首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nutritional efficacy of fairy shrimp (Streptocephalus sirindhornae) nauplii, as a live food, was studied for growth performance and survival rate of giant freshwater prawn (Macrobrachium rosenbergii) postlarvae. A feeding experiment was designed with four different feeds: dry commercial feed, fairy shrimp nauplii, Artemia sp. nauplii and adult Moina macrocopa. Results from the nutritional composition revealed that fairy shrimp nauplii had protein and lipid contents of 54.58 ± 2.8 g kg?1 and 255 ± 2.8 g kg?1, respectively. The highest value for an individual amino acid in fairy shrimp was lysine (140.7 ± 1.6 g kg?1). The essential amino acids content in the whole body of the larval prawns was in the range of 66.7–67.5 g kg?1. Fairy shrimp nauplii had the highest essential amino acid ratio (A/E) of lysine, similarly, in musculature of prawn larvae. Weight gain and specific growth rate of the postlarvae fed with fairy shrimp nauplii were significantly higher than those fed with Artemia nauplii, adult Moina and dry commercial feed. The presented results suggest that S. sirindhornae nauplii can be used as a nutritionally adequate food for freshwater prawn M. rosenbergii postlarvae.  相似文献   

2.
In the field, moulting and salinity drop in the water due to excessive rainfall have been mentioned to be risk factors for WSSV outbreaks. Therefore, in this study, the effect of an acute change in environmental salinity and shedding of the old cuticle shell on the susceptibility of Penaeus vannamei to WSSV was evaluated by immersion challenge. For testing the effect of abrupt salinity stress, early premoult shrimp that were acclimated to 35 g L?1 were subjected to salinities of 50 g L?1, 35 g L?1, 20 g L?1, 10 g L?1 and 7 g L?1 or 5 g L?1 and simultaneously exposed to 105.5 SID50 mL?1 of WSSV for 5 h, after which the salinity was brought back to 35 g L?1. Shrimp that were transferred from 35 g L?1 to 50 g L?1, 35 g L?1 and 20 g L?1 did not become infected with WSSV. Shrimp became infected with WSSV after an acute salinity drop from 35 g L?1 to 10 g L?1 and lower. The mortality in shrimp, subjected to a salinity change to 10 g L?1, 7 g L?1 and 5 g L?1, was 6.7%, 46.7% and 53.3%, respectively (P < 0.05). For testing the effect of moulting, shrimp in early premoult, moulting and post‐moult were immersed in sea water containing 105.5 SID50 mL?1 of WSSV. The resulting mortality due to WSSV infection in shrimp inoculated during early premoult (0%), ecdysis (53.3%) and post‐moult (26.72%) demonstrated that a significant difference exists in susceptibility of shrimp during the short moulting process (P < 0.05). The findings of this study indicate that during a drop in environmental salinity lower than 10 g L?1 and ecdysis, shrimp are at risk for a WSSV infection. These findings have important implications for WSSV control measures.  相似文献   

3.
The Asian swamp eel Monopterus albus is normally considered a freshwater species, but can also occasionally be found in brackish water. It is an obligate air‐breather with highly reduced gills, making its osmoregulation physiology interesting because the gills normally represent the primary site of osmoregulation in teleosts. Being a popular fish for human consumption, the swamp eel is cultured extensively in freshwater ponds in the Mekong Delta of Vietnam. However, very little is known about its salinity tolerance, which is becoming topical due to the increasing salt‐water intrusions into tropical deltas. We therefore studied how increased salinity affects survival, growth, blood pressure, heart rate, blood osmolality and plasma ions. All eels survived prolonged exposure to 5 and 10 g L?1, although plasma osmolality increased significantly at 10 g L?1. Further elevation to 15 and 20 g L?1 was associated with significantly elevated mortality, with a corresponding increase in plasma osmolality and ion con‐centrations. Our results show that swamp eels thrive in 0–10 g L?1 with an optimum growth between 0 and 9 g L?1, indicating that utilization of low saline brackish waters for aquaculture is possible.  相似文献   

