl glucosinolate content, was probably linked with Sclerotinia resistance on the stem of the maturing plant. The association between seed glucosinolate content and Sclerotinia resistance is discussed.  相似文献   

10.
S. Poormohammad Kiani  P. Maury    L. Nouri    N. Ykhlef    P. Grieu    A. Sarrafi 《Plant Breeding》2009,128(4):363-373
A set of sunflower recombinant inbred lines (RILs) was used to study agronomical traits under greenhouse and field conditions each with two water treatments and three replications. The difference among RILs was significant for all the traits studied in all conditions; and water treatment × RILs interaction was also observed for most of the traits in both field and greenhouse conditions. Because of the low rate of drought stress, this part of field data are not informative. Several quantitative trait loci (QTLs) were identified for yield-related traits with the percentage of phenotypic variance explained by QTLs ( R 2) ranging from 4% to 40%. Several QTLs for grain yield per plant (GYP) under four water treatments were identified on different linkage groups, among which two were specific to a single treatment ( GYPN.4.1 , GYPI.7.1 ). Three QTLs for GYP were overlapped with several QTLs for drought-adaptative traits detected in our previous study ( Poormohammad Kiani et al. 2007b ). The whole results do highlight interesting genomic regions for marker-based breeding programmes for drought tolerance in sunflower.  相似文献   

11.
Chlorate resistance is one of the reliable characters in Indica/Japonica classification. To understand the genetic basis of chlorate resistance is very important for revealing the evolutionary mechanism of Indica/Japonica differentiation. In this study, a doubled haploid (DH) population derived from anther culture of ZYQ8/JX17, a typical Indica and Japonica hybrid, was used as the genetic material to investigate chlorate sensitivity of the parents and DH lines. The quantitative trait loci (QTLs) of chlorate resistance were analyzed based on the molecular linkage map of this population. Total of 3 QTLs (qCHR-2, qCHR-8 and qCHR-10) for chlorate resistance were detected on chromosomes 2, 8 and 10, respectively. A QTL × QTL epistatic interaction was detected between qCHR-2 and qCHR-10. Genes involved in nitrogen assimilation, such as nitrate reduction, molybdenum cofactor biosynthesis and nitrate transport were strong candidates of QTLs for chlorate resistance. A putative nitrate reductase gene (8611.t00011), and two putative nitrate reductase genes (9319.t00010 and 9319.t00012) were in the genomic region of qCHR-2, and qCHR-8, respectively, and a putative nitrate transporter gene (756.t00011) was in the region of qCHR-10. The expression of 8611.t00011, 9319.t00010 and 756.t00011 were confirmed by the corresponding cDNAs, and 2 in/del and 12 SNPs in the coding regions of these three genes were found between Indica (cv. 9311) and Japonica (cv. Nipponbare) in silico. These results indicated that these three genes were candidates of the chlorate resistance QTLs. An in/del in the coding region of 8611.t00011 was used to develop a new PCR marker. A polymorphism was detected between JX17/Nipponbare and ZYQ8/9311. This polymorphism corresponds to the chlorate sensitivity of Nipponbare and 9311. This marker was located between Y8007R and RM250 on chromosome 2 in the DH population, where qCHR-2 was also located.  相似文献   

12.
We developed 178 recombinant inbred lines from a southern‐by‐spring oat population designated as “TxH.” These lines were genotyped to generate a high‐quality linkage map that resolved 6,902 markers into 21 linkage groups that matched closely with the latest hexaploid oat consensus map. Three major quantitative trait loci (QTLs) affecting heading date were found in locations that are consistent with known QTLs and candidate genes, and two other QTLs affecting heading date were found in novel locations. Five QTLs affecting plant height were found. Both sets of QTLs are responsible for transgressive segregation observed for these two traits. Four QTLs affecting resistance to crown rust, caused by the pathogen Puccinia coronata f. sp. avenae, were identified. Two of these QTLs are consistent with known clusters of rust resistance genes, while two may represent new locations of novel rust resistance genes. A complete set of SNP sequences suitable for generating markers for molecular selection is provided.  相似文献   

