首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
2.
Resistance of chickpea against the disease caused by the ascomycete Ascochyta rabiei is encoded by two or three quantitative trait loci, QTL1, QTL2 and QTL3. A total of 94 recombinant inbred lines developed from a wide cross between a resistant chickpea line and a susceptible accession of Cicer reticulatum, a close relative of cultivated chickpea, was used to identify markers closely linked to QTL1 by DNA amplification fingerprinting in combination with bulked segregant analysis. Of 312 random 10mer oligonucleotides, 3 produced five polymorphic bands between the parents and bulks. Two of them were transferred to the population on which the recent genetic map of chickpea is based, and mapped to linkage group 4. These markers, OPS06-1 and OPS03-1, were linked at LOD-scores above 5 to markers UBC733B and UBC181A flanking the major ascochyta resistance locus. OPS06-1 mapped at the peak of the QTL between markers UBC733B (distance 4.1 cM) and UBC181A (distance 9.6 cM), while OPS03-1 mapped 25.1 cM away from marker UBC733B on the other flank of the resistance locus. STMS markers localised on this linkage group were transferred to the population segregating for ascochyta resistance. Three of these markers were closely linked to QTL1. Twelve of 14 STMS markers could be used in both populations. The order of STMS markers was essentially similar in both populations, with differences in map distances between them. The availability of flanking STMS markers for the major resistance locus QTL1 will help to elucidate the complex resistance against different Ascochyta pathotypes in future. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Mapping genes for double podding and other morphological traits in chickpea   总被引:4,自引:0,他引:4  
Seed traits are important considerations for improving yield and product quality of chickpea (Cicer arietinum L.). The purpose of this study was to construct an intraspecific genetic linkage map and determine map positions of genes that confer double podding and seed traits using a population of 76 F10 derived recombinant inbred lines (RILs) from the cross of ‘ICCV-2’ (large seeds and single pods) × ‘JG-62’ (small seeds and double podded). We used 55 sequence-tagged microsatellite sites (STMS), 20 random amplified polymorphic DNAs (RAPDs), 3inter-simple sequence repeats (ISSR) and 2 phenotypic markers to develop a genetic map that comprised 14 linkage groups covering297.5 cM. The gene for double podding (s) was mapped to linkage group 6 and linked to Tr44 and Tr35 at a distance of7.8 cM and 11.5 cM, respectively. The major gene for pigmentation, C, was mapped to linkage group 8 and was loosely linked to Tr33 at a distance of 13.5 cM. Four QTLs for 100 seed weight (located on LG4 and LG9), seed number plant-1 (LG4), days to 50% flower (LG3) were identified. This intraspecific map of cultivated chickpea is the first that includes genes for important morphological traits. Synteny relationships among STMS markers appeared to be conserved on six linkage groups when our map was compared to the interspecific map presented by Winter et al. (2000). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Summary The chromosomal assignment of 64 PCR-amplified microsatellite loci and 29 additional fragments amplified by the same primer pairs is described for bread wheat (Triticum aestivum). The distribution over the different chromosomes and chromosome arms appears to be random. The highest proportion of microsatellite loci is found on the B genome, followed by the A and D genome. About half of the primer pairs amplified unique fragments, while the other half amplified additional fragments. 25% of the primer pairs, mostly designed to clones of a PstI-library, amplify fragments on homoeologous chromosomes. In some cases, more than one fragment on a single chromosome or fragments on non-homoeologous chromosomes occurred. The use of an automated DNA sequencer accounts for the accurate resolution of multiple fragments and enables to differentiate between fragments, amplified by a single primer pair, with size differences as small as two base pairs.  相似文献   