4.
Marbled spinefoot, Siganus rivulatus, is a herbivorous euryhaline teleost widely distributed in the Eastern Mediterranean. It is an economically valuable species and a suitable candidate for warm water aquaculture. Accordingly, understanding the effects of environmental factors on fish metabolism is important to optimize culture conditions. Two experiments were performed to establish standard metabolic rate and study the effect of salinity on metabolism of marbled spinefoot. In the first experiment, a series of flow‐through respirometry experiments was performed at 27°C and 35 g L?1. The standard metabolic rate of marbled spinefoot juveniles was calculated as 0.57 ± 0.02 mg O2 g?1 h?1 (mean ± SE). In the second experiment, fish were maintained at salinities of 25, 30, 35 and 40 g L?1 for 2 weeks. Flow‐through respirometry was performed to measure respiration rates at the various salinities. Respiration rates were similar among fish in salinities of 30, 35 and 40 g L?1 but increased significantly at 25 g L?1. Results suggest that despite the euryhalinity of marbled spinefoot, farmers should maintain salinity within the optimal range of 30–40 g L?1 in order to improve productivity.  相似文献   

5.
The nitrite toxicity was estimated in juveniles of L. vannamei. The 24, 48, 72 and 96 h LC50 of nitrite‐N on juveniles were 8.1, 7.9, 6.8 and 5.7 mg L?1 at 0.6 g L?1; 14.4, 9.6 8.3 and 7.0 mg L?1 at 1.0 g L?1; 19.4, 15.4, 13.4 and 12.4 mg L?1 at 2.0 g L?1 of salinity respectively. The tolerance of juveniles to nitrite decreased at 96 h of exposure by 18.6% and 54.0%, when salinity declined from 1.0 to 0.6 g L?1 and from 2.0 to 0.6 g L?1 respectively. The safe concentrations at salinities of 0.6, 1.0 and 2.0 g L?1 were 0.28, 0.35 and 0.62 mg L?1 nitrite‐N respectively. The relationship between LC50 (mg L?1), salinity (S) (g L?1) and exposure time (T) (h) was LC50 = 8.4688 + 5.6764S – 0.0762T for salinities from 0.6 to 2.0 g L?1 and for exposure times from 24 to 96 h; the relationship between survival (%) and nitrite‐N concentration (C) for salinity of 0.6–2.0 g L?1, nitrite‐N concentrations of 0–40 mg L?1 and exposure times from 0 to 96 h was as follows: survival (%) = 0.8442 + 0.1909S – 0.0038T – 0.0277C + 0.0008ST + 0.0001CT–0.0029SC, and the tentative equation for predicting the 96‐h LC50 to salinities from 0.6 to 35 g L?1 in L. vannamei juveniles (3.9–4.4 g) was 96‐h LC50 = 0.2127 S2 + 1.558S + 5.9868. For nitrite toxicity, it is shown that a small change in salinity of waters from 2.0 to 0.6 g L?1 is more critical for L. vannamei than when wider differences in salinity occur in brackish and marine waters (15–35 g L?1).  相似文献   