13.
Z. F. Li    J. M. Wan    J. F. Xia    H. Q. Zhai  H. Ikehashi 《Plant Breeding》2004,123(3):229-234
Milling quality of rice grains is important to both producers and consumers. In this study, quantitative trait loci (QTLs) controlling brown rice rate (BR), milled rice recovery (MR) and head rice recovery (HR) were analysed by composite interval mapping over 2 years using 98 backcross inbred lines (BILs). A total of 12 QTLs for the three traits were detected, of which five were for BR, four for MR and three for HR. The proportion of phenotypic variation explained by individual QTLs ranged from 7.5 to 19.9%, and additive effects contributed by a single QTL accounted for 0.46 to 2.34% of the variation. QTL‐by‐environment interactions were observed by comparing QTL mapping of the same population grown in two consecutive years. Three of five QTLs for BR and two of four QTLs for MR were detected in 2 years, and all three QTLs for HR were detected in 1 year only. BR was significantly correlated with MR, and all four QTLs of MR were located in the same regions as those of BR. This indicated that QTLs for highly correlated traits could often be detected in the same interval.  相似文献   

14.
The resistance of soybean (Glycine max L. Merr.) cultivars varies with the different races of the soybean cyst nematode (SCN), Heterodera glycines, referred to as HG types (biotypes). Resistant cultivars with durable resistance are emphasized in recent years. The aim here was to identify quantitative trait loci (QTLs) for resistance to two SCN HG types (HG type 2.5.7, race 1; and HG type 1.2.3.5.7, race 4) in resistant cultivar ‘L‐10’ and to analyse the additive and epistatic effects of the identified QTLs. A total of 140 F5‐derived F10 recombinant inbred lines (F5:10 RILs) were advanced via single‐seed‐descent from the cross between ‘L‐10’ (broadly resistant to SCN) and “Heinong 37” (SCN‐susceptible). For SCN HG type 2.5.7 and HG type 1.2.3.5.7 resistance, three and six QTLs for resistance to SCN HG type 2.5.7 and HG type 1.2.3.5.7 were identified, respectively, most of which could explain <10% of the phenotypic variation. Among these QTLs, five were identified over 2 years, while the other QTLs were detected in either 2009 or 2010. QSCN1‐2, located near the SSR marker Sat_069 of linkage group D1b (Chromosome, 2), was responsible for the largest proportion of phenotypic variation (16.01% in 2009 and 18.94% in 2010), suggested that it could effectively be used as a candidate QTL for the marker‐assisted selection (MAS) of soybean lines resistant to SCN. Additionally, for SCN HG type 2.5.7 and HG type 1.2.3.5.7 resistance, two and four QTLs showed an additive effect (a), respectively. One epistatic pair of QTLs (QSCN1‐1‐QSCN1‐3) for SCN HG type 2.5.7 resistance and eight epistatic pairs of QTLs for SCN HG type 1.2.3.5.7 resistance were found to have significant aa effects, among which one pair of QTLs (QSCN4‐4 and QSCN4‐5) contributed a large proportion of aa effects (3%). The results indicated that additive and epistatic effects could significantly affect SCN resistance. Therefore, both of a and aa effects should be considered in MAS programmes.  相似文献   

15.
F. L. Zhang    M. Wang    X. C. Liu    X. Y. Zhao    J. P. Yang 《Plant Breeding》2008,127(1):82-86
Turnip mosaic virus (TuMV) as the major virus infecting Brassica crops, often cause severe yield and quality losses in Chinese cabbage production in China. In this study, quantitative trait loci (QTL) analysis for TuMV resistance was conducted with a population of 100 doubled-haploid lines derived from the F1 between 91-112 (resistant) and T12-19 (susceptible) through microspore culture. A total of 376 molecular markers including 235 amplified fragment length polymorphisms, 129 random amplified polymorphic DNAs, 10 simple sequence repeats, one SCAR and one morphological marker were employed to construct a linkage map with 10 linkage groups covering 809.1 cM with an average distance of 2.2 cM between loci. Resistance was assessed by artificial inoculation at the seedling stage and at the adult stage in field conditions, respectively. Four QTLs controlling TuMV resistance were identified with JoinMap QTL 4.0 and interval mapping method. Two QTLs ( Tu1 , Tu2 ) were associated with resistance at the seedling stage, each accounting for 58.2% and 14.7% of the phenotypic variation, respectively. Two QTLs ( Tu3 , Tu4 ) were found corresponding to the disease resistance at the adult plant stage, explaining 48.5% and 32.0% of the phenotypic variation, respectively. Marker-assisted selection for these major QTLs involved in TuMV resistance could be useful in Chinese-cabbage breeding programmes.  相似文献   