5.
Pisum sativum specific sequence tagged microsatellite site primers were used to amplify genomic profiles from 15accessions of P. sativum L. that represented the genetic base of the Australian field pea-breeding program and five accessions of the wild related species P. fulvum. The STMS primers were used to assess genetic relationships among the Pisum accessions in two ways. Firstly, to produce RAPD-like multiple banding marker profiles using an adapted RAMS method, for intra- and interspecific diversity analysis. From the 14 flanking primer pairs assessed, 133 markers were obtained. Conservation and reproducibility of markers among individuals within accessions was demonstrated. The largest distance observed among P. sativumaccessions was 22% and among P.fulvum accessions was 40%, similar to that revealed with other PCR-based methods. The maximum distance between P.sativum and P. fulvum accessions was 46%. Phylogenetic clustering of P. sativum accessions, using the neighbour joining method and based on simple matching distances, was distinct and distant to P. fulvum. Secondly, PCR with a higher annealing temperature and fluorescent labeling identified simple and allelic loci markers useful for creating agenotype/fingerprint database for P. sativum cultivars. This is the first report to demonstrate the use of Pisum specific STMS sequences for both diversity analysis and genotype identification. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Summary Necrotrophic pathogens of the cool season food legumes (pea, lentil, chickpea, faba bean and lupin) cause wide spread disease and severe crop losses throughout the world. Environmental conditions play an important role in the development and spread of these diseases. Form of inoculum, inoculum concentration and physiological plant growth stage all affect the degree of infection and the amount of crop loss. Measures to control these diseases have relied on identification of resistant germplasm and development of resistant varieties through screening in the field and in controlled environments. Procedures for screening and scoring germplasm and breeding lines for resistance have lacked uniformity among the various programs worldwide. However, this review highlights the most consistent screening and scoring procedures that are simple to use and provide reliable results. Sources of resistance to the major necrotrophic fungi are summarized for each of the cool season food legumes. Marker-assisted selection is underway for Ascochyta blight of pea, lentil and chickpea, and Phomopsis blight of lupin. Other measures such as fungicidal control and cultural control are also reviewed. The emerging genomic information on the model legume, Medicago truncatula, which has various degrees of genetic synteny with the cool season food legumes, has promise for identification of closely linked markers for resistance genes and possibly for eventual map-based cloning of resistance genes. Durable resistance to the necrotrophic pathogens is a common goal of cool season food legume breeders.  相似文献   

7.
Screening techniques are an important component of the overall strategy of breeding for resistance to diseases in cool season food legumes. Suitable screening methods have been developed for several major foliar diseases of chickpea, pea, faba bean, and lentil, and sources of resistance have been identified. International cooperation plays an important role in promoting research and keeping collections of cultivated species and their wild relatives. New biotechnological approaches are promising for enhancing the practical use of genes for resistance.  相似文献   

8.
Chickpea wilt caused by Fusarium oxysporum f. sp. ciceris is one of the major yield limiting factors in chickpea. The disease causes 10–90% yield losses annually in chickpea. Eight physiological races of the pathogen (0, 1A, 1B/C, 2, 3, 4, 5 and 6) are reported so far whereas additional races are suspected from India. The distribution pattern of these races in different parts of the world indicates regional specificity for their occurrence leading to the perception that F. oxysporum f. sp. ciceris evolved independently in different regions. Pathogen isolates also exhibit differences in disease symptoms. Races 0 and 1B/C cause yellowing syndrome whereas 1A, 2, 3, 4, 5 and 6 lead to wilting syndrome. Genetics of resistance to two races (1B/C and 6) is yet to be determined, however, for other races resistance is governed either by monogenes or oligogenes. The individual genes of oligogenic resistance mechanism delay onset of disease symptoms, a phenomenon called as late wilting. Slow wilting, i.e., slow development of disease after onset of disease symptoms also occurs in reaction to pathogen; however, its genetics are not known. Mapping of wilt resistance genes in chickpea is difficult because of minimal polymorphism; however, it has been facilitated to great extent by the development of sequence tagged microsatellite site (STMS) markers that have revealed significant interspecific and intraspecific polymorphism. Markers linked to six genes governing resistance to six races (0, 1A, 2, 3, 4 and 5) of the pathogen have been identified and their position on chickpea linkage maps elucidated. These genes lie in two separate clusters on two different chickpea linkage groups. While the gene for resistance to race 0 is situated on LG 5 of Winter et al. (Theoretical and Applied Genetics 101:1155–1163, 2000) those governing resistance to races 1A, 2, 3, 4 and 5 spanned a region of 8.2 cM on LG 2. The cluster of five resistance genes was further subdivided into two sub clusters of 2.8 cM and 2.0 cM, respectively. Map-based cloning can be used to isolate the six genes mapped so far; however, the region containing these genes needs additional markers to facilitate their isolation. Cloning of wilt resistance genes is desirable to study their evolution, mechanisms of resistance and their exploitation in wilt resistance breeding and wilt management.  相似文献   

