首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G. F. Marais    M. Horn  F. Du  Torr 《Plant Breeding》1994,113(4):265-271
An octoploid triticale was derived from the F, of a Russian wheat aphid-resistant rye, ‘Turkey 77’, and ‘Chinese Spring’ wheat. The alloploid was crossed to common wheat, and to ‘Imperial’ rye/‘Chinese Spring’ disomic addition lines. F2, progeny from these crosses were tested for Russian wheat aphid resistance and C-banded. A resistance gene(s) was found to be associated with chromosome arm IRS of the ‘Turkey 77’ rye genome. A monotelosomic IRS (‘Turkey 77’) addition plant was then crossed with the wheat cultivar ‘Gamtoos’, which has the 1BL.1RS ‘Veery’ translocation. Unlike the IRS segment in ‘Gamtoos’, the ‘Turkey 77’-derived 1 RS telosome did not express the rust resistance genes Sr31 and Ar26, which could then be used as markers. From the F, a monotelosomic 1 RS addition plant that was also heterozygous for the 1BL. 1 RS translocation was selected and testerossed with an aphid-susceptible common wheat, ‘Inia 66’ Meiotic pairing between the rye arms resulted in the recovery of five euploid Russian-wheat-aphid-resistant plants. One recombinant also retained Sr31 and Lr26 and was selfed to produce translocation homozygotes.  相似文献   

2.
G. Mülier    T. Böhme    H. Borschel    U. Vahl  A. Wiberg 《Plant Breeding》1990,104(4):272-280
Anther culture in the breeding process of winter wheat. III. Ability of winter wheat F1 populations with the two heterozygous 1AL–IAS/1AL–IRS and 1BL–1BS/1BL–IRS chromosome pairs Application of anther culture to four F1 hybrids between the IBL–IRS (‘Amigo’) and several 1BL–IRS wheat-rye translocation forms yielded 129 green pollen plants in an average embryo induction frequency of 17.6 %. A total of 2632 anthers was inoculated. 25 % and 42 % of the regenerated plants were haploid and spontaneously doubled haploid, and 33 % had abnormal chromosomal structure. After chromosome doubling treatment 87% of all pollen plants set seeds. By means of multiple peroxidases and Giemsa C-banding patterns, the anther culture progeny could be further classified into 16 plants without the short arm of IR-chromosome of rye, 21 IAL–IRS and 50 1BL–IRS translocation lines and into 16 IAL–IRS, IBL–IRS double translocation lines according to the four possible characteristic types of F2 gametes of the tested F1 hybrids. Advantages of the haploid technique for the selection of desirable traits and the meaning of the IRS genes in wheat are discussed.  相似文献   

3.
X. Q. Zhang    X. P. Wang    J.K. Jing    K. Ross    H. Hu    J. P. Gustafson   《Plant Breeding》1998,117(1):7-12
Five wheat-triticale doubled haploid (DH) lines— M08, V209, DH220-14-2, DH696-3-4 and M16 —derived from anther culture of F1s resulting from crosses involving hexaploid or octoploid triticale × hexaploid wheat, were characterized by cytological and biochemical markers. Cytological evidence from genomic in situ hybridization and C-banding indicated that DH lines M08 and V209 (2n= 42) each contained a pair of 1BL/1RS translocation chromosomes. DH220-14-2 (2n= 42) was also a translocated line with two pairs of chromosomes containing small fragments of rye. One of the translocation fragments carried the Sec-1R gene originating from the satellite region of 1RS; the origin of the other one remains unknown. DH696-3-4 (2n= 42) contained a 3D(3R) substitution. In M16 (2n= 44), three pairs of rye chromosomes, 3R, 4R and 6R, were present, 4R as an addition and 3D(3R) and 6D(6R) as substitutions. Biochemical, isozyme and storage protein markers confirmed the cytological conclusions. The advantages of transferring alien chromosomes or chromosome fragments into wheat and creating alien aneuploid lines by anther culture of hybrid F1s are discussed.  相似文献   