6.
In this study, we tested the lower salinity tolerance of juvenile shrimps (Litopenaeus vannamei) at a relatively low temperature (20 °C). In the first of two laboratory experiments, we first abruptly transferred shrimps (6.91 ± 0.05 g wet weight, mean ± SE) from the rearing salinity (35 000 mg L?1) to salinities of 5000, 15 000, 25 000, 35 000 (control) and 40 000 mg L?1 at 20 °C. The survival of L. vannamei juvenile was not affected by salinities from 15 000 to 40 000 mg L?1 during the 96‐h exposure periods. Shrimps exposed to 5000 mg L?1 were significantly affected by salinity, with a survival of 12.5% after 96 h. The 24‐, 48‐ and 96‐h lethal salinity for 50% (LS50) were 7020, 8510 and 9540 mg L?1 respectively. In the second experiment, shrimps (5.47 ± 0.09 g wet weight, mean ± SE) were acclimatized to the different salinity levels (5000, 15 000, 25 000, 35 000 and 40 000 mg L?1) and then maintained for 30 days at 20 °C. Results showed that the survival was significantly lower at 5000 mg L?1 than at other salinity levels, but the final wet weight under 5000 mg L?1 treatment was significantly higher than those under other treatments (P<0.05). Feed intake (FI) of shrimp under 5000 mg L?1 was significantly lower than those of shrimp under 150 00–40 000 mg L?1; food conversion efficiency (FCE), however, showed a contrasting change (P<0.05). Furthermore, salinity significantly influenced the oxygen consumption rates, ammonia‐N excretion rates and the O/N ratio of test shrimps (P<0.05). The results obtained in our work provide evidence that L. vannamei juveniles have limited capacity to tolerate salinities <10 000 mg L?1 at a relatively low temperature (20 °C). Results also show that L. vannamei juvenile can recover from the abrupt salinity change between 15 000 and 40 000 mg L?1 within 24 h.  相似文献   

7.
The giant freshwater prawn, Macrobrachium rosenbergii, is a species with a high commercial value in aquaculture. Two experiments were performed to determine the effects of salinities on the osmoregulation, growth and molting cycles of M. rosenbergii during growout. The first experiment was designed to determine whether these animals are capable of adapting to the changes in salinity seen in salinity intrusions in tropical deltas, with an incremental increase in salinity of 3‰ per day from 0‰ to 30‰ Haemolymph osmolality was rapidly regulated up to salinities of 15‰ , whereas animals conformed at higher salinities. The second experiment determined the growth, moulting cycle, osmolality, muscle water content and mortality during a 4‐month experiment at 0‰, 15‰ or 25‰ salinity. The weight gains in 0‰ and 15‰ were not significantly different and were comparable to the growth rates achieved in production farms with body mass increases of 2.6 and 2.3‐fold their initial body mass, respectively, after 4 months. The 25‰ group suffered from low growth, high mortality and a significantly lower moulting frequency. These data show that this species can be reared in brackish water up to 15‰, allowing for farming in the large areas impacted by salt water intrusions in tropical deltas.  相似文献   

8.
The sea cucumber Holothuria leucospilota is a good candidate for aquaculture, for large‐scale production of this sea cucumber, it is imperative to know the effects of salinity on its physiological performance. In this study, ingestion, oxygen consumption and ammonium excretion rates of the adult sea cucumber H.leucospilota (16.98 ± 1.14 g, wet weight) at various salinity levels (18, 23, 28, 33 and 38 PSU) were studied in the laboratory. The species were acclimated for 1 week at the desired salinity before testing, and were fed with sediment from their natural habitat during this period. Results showed that the minimum ingestion rate (0.02 ± 0.01 g g?1d?1) at a salinity of 18 PSU was significantly lower than those observed at salinities of 28, 33 and 38 PSU, and there was no significant difference among the values at 23, 28, 33 and 38 PSU. The maximum value of oxygen consumption rate recorded at a salinity of 28 PSU was significantly higher than the minimum at 18 PSU, no significant differences were observed among other treatments. The ammonium excretion rates of H. leucospilota also changed significantly in response to salinity variations, the maximum value observed at a salinity of 28 PSU (0.09 ± 0.03 μM g?1h?1) being nearly five times higher than the minimum value at a salinity of 38 PSU (0.02 ± 0.01 μM g?1h?1). The O:N ratio varied as a function of salinity. Lower O:N ratios (<11.0) at salinities below 23 PSU indicated protein‐dominated catabolism under hyposaline stress; the higher O:N ratio (46.5) at a salinity of 38 PSU indicated carbon‐based metabolism. Results of this study indicated that the sea cucumber H. leucospilota may have a wide tolerance of salinity variation. However, it is not a very suitable species for rearing in hyposaline water. This study provides useful information for improving aquaculture management in tropical and subtropical coastal areas.  相似文献   

