首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil contamination in agroecosystems remains a global environmental problem. Biochar has been suggested as an organic amendment to alleviate soil pollution, sequester carbon(C), and improve soil fertility. However, information on how bacterial and fungal communities in acidic bulk and rhizosphere soils respond to swine manure and its biochar is still lacking. In this study, biochar and swine manure were applied at two rates of 1.5 and 3 t ha-1 in a rice-wheat rotation field to assess ...  相似文献   

2.
[目的]运用高级别分类学分辨率揭示玉米根际和非根际土壤中细菌群落微多样性,并探讨微多样性与土壤有机碳矿化的关系,从更精细的分类学分辨率水平上为玉米根际土壤中微生物驱动的碳循环提供理论依据。[方法]以西北农林科技大学曹新庄试验农场为依托,采取田间生长条件下玉米根际和非根际两种土壤类型。利用高通量测序技术,比较OTUs和ASVs两种分类学分辨率水平上玉米根际和非根际土壤中的细菌群落结构,揭示细菌群落的微多样性。同时通过培养试验检测根际和非根际土壤的有机碳矿化特性。[结果]通过比较OTUs和ASVs两种分类学分辨率水平上的细菌群落,OTUs和ASVs两种方式显示出相似的细菌群落结构。在玉米根际和非根际土壤类型中,ASVs在更高分类学分辨率水平上描绘细菌群落组成,同时揭示了普遍存在于OTUs内的不同菌株或生态型。此外,两种不同生长策略(r-策略和K-策略)细菌物种的相对丰度差异是导致根际和非根际土壤细菌群落结构不同的主要因素。培养试验表明,根际土壤有机碳矿化量显著高于非根际土壤。3 a的连续采样分析结果表明,根系是田间成熟玉米根际和非根际土壤理化性质差异的主要因素而受时间(2019—2021年...  相似文献   

3.
Irrigation with treated wastewater (TWW) may affect soil structure and stability and the characteristics of dissolved organic matter (DOM) of the soil solution. The objectives of our study were (i) to evaluate the impact of TWW irrigation, as compared with fresh water (FW) irrigation, on aggregate stability and saturated hydraulic conductivity (indices of soil structure stability) and (ii) to determine whether these indices can be associated with the chromophoric indicators of water‐extractable DOM in TWW‐ and FW‐irrigated soils. We studied aggregate stability and soil hydraulic conductivity (HC) of four different soil types irrigated with either TWW (for at least 5 years) or FW. The results were linked to earlier published data on the concentration scores of fluorescent chromophoric DOM components (obtained from excitation‐emission matrices of flouorescence coupled with parallel factor analysis), dissolved organic carbon (DOC) concentration and absorbance at 254 nm (Abs254). These were all obtained from water extracts of the same soils as those used in the current study. Irrigation with TWW decreased aggregate stability, in comparison to irrigation with FW, in the sandy clay and clay soils, while in the loamy sand TWW increased aggregate stability. The apparent steady state HCs in the TWW‐irrigated samples in the loamy sand, sandy clay and clay soils were similar to, or significantly less than, those obtained in the FW‐irrigated samples. In the sandy loam the opposite trend was noted. Results of principal component and classification analyses showed that the aggregate stability indices were directly associated with soil organic matter and DOM attributes in the coarse‐textured soils, while in the fine‐textured soils inverse associations were noted. Only in the fine‐textured soils were the HC attributes associated (directly) with some of the DOM characteristics. Our results suggest that structural indices of fine‐textured soils are more sensitive than those of coarse‐textured soils to the composition of water extractable DOM.  相似文献   