4.
Summary The Sr27 translocation in WRT238 was found to consist of chromosome arms 3RS of rye and 3AS of common wheat. An attempt was made to purposely produce compensating translocations having 3RS and a wheat homoeologous group 3L arm. To achieve this, plants, double monosomic for 3R and a wheat homoeologous group 3 chromosome, were irradiated (7.5 Gy gamma rays) or left untreated before being used to pollinate stem rust susceptible testers. Segregation for stem rust resistance was studied to identify F2 families with Sr27-carrying translocated chromosomes, these were confirmed by means of C-banding. Compensating translocations 3RS3AL and 3RS3BL) were obtained readily and at similar frequencies from untreated and irradiated plants (respectively, 7.2% and 9.3%). Both translocation types have impaired transmission and segregate approximately 3: 2 (present: absent) in the F2.  相似文献   

5.
The Aegilops kotschyi cytoplasm and a 1BL-1RS translocation chromosome that consists of the long arm of wheat chromosome 1B and the short arm of rye chromosome 1R were transferred to six spring common wheat cultivars by repeated backcrossing. Resistance to leaf rust race 21B conditioned by the Lr26 gene and a secalin subunit encoded by the Sec-1 gene, both on the 1RS arm, were used as the selection markers of the translocation chromosome. Five of the six cultivars used were converted to complete male steriles, whereas the remaining one, cv. Kitamiharu 48, retained normal fertility, after transfer of both the 1BL-1RS chromosome and Ae. Kotschyi cytoplasm. Conventional gene analysis suggested that Kitamiharu 48 carries an incompletely dominant fertility-restoring gene. The F1 hybrids between the male steriles and ordinary common wheat cultivars recovered fertility only at a low level, indicating that a single dose of the Rfv1 gene on the 1BS arm of wheat is insufficient for full fertility restoration under spring-sowing condition. Our results are in clear contrast to complete fertility restoration under fall-sowing condition reported by Nonaka et al. (1993). Combination of the 1BL-1RS chromosome / Ae. Kotschyi cytoplasm system with a new fertility-restoring gene discovered in Kitamiharu 48 may provide a breakthrough for spring-type hybrid wheat. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Wheat cultivars carrying the 1BL.1RStranslocation were crossed with newly synthesised octoploid triticale lines involving four rye genotypes having ο-secalin banding patterns different from each other and from that of the 1BL.1RS translocation. Homologous recombination was expected between the short arm of the 1R chromosomes of the rye genotypes and the 1RS arm of the 1BL.1RSwheat/rye translocation. Seven sequence-specific PCR-based markers:Xiag95, RMS13, Bmac0213, GPI, Xpsr960, 5Sand SCM9, and ο-secalinproteins were used to detect recombination events in the BC1F2 generation. Segregation analysis demonstrated that a barley SSR marker (Bmac0213) locus was present on the 1RS chromosome arm. Of 834plants tested in four different BC1F2 populations, 246individuals were found to carry recombined1BL.1RS translocation chromosomes. Genetic linkage analysis was performed on the eight markers in the four different mapping populations. The physical positions of the markers are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Bronco 90 is an advanced line of hexaploid triticale and was reported to be a 2D(2R) chromosome substitution type. In F1 hybrids of this triticale with bread wheat, however, a meiotic configuration of 16 bivalents and 10 univalents was frequently observed indicating the presence of an additional D(R) chromosome substitution or D/R translocation. To determine the chromosome constitution of Bronco 90, C-banding and fluorescent in situ hybridization techniques were applied to somatic and meiotic metaphase chromosomes. These analyses revealed that in Bronco 90, the terminal 7% of the long arm of rye chromosome 5R is derived from the long arm of chromosome 4D. This translocated chromosome (5RS.5RL-4DL) and telosome 4DL formed metaphase I bonds at a frequency of 71%, demonstrating the significance of small terminal chromosome segments for pairing. This novel rye-wheat translocation is probably generated by homoeologous crossing-over because the distal region of 5RL is known to be homoeologous to that of 4DL. Possible association of this translocation with the absence of hairy peduncle character in Bronco 90 is discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Summary In this study a new trigeneric hybrid involving species from the Triticum, Secale and Leymus was produced by crossing octoploid triticale (Jinsong49) with octoploid tritileymus (950059). The chromosome constitution of the parental amphiploid, trigeneric hybrid and its progenies were studied. Genomic in situ hybridization (GISH) analysis showed that Jinsong49 and 950059 had 44 wheat chromosomes, and 12 rye chromosomes, 12 L. mollis chromosomes respectively. The mean meiotic configuration of trigeneric hybrid F1 was 13.17 I + 20.82 II + 0.37 III + 0.02 IV. GISH results indicated the trigeneric hybrid F1 had 6 rye chromosomes and 6 Leymus chromosomes. In the selfed derivatives of the trigeneric hybrids, while the number of selfed generation increased, the mean number of chromosomes tends to decrease gradually and slowly. GISH results revealed that most plant tested in the progeny population had 8–12 rye chromosomes, and no Leymus chromosomes were detected. The results indicated that rye chromosomes can be preferentially transmitted in the progenies of trigeneric hybrid than Leymus chromosomes.  相似文献   

