首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了盐度对高体革(Scortum barcoo)幼鱼消化酶活力的影响。在温度25±2℃下,将平均体质量为2.50±0.23 g的高体革幼鱼分别饲养在盐度0,5,8,11,13和16条件下20 d,检测幼鱼胃蛋白酶、淀粉酶和脂肪酶活性的差异。结果表明:盐度胁迫对高体革幼鱼胃蛋白酶活力有显著影响(P〈0.05),对脂肪酶和淀粉酶活力有极显著影响(P〈0.01)。随着盐度的升高,胃蛋白酶活力先升后降,当盐度升高到13时又急剧升高;脂肪酶的活力则是随盐度的升高而受到抑制,当盐度升高到13时也急剧升高,盐度16时最高;而淀粉酶活力变化则是盐度升高时显著降低。这说明环境盐度对高体革消化酶比活力的影响比较大,不同消化酶随盐度变化规律有所差异。  相似文献   

2.
设30、24、18、12、6和淡水6个盐度梯度,对平均体重5.19±0.48 g的多鳞四指马(鱼友)(Eleutheronema rhadinum)幼鱼进行7 d、28 d和56 d的饲养,测定了不同盐度对多鳞四指马(鱼友)幼鱼鳃丝Na+/K+-ATP酶及肝脏超氧化物岐化酶(SOD)、过氧化氢酶(CAT)活性及丙二醛(MDA)含量的影响。结果显示:在盐度30、24组饲养7 d、28 d和56 d,同一盐度组鳃丝Na+/K+-ATP酶活性无显著性差异(P>0.05);饲养7d后,随盐度的降低鳃丝Na+/K+-ATP酶活性显著升高(P<0.05);盐度18、12和6组中Na+/K+-ATP酶活性28 d后趋于稳定,与56 d差异不显著(P>0.05);淡水组中,鳃丝Na+/K+-ATP酶活性28 d后趋于稳定,但显著高于其它盐度组(P<0.05)。肝脏抗氧化酶结果显示:盐度30和24组各时间段CAT活性均无显著性差异(P>0.05);盐度18、12、6组,随着盐度降低,7 d时SOD和CAT活性显著升高(P<0.05),28 d后下降并趋于稳定;28 d与56 d无显著性差异(P>0.05)。淡水组中SOD和CAT活性随时间的延长均表现出持续升高的趋势(P<0.05)。盐度30和24组,同一盐度不同时间MDA含量无显著性差异(P>0.05);除淡水组外,同一时间下MDA含量均随盐度降低而降低,且各盐度组7 d时MDA含量最高,28 d后下降并趋于稳定。多鳞四指马(鱼友)幼鱼对低盐的耐受力较强,盐度0~30均能养殖。  相似文献   

3.
为了解黄条鰤(Seriola aureovittata)早期发育阶段的消化生理特性,测定了黄条鰤胚胎、仔稚幼鱼阶段脂肪酶、淀粉酶、胰蛋白酶和碱性磷酸酶活性变化。结果显示,在黄条鰤仔鱼出膜前胚胎阶段,即能检测到脂肪酶、淀粉酶和碱性磷酸酶活性;初孵仔鱼体内(1 d)初次检测出胰蛋白酶的活性。脂肪酶和碱性磷酸酶比活力在仔鱼孵化后迅速增强(P<0.05),在4 d开口时,2种酶比活力达最高值;淀粉酶比活力在7 d时达最大值;胰蛋白酶比活力在仔鱼阶段缓慢上升,15 d时比活力最大。稚鱼阶段内脏团中脂肪酶、碱性磷酸酶和胰蛋白酶活性基本维持稳定,幼鱼阶段内脏团脂肪酶、碱性磷酸酶和胰蛋白酶活性都呈现上升趋势;稚鱼和幼鱼阶段内脏团中淀粉酶活性下降并基本稳定于较低水平。研究表明,黄条鰤仔稚幼鱼发育过程中,各种消化酶活性变化明显,且与其发育阶段和食性密切相关。在尚未摄食饵料的早期仔鱼体内已存在消化酶,认为其是母源传递而来,不是由外源性饵料所致;幼鱼阶段内脏团脂肪酶、碱性磷酸酶和胰蛋白酶比活力明显提高,这反映出随苗种生长发育,其肠道结构和消化机能逐渐完善,并且对脂肪、蛋白质的需求逐渐增强。  相似文献   