9.
Summary Morphological, isozyme and random amplified polymorphic DNA (RAPD) markers were used to estimate genetic variation within and between cultivars of red clover (Trifolium pratense L.), an important temperate forage legume. Two cultivars of red clover, Essi from Europe and Ottawa from Canada, were evaluated. Six monogenic morphological characters were observed for 80 plants from each of these two cultivars. All six morphological loci were polymorphic in the cultivar Essi whereas only four loci were polymorphic in the cultivar Ottawa. Forty plants from each cultivar were assayed for isozyme markers. A total of 21 enzyme-coding loci with 43 alleles was detected using twelve enzyme systems. Thirteen and nine of these loci were polymorphic in Essi and Ottawa, respectively. The mean number of alleles per locus was 1.81 in Essi and 1.67 in Ottawa. Seventeen random 10-mer primers were screened for RAPD markers. Nine primers which gave clear and consistent amplified products were used to assay 20 individuals from each cultivar. Each primer gave from 7 to 20 amplified bands with an average of 14.8 bands per primer. One hundred and eight of 116 putative loci were polymorphic in Essi and 90 of 98 loci were polymorphic in Ottawa. High within-cultivar variation was observed in both cultivars using both isozyme and RAPD markers. This high polymorphism makes these markers useful for germplasm characterization and genetic studies in red clover.  相似文献   

10.
Genetic analysis and linkage study of seed weight in lentil   总被引:1,自引:0,他引:1  
Summary The genetics of seed weight was studied in crosses between the cultivated lentil L. culinaris and the wild species L. orientalis and L. ervoides. Seed weight was found to be under polygenic control with additive and dominant gene action and with partial dominance of low seed weight alleles. High heretability estimates were obtained in the analysed crosses. Nuclear-cytoplasmic interaction was found to affect seed weight in crosses involving accession No.138 of L. orientalis. Factors affecting seed weight were linked to morphological and DNA markers distributed over several linkage groups. High seed weight in segregating generations were usually associated with alleles of marker loci originated from the cultivated parent. Factors enhancing seed weight were detected in accession No.138 of L. orientalis, indicating the potential of wild genetic resources for seed weight improvement in lentil.  相似文献   

11.
The present work was conducted to identify microsatellite markers linked to the rice blast resistance gene Pi-1(t) for a marker-assisted selection program. Twenty-four primer pairs corresponding to 19 microsatellite loci were selected from the Gramene database (www. gramene.org) considering their relative proximity to Pi-1(t) gene in the current rice genetic map. Progenitors and DNA bulks of resistant and susceptible families from F3 segregating populations of a cross between the near-isogenic lines C101LAC (resistant) and C101A51 (susceptible) were used to identify polymorphic microsatellite markers associated to this gene through bulked segregant analysis. Putative molecular markers linked to the blast resistance gene Pi-1(t) were then used on the whole progeny for linkage analysis. Additionally, the diagnostic potential of the microsatellite markers associated to the resistance gene was also evaluated on 17 rice varieties planted in Latin America by amplification of the specific resistant alleles for the gene in each genotype. Comparing with greenhouse phenotypic evaluations for blast resistance, the usefulness of the highly linked microsatellite markers to identify resistant rice genotypes was evaluated. As expected, the phenotypic segregation in the F3 generation agreed to the expected segregation ratio for a single gene model. Of the 24 microsatellite sequences tested, six resulted polymorphic and linked to the gene. Two markers (RM1233*I and RM224) mapped in the same position (0.0 cM) with the Pi-1(t) gene. Other three markers corresponding to the same genetic locus were located at 18.5 cM above the resistance gene, while another marker was positioned at 23.8 cM below the gene. Microsatellite analysis on elite rice varieties with different genetic background showed that all known sources of blast resistance included in this study carry the specific Pi-1(t) allele. Results are discussed considering the potential utility of the microsatellite markers found, for MAS in rice breeding programs aiming at developing rice varieties with durable blast resistance based on a combination of resistance genes. Centro Internactional de Agricultura Tropical (CIAT) institute where the research was carried out  相似文献   