9.
Sexually mature kutum, Rutilus frisii kutum, captured from its natural habits, the Caspian Sea and the Khoushkrood River, reared at 0.5 g L?1 and 8–13 g L?1 for approximately 1 year in experimental condition, for assessing the effect of salinity on reproduction. Plasma concentrations of sex steroid hormones (17β‐estradiol, testosterone and 17α‐hydroxyprogestrone) were measured in the three stages of gametogenesis. Female kutum held at <0.5 g L?1 or 8–13 g L?1 had no ovulated oocytes in their ovaries. In contrast, males held in captivity were spermiated, similar to their wild counterparts. The average sperm volume of males held at <0.5 g L?1 (2.36 ± 0.46 mL) was lower than males held at 8–13 g L?1 (3.65 ± 0.73 mL) at the end of the experimental period. The highest concentration of testosterone was observed in mid‐gametogenesis in wild fish that was significantly higher than the concentration seen in fish held in either <0.5 g L?1 or 8–13 g L?1. Female kutum showed suppressed steroid hormones in captivity, resulting in failure in the gonad development. However, male kutum adapt well to captivity and showed synchrony in steroid hormone variations with the wild fish, resulting in the testicular development. Results of this study also indicate that salinity plays a minor, but vital, role in reproduction of kutum, a factor that needs to be considered for keeping broodstock of brackish water fish species like kutum.  相似文献   

10.
The tolerance of postlarval Macrobrachium rosenbergii to gradual and rapid increases in salinity was determined. Mortalities occurred at salinities around 25‰ and increased rapidly at levels ≥30‰ in both cases. However, acclimation substantially increased survival time at 35‰.Freezing point depressions of blood were measured from laboratory-reared M. rosenbergii postlarvae and juveniles exposed to various salinities from fresh water to approximately 35‰. The blood concentration was hyperosmotic to the medium at salinities from fresh water to about 17–18‰ and hypoosmotic at higher salinities. Postlarvae maintained a nearly constant blood concentration (freezing point depression = ?0.89 ± 0.13°C) over a wide range of external salinities (fresh water to about 27–30‰). The animals' osmoregulatory mechanisms failed at salinities ≥30‰, and thereafter the blood concentration paralleled that of the medium. The blood concentrations of juvenile shrimp grown for 5 months at salinities from fresh water to about 15‰ (freezing point depression = ?0.88 ± 0.07°C) closely resembled those of postlarvae.The osmoregulatory performance of young M. rosenbergii is generally similar to that of other brackishwater animals, but in their ability to hyperosmoregulate effectively in fresh water they more closely resemble fresh water species. It is suggested that M. rosenbergii may be able to conserve salt in dilute media by producing blood-hypoosmotic urine.An interesting stress symptom often preceded death of postlarvae in high salinities. The animals changed gradually from nearly transparent to opaque white and then died, usually within a day or so.  相似文献   

11.
Salinity tolerance and growth of Japanese flounder Paralichthys olivaceus at different developmental stages were evaluated, including newly hatched larvae (nhl), yolk sac larvae (ysl), oil droplet larvae (odl), post oil droplet larvae (podl), premetamorphic larvae (preml) and prometamorphic larvae (proml), at 11 salinities from 5 to 55 g L?1 for 96 h. The ontogenesis during the early life of P. olivaceus was investigated under hatchery salinity 35 g L?1. The results showed that suitable salinities for nhl, ysl, odl, podl, preml and proml larvae were 10 to 25 g L?1, 10 to 30 g L?1, 20 to 30 g L?1, 30 g L?1, 10 to 30 g L?1, 15 g L?1, respectively, demonstrating an ontogenetic variation of salinity tolerance. The salinity tolerance of nhl, ysl, preml was higher than that of odl, podl and proml. The ysl and preml larvae displayed wide salinity tolerances. The present findings demonstrate that the suitable salinity for larviculture of P. olivaceus is 20–25 g L?1 before the depletion of oil droplet; after that, higher salinity (30 g L?1) should be ensured for the post‐oil droplet larvae; the premetamorphic larvae can be cultured at a wide salinity range (10–30 g L?1), and the metamorphosed larvae should be reared at salinity about 15 g L?1.  相似文献   