4.
研究了盐度对卵形鲳鲹幼鱼主要消化酶(蛋白酶、淀粉酶、脂肪酶)的影响及其消化酶活性的昼夜变化。实验设计了6个盐度梯度组,分别为10、15、20、25、30、35。结果表明:(1)淀粉酶、脂肪酶活性在盐度25时最高,而蛋白酶活性在盐度30时最高。3种消化酶酶活性的平均值在盐度20~30时要明显高于盐度10~15时(P<0.05)。(2)对卵形鲳鲹幼鱼消化酶活性昼夜变化的测定表明,蛋白酶、淀粉酶、脂肪酶活性的最高值分别在20∶00、8∶00和14∶00,最低值分别在2∶00、17∶00和11∶00。  相似文献   

5.
为了解黄条(Seriola aureovittata)早期发育阶段的消化生理特性,测定了黄条胚胎、仔稚幼鱼阶段脂肪酶、淀粉酶、胰蛋白酶和碱性磷酸酶活性变化。结果显示,在黄条仔鱼出膜前胚胎阶段,即能检测到脂肪酶、淀粉酶和碱性磷酸酶活性;初孵仔鱼体内(1 d)初次检测出胰蛋白酶的活性。脂肪酶和碱性磷酸酶比活力在仔鱼孵化后迅速增强(P<0.05),在4 d开口时,2种酶比活力达最高值;淀粉酶比活力在7 d时达最大值;胰蛋白酶比活力在仔鱼阶段缓慢上升,15 d时比活力最大。稚鱼阶段内脏团中脂肪酶、碱性磷酸酶和胰蛋白酶活性基本维持稳定,幼鱼阶段内脏团脂肪酶、碱性磷酸酶和胰蛋白酶活性都呈现上升趋势;稚鱼和幼鱼阶段内脏团中淀粉酶活性下降并基本稳定于较低水平。研究表明,黄条仔稚幼鱼发育过程中,各种消化酶活性变化明显,且与其发育阶段和食性密切相关。在尚未摄食饵料的早期仔鱼体内已存在消化酶,认为其是母源传递而来,不是由外源性饵料所致;幼鱼阶段内脏团脂肪酶、碱性磷酸酶和胰蛋白酶比活力明显提高,这反映出随苗种生长发育,其肠道结构和消化机能逐渐完善,并且对脂肪、蛋白质的需求逐渐增强。  相似文献   

6.
采用实验生态学方法,研究了脆江蓠(Gracilaria chouae)相关酶活性对短期高盐胁迫的响应,旨在为提高脆江蓠规模化养殖夹苗效率提供理论依据。实验设置5个盐度梯度(40、45、50、55和60),自然海水作为对照组,研究了高盐处理0.5 h及自然海水恢复12和24 h对脆江蓠抗氧化酶和光合酶活性的影响。结果显示,高盐胁迫0.5 h后,随盐度的升高,脆江蓠的抗氧化酶中,超氧化物歧化酶(SOD)活性逐渐升高(P<0.05),过氧化物酶(POD)活性呈波动变化(P<0.05),过氧化氢酶(CAT)活性逐渐降低但差异不显著(P>0.05),丙二醛(MDA)含量随盐度升高显著升高(P<0.01),上述抗氧化酶活性均在盐度50~55时出现极值;脆江蓠光合作用关键酶Rubisco活性随盐度升高逐渐降低(P<0.01),碳酸酐酶(CA)含量随盐度增加略有增加(P<0.05)。随恢复时间的增加,脆江蓠SOD、POD和CAT活性逐渐升高(P<0.05),MDA含量显著降低(P<0.05);Rubisco活性逐渐升高(P<0.05),CA含量呈波动变化。研究表明,短期高盐胁迫显著影响脆江蓠藻体抗氧化酶和光合酶活性,藻体通过提高抗氧化酶活性以及加强对无机碳的吸收利用来应对高盐胁迫,胁迫去除后逐渐恢复至正常水平。  相似文献   