4.
In this study, we compared the differences of bacterial abundance and diversity between rhizosphere and surrounding bulk soils under soil salinization and petroleum contamination in the Yellow River Delta on a 110-km-distance scale. In comparison with bulk soils, rhizosphere soils were mainly characterized by lower salinity and higher water content in saline soils. For bacterial abundance, the numbers of total bacteria and hydrocarbon degraders were significantly higher in rhizosphere soils than those in bulk soils. Although there was no significant difference in total petroleum hydrocarbon (TPH) concentration between the two types of soils, TPH had distinctly different effects on bacterial abundance in rhizosphere and bulk soils. TPH concentration was the major determinant of total bacterial abundance and had positive effects on abundances of hydrocarbon degraders. However, the abundances of total bacteria and hydrocarbon degraders in bulk soils were primarily determined by soil salinity and water content. Great abundance of rhizosphere bacteria suggested that plant roots could alleviate the stresses from soil salinization and provide more favorable microhabitats for bacterial growth. TPH had positive effects on bacterial diversity of both rhizosphere and bulk soils. Our results support the view that petroleum in the environments functions as both toxic chemicals and carbon sources to soil bacteria. Great abundance and diversity of total bacteria in plant rhizospheres would potentially improve the roles of bacteria in maintaining ecosystem functioning in the degraded ecosystems. Our results would improve our understanding of the relationships between rhizosphere effects and multiple environmental stresses that control the development of bacterial community in fragile anthropologically-affected ecosystems.  相似文献   

5.
不同质地小麦根际土壤有机碳、氮含量及特性研究   总被引:3,自引:0,他引:3  
测定了两种不同质地土壤小麦根际土及非根际土中不同形态有机碳、氮的含量及特性。结果表明,粘壤土及砂质壤土两种不同质地土壤小麦根际土中有机碳、可溶性有机碳(WEOC),土壤全氮、可溶性有机氮(WEON)、游离氨基酸及硝态氮和铵态氮均显著高于非根际土;根际土及非根际土中WEON的含量均高于硝态氮及铵态氮含量,其在根-土界面氮素转化中的作用值得关注。不同质地土壤相比,粘壤土中各指标的含量均显著高于砂质壤土。根际土有机碳矿化累积量及矿化率均高于非根际土;培养期间粘壤土释放的CO2量明显低于沙质壤土,这可能与粘壤土粘粒含量高,对土壤有机碳的保护作用有关。  相似文献   

6.
In Indian Punjab, rice–wheat is a dominant cropping system in four agro‐ecosystems, namely undulating subregion (zone 1), Piedmont alluvial plains (zone 2), central alluvial plains (zone 3), and southwestern alluvial plains (zone 4), varying in rainfall and temperature. Static and temporal variabilities in soil physical and chemical properties prevail because of alluvial parent material, management/tillage operations, and duration of rice–wheat rotation. A detailed survey was undertaken to study the long‐term effect of rice–wheat rotation on soil physical (soil separates, bulk density, modulus of rupture, saturated and unsaturated hydraulic conductivities, soil water content, and suction relations) and chemical (organic carbon, pH, electrical conductivity) properties of different textured soils (sandy clay loam, loam, clay loam, and silty clay loam) in these four zones of Punjab. Soil samples (of 0‐ to 30‐cm depth) from 45 sites were collected during 2006 and were analyzed for physical and chemical properties. The results showed that sand content and pH increased whereas silt and organic carbon decreased significantly from zones 1 to 4. Compared to other textures, significantly greater organic carbon, modulus of rupture, and pH in silty clay loam; greater bulk density in clay loam, and greater saturated hydraulic conductivity in sandy clay loam were observed. Irrespective of zone and soil texture, in the subsurface soil, there was a hard pan at 15–22.5 cm deep, which had high soil bulk density, modulus of rupture, more silt and clay contents (by 3–5%) and less organic carbon and hydraulic conductivity than the surface (0–15 cm) layer. These properties deteriorated with fineness of the soil texture and less organic carbon content. Continuous rice–wheat cropping had a deleterious effect on many soil properties. Many of these soils would benefit from the addition of organic matter, and crop yields may also be affected by the distinct hardpan that exists between 15 and 22.5 cm deep.  相似文献   

7.
不同茬口和施氮水平对南瓜根际细菌碳分解潜力的影响   总被引:1,自引:0,他引:1  
邱虎森  杨慎骄  周新国 《土壤》2021,53(1):133-139
为探明根际细菌群落多样性及有机碳分解功能基因对耕作措施的响应特征,以收获小麦和西瓜后种植的南瓜根际土壤为研究对象,以两种施氮水平(纯氮施入量分别为1.0、2.0 g/kg)为处理,结合高通量测序和PICRUSt功能预测解析不同茬口和施氮水平下南瓜根际细菌群落结构和参与有机碳分解代谢细菌的关键功能基因丰度的差异.结果表明...  相似文献   