12.
The experiment was conducted to determine the leucine requirement of juvenile Pacific white shrimp Litopenaeus vannamei (Boone) in low‐salinity water (0.50–1.20 g L?1). Six diets were formulated to contain 410 g kg?1 crude protein with fish meal, peanut meal and precoated crystalline amino acids with different concentration of l ‐leucine (16.72, 19.60, 22.06, 24.79, 27.28 and 30.16 g kg?1 dry diet). Each diet was randomly assigned to triplicate groups of 30 shrimps (0.38 ± 0.002 g), and the feed trial lasted for 8 weeks. The results indicated that the maximum weight gain was observed at 24.95 g kg?1 dietary leucine group, whereas the diets containing higher leucine concentration conversely reduced the growth performance (P < 0.05). Moreover, the highest body protein content and body protein deposition and the lowest haemolymph AST and ALT activities were also found at 24.95 g kg?1 dietary leucine group. With the increase in leucine in diets, a dose‐dependent increase was found in body lipid content and haemolymph urea concentration. The polynomial regression calculated using weight gain, feed efficiency and body protein deposition indicated that the optimal dietary leucine requirement for L. vannamei reared in low‐salinity water was 23.73 g kg?1 leucine of dry diet, correspondingly 57.88 g kg?1 of dietary protein.  相似文献   

13.
Survival of marble goby larvae fed either Rhodovulum sulfidophilum, a phototrophic bacterium cultured from palm oil mill effluent (pPB), or microalgae ( Nannochloropsis sp.) was evaluated at two salinities. Larvae directly fed pPB had survival of 0–29% at 5 g L?1 salinity and 0–19% at 10 g L?1 salinity, whereas larvae directly fed microalgae suffered complete mortality after 20 days of culture at both salinities. However, larvae indirectly fed pPB or microalgae, i.e. via rotifers (Days 1–30) and Artemia nauplii (Days 21–30) cultured solely from pPB or microalgae, showed improved survival of 35–55% or 44–49% at 5 g L?1 salinity respectively. In all experiments, fish larvae reared at 5 g L?1 salinity showed significantly higher (P < 0.01) mean survival than those reared at 10 g L?1 salinity. The survival of larvae fed the bacterial‐based diet was higher compared with microalgal diet used in previous studies. The pPB had higher total polyunsaturated fatty acids and docosahexaenoic acid (DHA) than the microalgae, which had very high eicosapentaenoic acid (EPA). Larvae with very high ratios of DHA/EPA (>11) or/and ARA (arachidonic acid)/EPA (>5), attributable to their given diet, however suffered the highest mortality.  相似文献   

14.
The effects of salinity on haemolymph osmolality, oxygen consumption and ammonia excretion were investigated in adult kuruma shrimp, Marsupenaeus japonicus (Bate), at salinities of 20, 25, 30 and 35 g L?1. Haemolymph osmolality showed a positive linear relationship (r2=0.9854) with medium osmolality. The isosmotic point calculated from this relationship was 1039 mOsm kg?1, which corresponds to a salinity of approximately 35 g L?1. The slope of the regression equation was very high (0.81), suggesting that M. japonicus adults are poor osmoregulators compared with the adults of other penaeids and to conspecific young. The difference between haemolymph and medium osmolality (DOP) was lowest at 35 g L?1 and highest at 20 g L?1. Thus, the minimum DOP coincided with the isosmotic point of the shrimp. The respiration rate was significantly lower at 30 g L?1 than at the other salinities. Ammonia excretion rates were inversely related with salinity and therefore were minimal at 35 g L?1. The results of this study suggest that the optimum salinity for adult kuruma shrimp is around 30–35 g L?1 and that even minor (e.g. 5 g L?1) deviations from this optimum cause significant physiological changes. Further, the observed increases in oxygen consumption and ammonia excretion during exposure to low salinities, which indicate higher energy expenditure and amino acid catabolism for osmoregulation, respectively, suggest that the growth efficiency of M. japonicus adults may be severely compromised by hypohaline water inflow into the rearing ponds.  相似文献   