16.
The soybean cyst nematode (SCN) is one of the most economically important pathogens of soybean. Molecular mapping of quantitative trait loci (QTL) for resistance to SCN is a proven useful strategy in order to assist in the development of resistant soybean cultivars. In the present study, a Bayesian modeling approach was performed to map QTL controlling genetic resistance to SCN races 3 and 14. For this purpose, a population of recombinant inbred lines derived from the cross between line Y23 (susceptible) and cv. Hartwig (resistant) was used. A total of 144 microsatellites markers (Simple Sequence Repeats) were selected and synthesized for mapping purpose. Posterior marginal parameter distributions were computed using the Reversible Jump Markov Chain Monte Carlo (RJ-MCMC) algorithm. It was determined the existence of four QTLs on three linkage groups (LG); that is LG A2 for race 3, LG C2 for race 14, and LG G for both races. The estimates of posterior modes of the heritability were 0.038 and 0.53 for the LGs A2 and G respectively (race 3). For the race 14 the posterior modes of the heritability were 0.044 and 0.05 for the LGs C2 and G. The identified QTLs explained about 57 and 9 % of the total phenotypic variance, for the races 3 and 14, respectively. These results confirm the effectiveness of the Bayesian method to map QTL controlling resistance to SCN in soybean. Accordingly, integrating QTL mapping with Bayesian methods will enable response to selection for quantitative traits of interest in soybean to be improved.  相似文献   

17.
植物数量抗病基因克隆及其抗性机理的研究进展   总被引:5,自引:0,他引:5  
培育广谱、持久抗病的作物品种,不仅需要深入研究质量抗病性,而且需要更深入地洞悉数量抗病性的可能作用机理。而目前,人们对数量抗病基因的可能特征和数量抗病性的机理的认识还相当模糊,这在很大程度上限制了数量抗病基因在育种实践中的应用。本文首先综述数量性状座位(quantitative trait loci,QTL)的克隆策略和精确获取数量抗病性状值的方法;其次根据数量抗性座位(quantitative resistance loci。QRL)的相关研究进展,对QRL的可能特征进行一定的综述,认为部分QRL的抗性机理直接对应于R基因、抗病基因类似物(resistance geneanalogs,RGA)、防卫基因、防卫反应途径中的相关基因等在植物抗病性上的作用机理;最后,作者推测存在4种抗性特征的QRL,即小种特异性或非特异性QRL和“病原菌”特异性或广谱性QRL,并认为数量抗性持久性的遗传基础与这些不同特征的QRL间有着密切的联系。该综述将对QRL的候选基因分析和克隆、数量抗病机理研究和QRL的育种应用提供有益的参考。  相似文献   

18.
Fusarium wilt (FW) and Ascochyta blight (AB) are two important diseases of chickpea which cause 100 % yield losses under favorable conditions. With an objective to validate and/or to identify novel quantitative trait loci (QTLs) for resistance to race 1 of FW caused by Fusarium oxysporum f. sp. ciceris and AB caused by Ascochyta rabiei in chickpea, two new mapping populations (F2:3) namely ‘C 214’ (FW susceptible) × ‘WR 315’ (FW resistant) and ‘C 214’ (AB susceptible) × ‘ILC 3279’ (AB resistant) were developed. After screening 371 SSR markers on parental lines and genotyping the mapping populations with polymorphic markers, two new genetic maps comprising 57 (C 214 × WR 315) and 58 (C 214 × ILC 3279) loci were developed. Analysis of genotyping data together with phenotyping data collected on mapping population for resistance to FW in field conditions identified two novel QTLs which explained 10.4–18.8 % of phenotypic variation. Similarly, analysis of phenotyping data for resistance to seedling resistance and adult plant resistance for AB under controlled and field conditions together with genotyping data identified a total of 6 QTLs explaining up to 31.9 % of phenotypic variation. One major QTL, explaining 31.9 % phenotypic variation for AB resistance was identified in both field and controlled conditions and was also reported from different resistant lines in many earlier studies. This major QTL for AB resistance and two novel QTLs identified for FW resistance are the most promising QTLs for molecular breeding separately or pyramiding for resistance to FW and AB for chickpea improvement.  相似文献   