8.
We studied the effects of the application of organic (OM) and inorganic fertilizer (CF) on soil protease activity and proteolytic bacterial communities in rhizosphere and bulk soil on an experimental lettuce field in Hokkaido, Japan. The protease activity always was higher in soils of the OM than with the CF treatment, and also higher in the rhizosphere than in the bulk soil. We analyzed proteolytic bacterial communities by denaturing gradient gel electrophoresis (DGGE) of the alkaline metalloprotease (apr) and neutral metalloprotease (npr) genes. Most apr forms detected were closely related to apr of Pseudomonas fluorescens, and all npr variants closely resembled the gene of Bacillus megaterium. These results were consistent with findings from tests using cultured bacterial communities, indicating a high specificity of our PCR-DGGE for amplifying apr and npr genes. The community compositions of proteolytic bacteria were assessed by principal component analysis of the DGGE profiles. There were significant differences in the effects of CF and OM on the community compositions of apr- and npr-expressing bacteria, and the communities of the two types of bacteria played different roles in rhizosphere and bulk soil. We found significant correlations between the protease activity and the communities of the two types of bacteria. The results indicate that different proteolytic bacteria release different amounts or activities of protease, and that the composition of proteolytic bacterial communities may play a major role in determining overall soil protease activity.  相似文献   

9.
[目的]比较甘蔗宿根矮化病(ratoon stunting disease,RSD)感病植株与非感病植株根际土壤的生物学性状及细菌群落结构特征,旨在为构建甘蔗健康的根际微环境,筛选高效RSD生防细菌提供参考。[方法]通过田间调查和实验室鉴定,以甘蔗RSD感病植株为试材,非感病植株为对照,采集甘蔗RSD感病植株和非感病植株的根际土壤,并基于传统和现代高通量测序技术,分析了甘蔗RSD感病植株和非感病植株根际土壤的生物学性状和细菌群落结构特征。[结果]与甘蔗RSD非感病植株相比,感病植株根际土壤中指示土壤肥力与健康状况的生物学性状指标β-葡糖苷酶、磷酸酶和氨肽酶活性,以及微生物生物量碳、氮、磷显著降低;同时,指示细菌丰富度的Chao1指数和指示细菌多样性的Shannon指数显著下降。门分类水平与非感病甘蔗植株相比,RSD感病植株根际土壤中Proteobacteria(变形杆菌门)、Actinobacteria(放线菌门)、Gemmatimonadetes(芽单胞菌门)和Nitrospirae(硝化螺旋菌门)等优势门类细菌占比呈倍级降低,但Chloroflexi(绿弯菌门)、Acidobacteria(酸杆菌门)、Firmicutes(厚壁菌门)、Cyanobacteria(蓝细菌门)、Planctomycetes(浮霉菌门)、Bacteroidetes(拟杆菌门)等优势门类细菌占比呈倍级增加;在属分类水平,与非感病甘蔗植株相比,RSD感病植株根际土壤中Xanthobacteraceae(黄色杆菌属)、Acidothermus、Gaiellales、Roseiflexus(玫瑰菌属)、Micromonosporaceae(小单孢菌属)和Nitrospira(硝化螺旋菌属)细菌占比呈倍级降低,但Acidobacteria(嗜酸菌属)细菌及部分未知菌属却呈倍级提高。[结论]甘蔗RSD感病植株根际微环境中指示土壤肥力的生物学指标显著降低,细菌丰富度和多样性显著下降,部分优势细菌门属占比发生剧变可能是导致甘蔗RSD发生的重要原因。  相似文献   

10.
There is an increasing concern about rice (Oryza sativa L.) soil microbiomes under the influence of mixed heavy metal contamination.We used the high-throughput Illumina MiSeq sequencing approach to explore the bacterial diversity and community composition of soils in four paddy fields,exhibiting four degrees of mixed heavy metal (Cd,Pb and Zn) pollution,and examined the effects of these metals on the bacterial communities.Our results showed that up to 2 104 to 4 359 bacterial operational taxonomic units (OTUs) were found in the bulk and rhizosphere soils of the paddy fields,with the dominant bacterial phyla (greater than 1% of the overall community) including Proteobacteria,Actinobacteria,Firmicutes,Acidobacteria,Gemmatimonadetes,Chloroflexi,Bacteroidetes and Nitrospirae.A number of rare and candidate bacterial groups were also detected,and Saprospirales,HOC36,SC-I-84 and Anaerospora were rarely detected in rice paddy soils.Venn diagram analysis showed that 174 bacterial OTUs were shared among the bulk soils with four pollution degrees.Rice rhizosphere soils displayed higher bacterial diversity indices (ACE and Chao 1) and more unique OTUs than bulk soils.Total Cd and Zn in the soils were significantly negatively correlated with ACE and Chao 1,respectively,and the Mantel test suggested that total Pb,total Zn,pH,total nitrogen and total phosphorus significantly affected the community structure.Overall,these results provided baseline data for the bacterial communities in bulk and rhizosphere soils of paddy fields contaminated with mixed heavy metals.  相似文献   