7.
为揭示方斑东风螺(Babylonia areolata)在应对低盐度和高盐度胁迫时的急性毒性及生理变化,以盐度30为对照组,盐度15、20、25、35和40为试验组进行3种消化酶活力分析。结果表明:试验剂量和试验时间均对各消化酶活力存在显著影响(P0.05)。与对照组相比,方斑东风螺经盐度胁迫后:1)在低盐度和高盐度水体养殖96 h后都表现出运动缓慢、逐渐翻背向上的现象;2)各个盐度处理的消化酶活性随时间的延长整体都呈现先升高后降低的波动趋势;3)低盐度比高盐度对消化酶的活力影响更大;4)3种消化酶中,蛋白酶活力淀粉酶活力脂肪酶活力。可见,水体中的盐度高低会导致方斑东风螺产生应激反应。该研究对方斑东风螺的养殖及其他贝类盐度胁迫试验具有参考价值。  相似文献   

8.
为探明低盐环境中刺参幼参各生长阶段的消化酶活力变化,采用实验生态学方法,测定了低盐(16、18、20、22、24)环境中3种规格,体质量分别为(28.37±3.21) g、(7.52±1.25) g、(2.03±0.68) g 的刺参幼参生长和肠道蛋白酶、淀粉酶和脂肪酶活力。结果显示,3种规格刺参特定生长率变化趋势一致,随盐度升高而升高。盐度16时,特定生长率最低,与对照组差异显著(P<0.05),刺参身体不能正常自然伸展,多数个体匍匐在水槽底部,几乎不摄食;盐度31时,特定生长率最高。在盐度16?24范围内,刺参消化道内蛋白酶、淀粉酶、脂肪酶活性变化趋势一致,随盐度的升高而升高;盐度24时,蛋白酶活性均达到最高水平,与对照组差异不显著(P>0.05),小规格刺参肠道蛋白酶活性在盐度20、22时无显著差异(P>0.05);盐度20、22、24实验组淀粉酶活性无显著差异(P>0.05),中规格刺参淀粉酶活性在盐度22升至24时出现显著增高(P<0.05);大规格刺参肠道脂肪酶活性在盐度20升至22时出现显著增高(P<0.05),小规格刺参在盐度升至24时脂肪酶活性出现显著增高(P<0.05);当盐度高于24时 3种消化酶活性随盐度升高而降低。  相似文献   

9.
低盐胁迫对银鲳幼鱼肠道消化酶活力的影响   总被引:3,自引:2,他引:1  
尹飞  彭士明  孙鹏  施兆鸿 《海洋渔业》2010,32(2):160-165
通过逐级降低水体盐度的方法,将银鲳幼鱼分别在盐度25、20、15和10的条件下饲养至120 h,检测不同盐度下、不同时间点银鲳幼鱼肠道脂肪酶、淀粉酶、胰蛋白酶和胃蛋白酶的活力。结果表明,随着盐度的降低和处理时间的延长,脂肪酶的活力总体表现出先升后降的变化趋势(P0.05);淀粉酶的活力呈升高的变化趋势(P0.05);胰蛋白酶和胃蛋白酶活力的变化趋势不同,胰蛋白酶的活力呈现升高的趋势(P0.05),而胃蛋白酶活力呈下降的变化趋势(P0.05)。说明盐度降低会对银鲳幼鱼肠道的消化酶产生激活作用,从而促进肠道对营养物质的利用,达到补充机体所损失的能量的目的。但对于不同种酶,激活的顺序和程度却不尽相同,甚至当超出一定的耐受范围后,酶活力反而被抑制。在本研究中,随着盐度的下降和处理时间的延长,脂类物质首先被大量消耗,然后是淀粉类物质,而蛋白类物质在整个过程中的利用率较低。因此建议,在雨季来临之前,提高脂类和淀粉类物质的投喂量,将有助于提高幼体对低盐度的耐受性及其成活率。  相似文献   