15.
Two feeding experiments were conducted to evaluate dietary distillers dried grain (DDG) as a feed ingredient that partially replaces soybean meal and wheat flour for the growth of juvenile freshwater snail (Semisulcospira coreana) and abalone (Haliotis discus hannai). Three experimental diets were formulated to contain 0 g kg?1 DDG (DDG0), 200 g kg?1 DDG from rice (diet DDG‐R) and 200 g kg?1 DDG from rice and wheat flour (diet DDG‐RW). In the first experiment, three replicate groups of the freshwater snails averaging 133.0 ± 2.48 mg were fed one of the experimental diets for 12 weeks. Weight gain of the juvenile freshwater snails was not affected by dietary DDG (P > 0.05). In the second experiment, three replicate groups of the juvenile abalones averaging 296.3 ± 1.73 mg were fed one of the three experimental diets for 22 weeks. Weight gain of the abalones was not affected by dietary DDG (P > 0.05). Proximate and amino acid compositions of the whole body in the freshwater snails and soft body in the abalones were not affected by dietary DDG (P > 0.05). The results of the two experiments indicated that DDG can be used as a suitable feed ingredient for partial replacement of soybean meal and wheat flour at a level of 200 g kg?1 in diets without any adverse effects on the growth performance of freshwater snail and juvenile abalone.  相似文献   

16.
The aim of this study was to evaluate the effect of light limitation on the water quality, bacterial counts and performance of Litopenaeus vannamei postlarvae reared with biofloc at low salinity (≈9 g L?1). Two treatments were designed: T1 = culture with natural sunlight and T2 = culture in darkness. After 28 days, in both treatments, the final weight of shrimp was over 0.6 g with a specific growth rate over 7.4% d?1, and a survival rate over 70%. In both treatments, Vibrio sp. concentration presented low values (culture with natural sunlight = 0.1 to 9.9 × 102 CFU mL?1, culture in darkness = 0.4 to 11.7 × 102 CFU mL?1) and Bacillus sp. had high values (culture with natural sunlight = 0.7 to 66.0 × 104 CFU mL?1, culture in darkness = 0.7 to 65.8 × 104 CFU mL?1). All water quality parameters remained within the ranges suitable for shrimp culture, except for alkalinity during the first stage of the study. Although in some sampling periods some significant differences were found in bacterial counts and water quality parameters, shrimp productive performance under culture with biofloc at low salinity was not affected significantly by light limitation.  相似文献   

17.
The brown shrimp, Farfantepenaeus californiensis (Holmes), is a species native to north‐west Mexico, where its culture potential is presently being addressed. Because of the climatic conditions prevailing in the region, salinities over 40 g L?1 is a commonly encountered problem. In the present study, the effect of salinity on the growth and mortality of juvenile F. californiensis is described. The change in short‐term routine metabolism at different salinities was also evaluated in order to define the adaptive capacity of the shrimp and to provide insight into the changes in the pathways of energy distribution. Groups of shrimp were exposed to increasing salinity (25, 35, 45 and 55 g L?1), and growth and survival rates after 75 days were determined in duplicate 1.8‐m3 tanks for each salinity level. Significant differences were found in final weight, growth rate and mortality of shrimp as a result of salinity level. Final mean shrimp weights at increasing salinity levels were 10.0, 9.4, 8.6 and 7.8 g. Corresponding mortality was 24.4%, 15.1%, 33.6% and 55.7%. Oxygen consumption was found to depend significantly on salinity and was equivalent to 0.0027, 0.0037, 0.0043 and 0.0053 mg g?1 min?1 respectively for the increasing salinities. The increased rate of oxygen consumption at high salinities reflects the response of the organism to osmoregulatory and ionic imbalances. Increased energy requirements to fulfil basic metabolic function as salinity increased resulted in a reduction in the energy that could be diverted to growth. Consequently, the culture of the brown shrimp at salinities over 35 g L?1 would probably result in reduced yields.  相似文献   