19.
QTL mapping of sheath blight resistance in a deep-water rice cultivar   总被引:2,自引:0,他引:2  
Sheath blight, caused by the pathogen Rhizoctonia solani Kühn, is one of the most serious diseases of rice and leads to severe yield loss worldwide. A recombinant inbred line (RIL) population consisting of 121 lines was constructed from a cross between HH1B and RSB03, the latter of which is a deep-water rice variety. Five traits were used to evaluate sheath blight resistance, namely disease rating (DR), lesion length (LL), lesion height (LH), relative lesion length [RLL, the ratio of LL to plant height (PH)], and relative LH (RLH, the ratio of LH to PH). Using the RIL population and 123 molecular markers, we identified 28 quantitative trait loci (QTLs) for the five traits in two environments. These QTLs are located on nine chromosomes and most of them are environment specific. A major QTL for DR (qSBR1) on chromosome 1 was identified with contributions of 12.7% at Shanghai and 42.6% at Hainan, and it collocated with a QTL for PH. The allele at this locus from RSB03 enhances sheath blight resistance and increases PH. Another QTL for DR on chromosome 7 was adjacent to QTLs for heading date (HD) and four other disease traits. RSB03 also carries the resistant allele at this locus and shortens HD. The susceptible parent, HH1B, provides the resistance allele at the locus qSBR8, where QTLs for four other disease traits were identified. QTL mapping results showed that most QTLs for LL, LH, RLL, and RLH are collocated with QTLs for DR. Three QTLs for DR are independent from HD, PH, and four other disease traits, while four QTLs are closely related to HD and PH. Four QTLs for LL, LH, RLL, and RLH are independent from DR, HD, and PH, while there is only one region harboring QTLs for these four traits and HD. Correlation analysis and QTL mapping results indicated that LL, LH, RLL, and RLH might be important indices, like DR, for evaluating the level of resistance to rice sheath blight.  相似文献   

20.
The Russian wheat aphid (RWA) is one of the most aggressive pests of barley and wheat. The outbreak of RWA occurred in Argentina in 2008 caused serious damage to barley cultivars. The most effective and sustainable method of RWA control is to identify new resistance genes. The purpose of the current research was to map RWA resistance genes in a set of double haploid (DH) lines of the Oregon-Wolfe Barley (OWB) mapping population derived from the cross between OWBDOM and OWBREC. The DH and both parental lines were screened for antixenosis, tolerance and antibiosis to RWA. There was significant variation among the DH lines in most of the traits studied. However, only tolerance resulted in significant quantitative trait loci (QTLs) associated with the molecular markers. Two main QTLs were identified. These explained 90 and 79 % of the variability of foliar area and chlorophyll content, respectively, of infested and control plants. The initial and final foliar area and the variation in foliar area were associated with the same molecular markers on chromosome 2H (BmAc0125, Vrs1, BmAc0144f and BmAg0113e). The positive alleles were provided by OWBDOM. The content of chlorophyll was associated with the marker loci WMC1E8, MWG912, ABC261, MWG2028 and Blp on chromosome 1H, with the positive alleles provided by OWBREC. Both parents contributed to different tolerance traits, with foliar area and chlorophyll content remaining as the plant traits most affected by aphid feeding. The QTLs found in this population are new RWA resistance loci. A sequence homology search was performed to derive the putative function of the genes linked to the QTLs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号