11.
健康与罹患青枯病的番茄土壤细菌群落特征比较   总被引:1,自引:1,他引:1  
应用实时荧光定量PCR及MiSeq高通量测序技术,全面地研究了连作番茄田块中健康与感染青枯病植株周围土体及根际土壤细菌群落结构和组成.结果表明:健康番茄土体土壤的pH及全碳含量显著高于感病番茄土体土壤;土体及根际土壤的细菌群落结构和组成明显不同于感病番茄土体及根际土壤细菌群落.与感病番茄根际相比,健康番茄根际细菌的数量...  相似文献   

12.
为研究库布齐沙地生态恢复过程中不同植被恢复类型土壤微生物细菌群落结构、多样性的变化特征,以流动沙地为对照,运用高通量测序技术,对自然恢复的油蒿群落、人工种植的中间锦鸡儿群落根际和非根际土壤细菌多样性进行了研究,并分析了土壤理化性质对其分布的影响。结果表明:(1)与流沙对照相比,两种植被恢复类型对细菌多样性产生了正效应,细菌群落丰度、多样性和均匀度明显增加。其中,自然恢复的油蒿群落土壤细菌丰度高于人工种植的中间锦鸡儿群落;(2)变形菌门、酸杆菌门和放线菌门为研究区土壤中的优势细菌类群,其中变形菌门在各样地丰度比例最高,变形菌的4个亚群变化趋势一致,α-变形菌相对含量在油蒿和中间锦鸡儿群落根际土壤中明显增加,尤其是自然恢复的油蒿群落根际土壤中α-变形菌得到了很好的恢复;(3)土壤有机质、全氮、速效氮、速效钾含量和土壤含水量是影响土壤细菌群落丰度和多样性的主要土壤因子,典型相关分析表明土壤有机质、全氮、全钾、速效钾、速效氮含量对于研究区土壤细菌群落遗传多样性的变化起着重要作用。  相似文献   

13.
Abstract

We studied the effects of the application of organic matter (OM) and chemical fertilizer (CF) on soil alkaline phosphatase (ALP) activity and ALP-harboring bacterial communities in the rhizosphere and bulk soil in an experimental lettuce field in Hokkaido, Japan. The ALP activity was higher in soils with OM than in soils with CF, and activity was higher in the rhizosphere for OM than in the bulk soil. Biomass P and available P in the soil were positively related to the ALP activity of the soil. As a result, the P concentration of lettuce was higher in OM soil than in CF soil. We analyzed the ALP-harboring bacterial communities using polymerase chain reaction based denaturing gradient gel electrophoresis (DGGE) on the ALP genes. Numerous ALP genes were detected in the DGGE profile, regardless of sampling time, fertilizer treatment or sampled soil area, which indicated a large diversity in ALP-harboring bacteria in the soil. Several ALP gene fragments were closely related to the ALP genes of Mesorhizobium loti and Pseudomonas fluorescens. The community structures of the ALP-harboring bacteria were assessed using principal component analysis of the DGGE profiles. Fertilizer treatment and sampled soil area significantly affected the community structures of ALP-harboring bacteria. As the DGGE bands contributing to the principal component were different from sampling time, it is suggested that the major bacteria harboring the ALP gene shifted. Furthermore, there was, in part, a significant correlation between ALP activity and the community structure of the ALP-harboring bacteria. These results raise the possibility that different ALP-harboring bacteria release different amounts and/or activity of ALP, and that the structure of ALP-harboring bacterial communities may play a major role in determining overall soil ALP activity.  相似文献   