18.
To learn about the relationships between feeding and growth of temperate eels in freshwater and brackish water habitats, we analysed 533 yellow‐phase Japanese eels Anguilla japonica collected in both types of habitats in southeastern Japan. Because male eels were very rare in each habitat (FW,= 1; BW,= 20), characteristics of female eels were compared between the different habitats. Annual food consumption was evaluated with the consideration of instantaneous food consumption and annual activity period. Stomach fullness index (stomach content weight/body weight) was used as an indicator of instantaneous food consumption. The ratios of number of months with eel catch to those when eel sampling was conducted were used as an indicator of activity period. Female yellow eels tended to be older and slower growing in fresh water (= 78; age, mean ± SD = 7.9 ± 2.4 years; growth rate, 59.8 ± 14.0 mm year?1) than in brackish water (= 229; age, 5.5 ± 1.8 years; growth rate, 90.1 ± 24.4 mm year?1). Irrespective of sex, yellow eels in brackish water had a higher stomach fullness index and a greater ratio of months with eel catches, indicating greater annual food consumption by brackish water eels. These results indicate that greater annual food consumption contributes to the greater growth rates of Japanese eels in brackish water habitats.  相似文献   

19.
The effects of salinity on plasma osmolality, branchial chloride cell density, feed consumption and conversion and growth performance of yellowtail kingfish (Seriola lalandi) were evaluated. Fish (11.6 ± 0.6 g) were kept for 29 days at 14, 18, 22, 26 (experimental) and 30 g L?1 (control) salinity in independent, pilot‐scale recirculation aquaculture systems. No differences in plasma osmolality or chloride cell numbers in gills were observed, pointing to a strong osmoregulatory capacity in the juveniles. Fish at 14, 18 and 22 g L?1 (7.61 ± 0.19, 7.61 ± 0.01 and 7.61 ± 0.13% day?1, respectively) had higher growth rates than fish at 26 and 30 g L?1 (7.10 ± 0.05 and 6.97 ± 0.06% day?1 respectively). The higher growth rate at lower salinity resulted from increased feed intake; feed conversion was not different. An evaluation of the impact of salinity on growth rate of on‐growing stages (till market size) seems warranted to assess whether the profitable effects of low salinity persist in later stages of this important aquaculture species.  相似文献   

20.
The effects of dietary calcium chloride (CaCl2) concentration on the growth, survival, moulting and body composition of Astacus leptodactylus were studied. Diets were prepared using supplementation of 0 (control), 30, 60 and 120 g kg?1 calcium chloride commercial trout larvae diet containing 50% protein and 12% lipid. Astacus leptodactylus larvae with an average total length of 22.0 ± 0.05 mm (TL) and weight of 0.53 ± 0.01 g obtained from eighteen ovigerous females collected from Seydisehir Sugla Dam lake in Konya, Turkey, were stocked in 0.2‐m2 aquariums at a rate of 50 crayfish m?2 and reared for 90 days. The experiments included four treatments (diets) with three replicates each. Calcium chloride exerted positive effects on growth, moulting frequency, feed efficiency and survival of narrow‐clawed crayfish. Crayfish fed with 60 g calcium kg?1 calcium chloride‐supplemented diet exhibited the highest weight gain and specific growth rate (SGR) but the lowest survival rate (63.3%) (P < 0.05). There were no significant differences (P > 0.05) in mean moisture (803.5 g kg?1) and protein content (177.0 g kg?1) in crayfish tail meat. However, lipid values were between 3.8 and 11.6 g kg?1 and significantly different among the diets (P < 0.05). Diet with 60 g kg?1 calcium chloride is recommended for the best growth of freshwater crayfish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号