12.
The first genetic linkage map of macadamia (Macadamia integrifolia and M. tetraphylla) is presented. The map is based on 56 F1 progeny of cultivars ‘Keauhou’ and ‘A16’. Eighty-four percent of the 382 markers analysed segregated as Mendelian loci. The two-way pseudo-testcross mapping strategy allowed construction of separate parental cultivar maps. Ninety bridging loci enabled merging of these maps to produce a detailed genetic map of macadamia, 1100 cm in length and spanning 70–80% of the genome. The combined map comprised 24 linkage groups with 265 framework markers: 259 markers from randomly amplified DNA fingerprinting (RAF), five random amplified polymorphic DNA (RAPD), and one sequence-tagged microsatellite site (STMS). The RAF marker system unexpectedly revealed 16 codominant markers, one of them a putative microsatellite locus and exhibiting four distinct alleles in the cross. This molecular study is the most comprehensive examination to date of genetic loci of macadamia, and is a major step towards developing marker-assisted selection for this crop. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Eucalyptus spp. are widely used in exotic plantations. Since many of these trees are derived from vegetative propagation, the routine identification of clones has become increasingly important. The most widely used molecular based method for fingerprinting these clones is by random amplified polymorphic DNAs (RAPDs). Although this technique is useful, its results are not very repeatable, especially between laboratories. The aim of this study was to develop microsatellite markers that are highly repeatable, and to investigate their value in Eucalyptus fingerprinting. Typically, this process involves the expensive procedure of constructing an enriched genomic library. However, we used an intersimple sequence repeat (ISSR) polymerase chain reaction (PCR)‐based enrichment technique for microsatellite‐rich regions. With this relatively inexpensive method, microsatellite‐rich regions were amplified directly from genomic DNA, after which PCR products were cloned and sequenced. From these microsatellite‐rich sequences, primer sets were constructed to amplify mono‐, di‐, tri‐, hexa‐and nona‐nucleotide repeats. These markers were all inherited in a Mendelian fashion in the progeny of a test cross between two Eucalyptus grandis trees. The primer sets developed were also able to amplify the corresponding microsatellite loci from five different Eucalyptus spp., namely E. grandis, E. nitens, E. globulus, E. camaldulensis and E. urophylla.  相似文献   

14.
Summary Polymorphism at isozyme loci was used to locate factors responsible for variation in quantitative traits of lentil. Eight sets of random single seed descent (RSSD) derived lines were developed by advancing individual F3 plants of interspecific (L. culinaris Medik. × L. orientalis Boiss.) hybrids to the F6. The RSSD lines in each of the eight sets differed for alleles at 2–8 isozyme loci. In each set, association of isozyme loci with variation in seven quantitative traits (days to flower, days to mature, plant height, biomass, seed yield, harvest index, seed weight) was determined for each pairwise combination of a quantitative trait with a marker locus. Loci affecting variation in all seven quantitative traits were detected by their association with 14 isozyme markers (Aat-c, Aat-m, Aat-p, Adh-1, Fk, Gal-1, Gal-2, Lap-1, Lap-2, Pgd-p, Pgi, Pgm-c, Pgm-p, Skdh). The known position of 10 the 14 isozyme loci on the lentil genetic map was used to mark the genomic regions for possible location of associated quantitative trait loci (QTL). Detected QTL were found to be located in six of the seven linkage groups on lentil genetic map. Regions of the genome represented by linkage groups, 1, 5 and 7 appeared to affect a greater number of traits than other genomic regions represented by linkage groups 2, 3 and 4. Results indicated that the mean expression of quantitative traits at segregating marker locus classes can be used to locate the genetic factors in lentil which influence the behavior of economically important traits.  相似文献   