14.
黄河三角洲刺槐根际与非根际细菌结构及多样性   总被引:4,自引:0,他引:4  
为精确分析黄河三角洲刺槐根际与非根际土壤细菌群落定殖情况,本研究采用高通量测序方法对刺槐根际与非根际土壤细菌结构及多样性进行了研究。研究表明,根际土壤细菌共有36门214属,非根际土壤细菌共有33门153属。变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、酸杆菌门(Acidobacteria)细菌丰度超过15%,是根际与非根际土壤中的优势菌落。根际与非根际土壤中酸杆菌门、硝化螺旋菌门(Nitrospirae)丰度差异显著。根际土壤中红游动菌属(Rhodoplanes)、溶杆菌属(Lysobacter)、热单胞菌属(Thermomonas)、链霉菌属(Streptomyces)及非根际土壤中红游动菌属、溶杆菌属、链霉菌属、Kaistobacter细菌丰度超过4%。根际土壤中固氮菌丰度显著高于非根际土壤,解磷、解钾细菌丰度差异不显著。根际与非根际土壤细菌Chao丰富度分别为2 054、2 376,差异显著。根际与非根际土壤细菌之间的权重(Weighted Unifrac)距离在0.12~0.25之间。综上所述,黄河三角洲刺槐根际与非根际土壤细菌结构具有一定差异,多样性差异显著。  相似文献   

15.
The relative importance of specific plant properties versus soil characteristics in shaping the bacterial community structure of the rhizosphere is a topic of considerable debate. Here, we report the results of a study on the bacterial composition of the rhizosphere of the wild plant Carex arenaria (sand sedge) growing at 10 natural sites in The Netherlands. The soil properties of the sandy soils at these sites were highly disparate, most notably in pH, chloride and organic matter content. Rhizosphere and bulk soil bacterial communities were examined by culture-independent means, namely, 16S rDNA-directed PCR-DGGE profiling. Large differences were observed between the bacterial communities of the different sites for both bulk and rhizosphere soil. Cluster analysis of bacterial profiles revealed that the rhizosphere community of each site was generally more closely related to the bulk soil community of that site rather than to rhizosphere communities of other sites. Hence, bacterial community structure within the rhizosphere of C. arenaria appeared to be determined to a large extent by the bulk soil community composition. This conclusion was supported by a reciprocal planting experiment, where C. arenaria shoots of different sites yielded highly similar rhizosphere communities when planted in the same soil.  相似文献   

16.
Aiming at learning the effects of soil conditions and cultivar on the bacterial diversity in the rhizosphere of soybean (Glycine max(L.) Merr.), bacterial communities associated with four soybean cultivars grown in two soils were revealed by terminal-restriction fragment length polymorphism (T-RFLP) combined with sequencing analysis of a 16S rDNA clone library. Lower bacteria diversity was found in soil A which has higher salinity and nutrient contents, while the highest bacterial diversity was found in the rhizosphere of cv. Jidou 12 in both soils. These results revealed that both the soil conditions and soybean cultivar affected the community composition of rhizosphere bacteria, but the effect of soil conditions was greater than that of soybean cultivar as demonstrated by the principal component analysis. It also revealed that the abundant rhizosphere bacteria may also the main symbiotic or non-symbiotic nodule endophytes.  相似文献   

17.
Aspalathus linearis is a commercially important plant species endemic to the Cape Floristic Region of South Africa and is used to produce a herbal tea known as rooibos tea. Symbiotic interactions between A. linearis and soil bacteria play an important role in the survival of Aspalathus plants in the highly nutrient-poor, acidic fynbos soil. The aim of this study was to characterize and compare rhizosphere and bulk soil bacterial communities associated with natural and commercially grown A. linearis, as well as the effect of seasonal changes on these communities. Bacterial communities were characterized using high throughput amplicon sequencing, and their correlations with soil chemical properties were investigated. The N-fixing bacterial community was characterized using terminal restriction fragment length polymorphism and real time quantitative polymerase chain reaction. Actinobacteria, Proteobacteria, and Acidobacteria were the most dominant bacterial phyla detected in this study. Highly similar bacterial communities were associated with natural and commercially grown plants. Significant differences in the bacterial community were observed between rhizosphere and bulk soils collected in the dry season, while no significant differences were detected in the wet season. This study provides insights into bacterial community structure and potential factors shaping bacterial community structure with commercially important A. linearis.  相似文献   