9.
Four sets of wheat-rye addition lines were screened to localize genes in rye that restore male fertility to hexaploid wheat with timopheevi cytoplasm. One gene, designated Rfc3, was physically located in the distal 40 % of the long arm of chromosome 6R. No allelic variation at Rfc3 was found; normal male fertility was consistently observed in all F1 hybrid combinations tested. A second gene, designated Rfc4, was located on the long arm of chromosome 4R. Variation between chromosomes 4R in the level of restoration was observed; fertility in hybrids ranged from 0 % to about 50 % of normal. Attempts to genetically map Rfc4 were inconclusive but suggested it was located 16.1 cM from the telomere of the long arm and at least 8.0 cM from the centromere. These restorers, particularly Rfc3, may have potential in hybrid wheat breeding programs and can be manipulated for production of male sterile triticale lines.  相似文献   

10.
Z. X. Tang    S. L. Fu    Z. L. Ren    H. Q. Zhang    Z. J.Yang    B. J. Yan 《Plant Breeding》2009,128(5):524-527
The wheat-rye 1BL.1RS translocation chromosomes have been used widely around the world in commercial wheat ( Triticum aestivum L.) production because of the presence of several disease resistance genes and a yield enhancement factor on the rye ( Secale cereale L.) chromosome. However, the recent reports of the loss of complete effectiveness of the disease resistance genes on the most commonly used 1BL.1RS chromosome have highlighted the need to seek and deploy additional sources of disease resistance genes. Three new sibling wheat cultivars, 'CN12', 'CN17' and 'CN18', were developed carrying 1RS arms derived from the rye inbred line L155. Genomic in situ hybridization and C-banding analysis revealed that all the three cultivars contained the rye chromosome 1RS arm fused to the wheat 1BL wheat chromosome arm. The three cultivars displayed high yields and high resistance to local powdery mildew and stripe rust pathotypes. Fluorescence in situ hybridization analysis indicated the different structure of 1BL.1RS chromosome between 'CN18' and the other two cultivars. The present study provides a new 1RS resource for wheat improvement.  相似文献   

11.
Wheat-rye translocation 1RS.1AL from cv. Amigo is still popular in wheat breeding and commercial cultivars. It introduces several disease and pest resistance genes from rye into wheat, and appears to enhance root system development. To create a set of uniform stocks for precise tests, the rye arm 1RS was separated from the wheat arm in the translocation by misdivision of centromeres in univalents, fused into a complete chromosome 1R, and then re-translocated to all group-1 wheat chromosomes 1A, 1B and 1D, creating a set of three translocation and three substitution lines in a uniform background of cv. Pavon 76. Misdivision frequencies of the chromosomes mirrored those observed earlier in that shorter chromosomes broke less frequently than the long ones, and chromosomes from previous misdivision-fusion events misdivided more frequently than normal intact chromosomes. This set of chromosome lines with 1RS from cv. Amigo increases to three the number of such translocations stocks in wheat.  相似文献   

12.
Summary Fluorescent in situ hybridization (FISH) of DNA to plant chromosomes has proved to be a powerful cytogenetic tool. The value of fluorescent in situ hybridization of total genomic DNA (GISH) of related species is demonstrated in the determination of wheat/alien chromosome pairing in hybrids. Its use for assessing the relative merits of the various genes that affect chromosome pairing is also shown.The ability of GISH to identify the presence in wheat of whole alien chromosomes or alien chromosome segments is illustrated. The potential of FISH for detecting repeated DNA sequences, low copy sequences and single copy genes is discussed.Abbreviations FISH fluorescent in situ hybridization - GISH genomic in situ hybridization - PRINS primer-induced in situ hybridization  相似文献   