15.
Mehmet Ali Sudupak 《Euphytica》2004,135(2):229-238
Intra and inter-species ISSR variation and use of ISSR markers in determination of genetic relationship were investigated in an accession collection representing twoperennial and six annual Cicerspecies. Screening of Ciceraccessions with SSR primers revealed highly reproducible amplicon profiles with relatively high multiplex ratios. Many of the primers generated amplicon profiles with which not only the differences among species can readily be identified, but also polymorphisms within species could be detected more efficiently. PCR products at 150 gel positions detected using six SSR primers in Cicer accessions were treated as dominant DNA markers and utilized to compute the distances among accessions and species. Cluster analysis of accessions and species revealed groupings that corroborate our previous studies of relationships based on allozyme and AFLP analysis. Consistent with the AFLP analysis carried out in the same accession collection, ISSR-based groupings indicated that perennial C. incisumis genetically close to the annuals of the second crossability group (C. pinnatifidum,C. bijugum, C. judaicum) while C. reticulatum is the closest wild species to the cultivated chickpea. ISSR-based variation estimates were relatively higher when compared to previous estimates computed from RAPD and AFLP data. Technically, ISSR analysis combines the PCR-based targeting of microsatellite-associated polymorphisms with no prior sequence requirement and stringent PCR conditions. Similarly, when compared to AFLP analysis, it is less technically demanding allowing to survey polymorphic loci in the genome. Thus, ISSR-PCR technology is a reliable, fast, and cost-effective marker system that can be used to study genetic variation and genetic relationships in the genusCicer. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
A genome specific DNA sequence that detects Secale africanum chromatin incorporated into wheat was developed in this study. Random amplified polymorphic DNA (RAPD) analysis was used to search for genome specific DNA sequences of S. africanum in lines, R111, “mianyang11” (MY11) and wheat-rye 1RS/1BL translocations R25 and R57. A high copy rye-specific DNA segment pSaD15940 of the S. africanum genome was obtained. The sequence of pSaD15 did not show any significant homology to other reported sequences in databases and it is therefore a new repetitive sequence of Secale. PCR primers were designed for pSaD15940, which amplify a clear 887 bp fragment in S. africanum but not in any wheat. The primers also amplified an 887 bp fragment in other accessions of rye, Chinese Spring-Imperial rye chromosome additions and a diverse range of material carrying different rye chromosomes or chromosomal segments. In situ hybridization showed that probe pSaD15940 was specifically hybridized throughout all rye chromosomes arms except for the terminal regions. The advantage of the rye-specific probe developed herein compared to those of previous reports is that it has been shown to be widely applicable to other Secale species. The probe will be useful as a molecular marker for the introgression of S. africanum and other rye chromosome segments into the wheat genome.  相似文献   