18.
Proteolytic bacterial communities, which mineralize organic nitrogen, play a key role in agricultural systems. In this study, alkaline metalloprotease (apr) gene fragments from proteolytic bacteria were investigated in bulk and rhizosphere paddy soil from four fields under organic management (for 2, 3, 5, and 9 years), and from one field under conventional management (for 2 years). We analyzed the abundance and structure of the proteolytic bacterial communities using real-time quantitative PCR and denaturing gradient gel electrophoresis. Our results showed that the abundance of proteolytic bacteria ranged from 1.57?×?108 to 8.02?×?108?copies/g of soil. In addition, the abundance of the proteolytic bacteria in the paddy soils under organic management was significantly higher than those in the paddy soil under conventional management. Moreover, the gene copy numbers in the rhizosphere soils were significantly higher than those in the bulk soils. The abundance of proteolytic bacteria tended to increase with the duration of organic management, with the highest abundance being found in the soil that had been under organic management for 5 years. However, the proteolytic bacteria communities in the paddy soils were not significantly affected by management practices. Phylogeny analysis showed that all gel bands obtained represented genes from Pseudomonas. Additionally, correlation analysis and canonical correspondence analysis showed that C/N, C, and N were important factors that influenced the abundance and community structure of the proteolytic bacteria. These results suggest that proteolytic bacteria are indicators in organic management systems, depolymerize organic N and hence maintain soil sustainability.

Abbreviations: CM: conventional management; OM: organic management; DGGE: denaturing gradient gel electrophoresis; qPCR: real-time quantitative PCR detecting system; COFCC: China organic food certification center; CCA: canonical correspondence analysis  相似文献   

19.
The shortage of fresh water (FW) in Israel and other semiarid regions has forced farmers to significantly expand the use of treated wastewater (TWW). Recently, farmers utilizing reclaimed wastewater (TWW) reported a unique type of water distribution regime in drip-irrigated soils, as follows: (i) limited wetted area on the soil surface; and (ii) small saturated areas around and below the dripper, in TWW irrigated soil as opposed to an even, onion-like wet profile, formed under fresh water (FW) irrigation. Following this observation in the field and after conducting preliminary tests in the laboratory, we hypothesized that TWW irrigation introduces water-repellent organic constituents into the soil. Tests characterizing the water distribution showed the diameter of the saturated area on the soil surface and its water content (at a depth of 0–10 cm) was smaller with TWW than with FW irrigation. The TWW accumulated on the soil surface in small lenses and then flowed rapidly into the ground. The repellency of soils irrigated with FW and TWW was measured with the water drop penetration time test. Soils irrigated with FW were hydrophilic, whereas those irrigated with TWW exhibited hydrophobicity. Fourier transform infra-red spectroscopy (FTIR) and 13C-NMR analyses of organic components extracted from the soils with organic solvents indicated differences in composition only at a depth of 0–2 cm. Extracting soils with a methanol + chloroform (1:1, by volume) mixture was found to be very effective in the removal and extraction of hydrophobic aliphatic components from soils irrigated with TWW.  相似文献   

20.
Numerous works have reported the impact on soil properties and microbial communities of intensive soil management, but very little is known about the impact caused by traditional agroforestry systems carried out by smallholders. To investigate whether the different smallholder's management between a monoculture plantation of Cordia dodecandra trees and a Silvopastoral system has led to a divergence in these ecosystems, soil properties, as well as soil and Cordia dodecandra rhizosphere microbial communities were analysed by MiSeq amplicon sequencing. The main findings were (i) Large variation in the soil properties of the Silvopastoral system suggests that it has a greater heterogeneity; (ii) Organic carbon, organic matter, carbonates, nitrogen, inorganic phosphorous and calcium, was significantly higher in the soil of the Silvopastoral system. (iii) The relative abundance of the major prokaryotic orders in soil and rhizospheres displayed small differences between the two agroforestry systems, and diversity indexes were slightly higher in the Silvopastoral system. (iv) The fungal orders Hypocreales and Pleosporales were more abundant in the Silvopastoral system than in the monoculture. Other evaluated parameters showed only minor or no difference. Thus, the main conclusion is that these soils have diverged in some properties and fungal orders, but not in their prokaryotic communities. To our knowledge, this is the first report on the divergence in soil properties and microbiota of these two extended smallholder agroforestry systems and therefore can serve as reference for future works.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号