13.
小麦-黑麦1RS/1BL新易位系的创制和分子细胞遗传学鉴定   总被引:4,自引:0,他引:4  
利用普通小麦(Triticum aestivum L.)品种小偃6号与黑麦(Secale cereale L.)品种德国白粒杂交,选育出一批带有黑麦抗病性状的小偃6号类型种质材料。应用连续C-分带-基因组原位杂交(sequent C-banding-GISH)技术对上述材料进行染色体组成分析,筛选出2个小麦-黑麦1RS/1BL纯合易位系BC152-1-1和BC01-89-1。其中,BC152-1-1(2n=42)除含有1对1RS/1BL易位染色体外,未见其他染色体变异;BC01-89-1(2n=43)除含有1对1RS/1BL纯合易位染色体外,还附加1条两端缺失的3R染色体。高分子量麦谷蛋白亚基(HMW-GS)组成分析和品质分析结果表明,BC152-1-1和BC01-89-1不仅含有来自小偃6号的14+15优质亚基,而且其蛋白质含量、湿面筋含量和SDS沉降值等品质性状都得到显著改良。  相似文献   

14.
A genome specific DNA sequence that detects Secale africanum chromatin incorporated into wheat was developed in this study. Random amplified polymorphic DNA (RAPD) analysis was used to search for genome specific DNA sequences of S. africanum in lines, R111, “mianyang11” (MY11) and wheat-rye 1RS/1BL translocations R25 and R57. A high copy rye-specific DNA segment pSaD15940 of the S. africanum genome was obtained. The sequence of pSaD15 did not show any significant homology to other reported sequences in databases and it is therefore a new repetitive sequence of Secale. PCR primers were designed for pSaD15940, which amplify a clear 887 bp fragment in S. africanum but not in any wheat. The primers also amplified an 887 bp fragment in other accessions of rye, Chinese Spring-Imperial rye chromosome additions and a diverse range of material carrying different rye chromosomes or chromosomal segments. In situ hybridization showed that probe pSaD15940 was specifically hybridized throughout all rye chromosomes arms except for the terminal regions. The advantage of the rye-specific probe developed herein compared to those of previous reports is that it has been shown to be widely applicable to other Secale species. The probe will be useful as a molecular marker for the introgression of S. africanum and other rye chromosome segments into the wheat genome.  相似文献   

15.
I. Leonova    E. Pestsova    E. Salina    T. Efremova    M. Röder  A. Börner  G. Fischbeck 《Plant Breeding》2003,122(3):209-212
An F2 population segregating for the dominant gene Vrn‐B1 was developed from the cross of the substitution line ‘Diamant/'Miro‐novskaya 808 5A’ and the winter wheat cultivar ‘Bezostaya 1′. Microsatellite markers (Xgwm and Xbarc) with known map locations on chromosome 5B of common wheat were used for mapping the gene Vrn‐B1. Polymorphism between parental varieties was observed for 28 out of 34 microsatellite markers (82%). Applying the quantitative trait loci mapping approach, the target gene was mapped on the long arm of chromosome 5B, closely linked to Xgwm408. The map position of Vrn‐B1 suggests that the gene is homoeologous to other vernalization response genes located on the homoeologous group 5 chromosomes of wheat, rye and barley.  相似文献   

16.
Summary Wild relatives of common wheat, Triticum aestivum, and related species are an important source of disease and pest resistance and several useful traits have been transferred from these species to wheat. C-banding and in situ hybridization analyses are powerful cytological techniques allowing the detection of alien chromatin in wheat. C-banding permits identification of the wheat and alien chromosomes involved in wheat-alien translocations, whereas genomic in situ hybridization analysis allows determination of their size and breakpoint positions. The present review summarizes the available data on wheat-alien transfers conferring resistance to diseases and pests. Ten of the 57 spontaneous and induced wheat-alien translocations were identified as whole arm translocations with the breakpoints within the centromeric regions. The majority of transfers (45) were identified as terminal translocations with distal alien segments translocated to wheat chromosome arms. Only two intercalary wheat-alien transloctions were identified, one induced by radiation treatment with a small segment of rye chromosome 6RL (H25) inserted into the long arm of wheat chromosome 4A, and the other probably induced by homoeologous recombination with a segment derived from the long arm of a group 7 Agropyron elongatum chromosome with Lr19 inserted into the long arm of 7D. The presented information should be useful for further directed chromosome engineering aimed at producing superior germplasm.Contribution No. 96-55-J from the Kansas Experimental Station, Kansas State University, Manhattan, KS 66506-5502, USA.  相似文献   