17.
An introgression line derived from an interspecific cross between Oryzasativa and Oryza officinalis, IR54741-3-21-22 was found to beresistant to an Indian biotype of brown planthopper (BPH). Genetic analysisof 95 F3 progeny rows of a cross between the resistant lineIR54741-3-21-22 and a BPH susceptible line revealed that resistance wascontrolled by a single dominant gene. A comprehensive RAPD analysisusing 275 decamer primers revealed a low level of (7.1%) polymorphismbetween the parents.RAPD polymorphisms were either co-dominant (6.9%), dominant forresistant parental fragments (9.1%) or dominant for susceptible parentalfragments (11.6%). Of the 19 co-dominant markers, one primer,OPA16, amplified a resistant parental band in the resistant bulk and asusceptible parental band in the susceptible bulk by bulked segregantanalysis. RAPD analysis of individual F2 plants with the primerOPA16 showed marker-phenotype co-segregation for all, with only onerecombinant being identified. The linkage between the RAPD markerOPA16938 and the BPH resistance gene was 0.52 cM in couplingphase. The 938 bp RAPD amplicon was cloned and used as a probe on122 Cla I digested doubled haploid (DH) plants from aIR64xAzucena mapping population for RFLP inheritance analysis and wasmapped onto rice chromosome 11. The OPA16938 RAPD markercould be used in a cost effective way for marker-assisted selection of BPHresistant rice genotypes in rice breeding programs.  相似文献   

18.
RAPD and SCAR markers for resistance to acochyta blight in lentil   总被引:3,自引:0,他引:3  
Resistance to ascochyta blight of lentil (Lens culinaris Medikus),caused by the fungus Ascochyta lentis, is determined by a single recessive gene, ral 2, in the lentil cultivar Indian head. Sixty F2 individuals from a cross between Eston (susceptible) and Indian head (resistant) lentil were analyzed for the presence of random amplified polymorphic DNA (RAPD) markers linked to the ral 2gene, using bulked segregant analysis (BSA). Out of 800 decanucleotide primers screened, two produced polymorphic markers that co-segregated with the resistance locus. These two RAPD markers, UBC2271290and OPD-10870, flanked and were linked in repulsion phase to the gene ral 2 at 12 cm and 16 cm, respectively. The RAPD fragments were converted to SCAR markers. The SCAR marker developed from UBC2271290 could not detect any polymorphism between the two parents or in the F2. The SCAR marker developed from OPD-10870 retained its polymorphism. The polymorphic RAPD marker UBC2271290 and the SCAR marker developed from OPD-10870 can be used together in a marker assisted selection program for ascochyta blight resistance in lentil. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Summary Two RAPD markers linked to gene for resistance (assayed as pustule number cm−2 leaf area) to rust [Uromyces fabae (Pers.) de Bary] in pea (Pisum sativum L.) were identified using a mapping population of 31 BC1F1 [HUVP 1 (HUVP 1 × FC 1] plants, FC 1 being the resistant parent. The analysis of genetics of rust resistance was based on the parents, F1, F2, BC1F1 and BC1F2 generations. Rust resistance in pea is of non-hypersensitive type; it appeared to be governed by a single partially dominant gene for which symbol Ruf is proposed. Further, this trait seems to be affected by some polygenes in addition to the proposed oligogene Ruf. A total of 614 decamer primers were used to survey the parental polymorphism with regard to DNA amplification by polymerase chain reaction. The primers that amplified polymorphic bands present in the resistant parent (FC 1) were used for bulked segregant analysis. Those markers that amplified consistently and differentially in the resistant and susceptible bulks were separately tested with the 31 BC1F1 individuals. Two RAPD makers, viz., SC10-82360 (primer, GCCGTGAAGT), and SCRI-711000 (primer, GTGGCGTAGT), flanking the rust resistance gene (Ruf) with a distance of 10.8 cM (0.097 rF and LOD of 5.05) and 24.5 cM (0.194 rF and a LOD of 2.72), respectively, were identified. These RAPD markers were not close enough to Ruf to allow a dependable maker-assisted selection for rust resistance. However, if the two makers flanking Ruf were used together, the effectiveness of MAS would be improved considerably.  相似文献   

20.
Summary A rapid fluorescent in situ hybridization protocol, which can be completed in one working day, has been utilised to visualize chromosome preparations of barley, chickpea, white clover, millet, rye, sugarcane, wheat, Aegilops spp. and Leymus spp. Both total genomic DNA and cloned nuclear rDNA were used as a probe. This protocol has the advantage of brevity and flexibility over more conventional approaches, and has made fluorescent in situ hybridization a routine cytological procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号