17.
Grain protein compositions of 106 advanced generation backcross lines from crosses involving ‘Amigo’ (1AL.1RS), ‘Aurora’, ‘Kavkaz’, ‘Skorospelka-35’ and ‘Sunbird’ (all 1BL.1RS) and ‘Gabo’ 1DL.1RS parents and 152 cultivars with unknown pedigree were analysed by one-dimensional SDS-PAGE. Eighty seven backcross lines and 16 cultivars carried one or other of these translocations, 2 cultivars had a 1R (1B) substitution, whereas 5 backcross lines were found to be heterogeneous for the 1BL.1RS translocation. The translocation lines were easily identified by the presence of secalins (Sec-1) controlled by rye chromosome arm IRS and a simultaneous loss of the gliadin (Gli-1) and/or triticin (Tri-1) protein bands controlled by the replaced wheat chromosome arm (1AS, 1BS or 1DS). Certain gliadins, showing no allelic variation among the genotypes analysed, were identified as markers for chromosome arms 1AS (Mr= 34 kd) and IBS (Mr= 42,33 kd). The whole chromosome substitutions 1R (1B) were recognized by scoring for the presence of Sec-1 and HMW secalin bands, Sec-3 (controlled by rye chromosome arm 1RL) and the absence of Gli-B1 and HMW glutenin subunits, Glu-B1 (controlled by wheat chromosome arm 1BL). The results have shown that protein electrophoresis provides a rapid and reliable technique for screening genotypes for these translocations and substitutions in a breeding programme.  相似文献   

18.
N. Jouve  F. Diaz 《Euphytica》1990,47(2):165-169
Summary The EST-6 leaf esterase phenotypes from euploid, nullisomic-tetrasomic and rye chromosome addition and substitution lines of common wheat were determined using polyacrylamide gel electrophoresis. Evidence is presented to demonstrate that Est-6 is a new set of genes, that are expressed in the leaf. The Est-6 gene set were clearly distinguished from the Est-5 genes which are expressed in the grain. The three homoeoallelic loci, Est-A6, Est-B6 and Est-D6, were located on chromosomes 3A, 3B and 3D. An Est-R6 gene was located on chromosome 6R is involved in rye. Some considerations concerning homoeology between homoeologous group 3 of wheat and the rye chromosome 6R are made.  相似文献   

19.
An analysis is made of meiotic pairing of hybrids whether or not deficient in the chromosome V (5B) from crosses between Mono V (5B) T. aestivum var. Chinese Spring and Secale cereale and Aegilops columnaris. Transmission rates of deficiency are not equal for both combinations. Isochromosomes are found in the hybrid plants.5B deficiency allows the pairing and recombination between the chromosomes of wheat and those of the related species. Such deficiency may be a useful wheat breeding tool to introduce alien variation into such cultivated species.Effectiveness of 5B deficiency on meiotic pairing of the hybrids, measured as the increase of the proportion of complement paired, is 36–37% and 49–50% in the hybrids involving rye and Ae. columnaris respectively. Minimum percentages of the introduction of alien variation into wheat are established for the material investigated: 2% for rye and 28% for Ae. columnaris.Methods of utilisation of the 5B deficiency in a programme of wheat breeding are discussed and outlined.  相似文献   

20.
It is believed that unreduced gametes with somatic chromosome numbers play a predominant role in natural polyploidization. Allohexaploid bread wheat originated from spontaneous hybridization of Triticum turgidum L. with Aegilops tauschii Coss. Unreduced gametes originating via meiotic restitution, including first-division restitution (FDR) and single-division meiosis (SDM), are well documented in triploid F1 hybrids of T. turgidum with diploid Ae. tauschii (genomic constitution ABD, usually with 21 univalents in meiotic metaphase I). In this study, two T. turgidum lines known to carry genes for meiotic restitution were crossed to tetraploid Ae. tauschii. The resulting F1 hybrids (genomes ABDD), had seven pairs of homologous chromosomes and regularly formed 14 univalents and seven bivalents at metaphase I. Neither FDR nor SDM were observed. The distribution of chromosome numbers among progeny obtained by self pollination and a backcross to T. turgidum showed the absence of unreduced gametes. These results suggest that high homologous pairing interfered with meiotic restitution and the formation of unreduced gametes. This may be related to asynchronous movement during meiosis between paired and unpaired chromosomes or to uneven distribution of chromosomes in anaphases, resulting in nonviable gametes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号