10.
为探明低盐环境中刺参幼参各生长阶段的消化酶活力变化,采用实验生态学方法,测定了低盐(16、18、20、22、24)环境中3种规格,体质量分别为(28.37±3.21) g、(7.52±1.25) g、(2.03±0.68) g的刺参幼参生长和肠道蛋白酶、淀粉酶和脂肪酶活力。结果显示,3种规格刺参特定生长率变化趋势一致,随盐度升高而升高。盐度16时,特定生长率最低,与对照组差异显著(P<0.05),刺参身体不能正常自然伸展,多数个体匍匐在水槽底部,几乎不摄食;盐度31时,特定生长率最高。在盐度16?24范围内,刺参消化道内蛋白酶、淀粉酶、脂肪酶活性变化趋势一致,随盐度的升高而升高;盐度24时,蛋白酶活性均达到最高水平,与对照组差异不显著(P>0.05),小规格刺参肠道蛋白酶活性在盐度20、22时无显著差异(P>0.05);盐度20、22、24实验组淀粉酶活性无显著差异(P>0.05),中规格刺参淀粉酶活性在盐度22升至24时出现显著增高(P<0.05);大规格刺参肠道脂肪酶活性在盐度20升至22时出现显著增高(P<0.05),小规格刺参在盐度升至24时脂肪酶活性出现显著增高(P<0.05);当盐度高于24时3种消化酶活性随盐度升高而降低。  相似文献   

11.
为探究投喂频率对绿鳍马面鲀(Thamnaconus septentrionalis)幼鱼生长、生理指标及肝脏hsp70基因表达的影响,本研究设5个投喂频率,分别为1、2、3、4和5次/d (分别简称为F1、F2、F3、F4和F5),每个处理组设3个平行,每缸养殖30尾鱼[(6.47±0.56) g]。实验期间,水温为17℃~ 26℃,盐度为30~31,pH为6.8~7.6,溶解氧≥5 mg/L,养殖周期为30 d。结果表明,不同投喂频率对绿鳍马面鲀幼鱼的生长、体成分、消化酶和抗氧化酶活性均有影响。随着投喂频率的增加,绿鳍马面鲀幼鱼的摄食和生长均呈上升趋势,F5组数值最大,摄食率为3.95%,增重率为347.19%,特定生长率为5.07%/d,增重率为F1组的2倍多。F1组的肥满度为1.79,显著低于其他4组(P<0.05);肝体比逐渐升高,F4和F5组的肝体比显著高于其他3组(P<0.05)。增加投喂频率,鱼体的粗蛋白含量呈先升高后降低的趋势,F2组最高,为59.82%;粗脂肪含量呈逐渐升高的趋势,F5组最高,为31.23%。胰蛋白酶活性随投喂频率增加呈先降低后增加的趋势,F3组活性最低,为37.48 U/μg prot;脂肪酶活性逐渐升高,F5组最高,为2.67 U/g prot;淀粉酶活性不受投喂频率的影响(P>0.05)。过氧化氢酶、超氧化物歧化酶活性和丙二醛含量最高均在F5组,分别为14.71 U/mg prot、250.32 U/mg prot和2.73 nmol/mg。肝脏中hsp70基因的相对表达量不受投喂频率的影响(P>0.05)。基于绿鳍马面鲀幼鱼的生长性能和生理效应的综合考虑,其最适投喂频率为3次/d。  相似文献   

12.
研究了饥饿对卵形鲳鲹(Trachinotus ovatus)消化器官中主要消化酶(蛋白酶、淀粉酶、脂肪酶)活力的影响。在水温25±0.5℃、盐度20±1条件下,对卵形鲳鲹幼鱼进行短期饥饿处理(0 d、3 d、6 d、9 d、12 d),并分别测定卵形鲳鲹幼鱼的比内脏重与蛋白酶、淀粉酶和脂肪酶3种消化酶的活力。结果表明,随着饥饿时间的延长,卵形鲳鲹幼鱼的比内脏重不断下降,饥饿第0~6天下降速度最快(P﹤0.01),6 d后下降不显著(P﹥0.05);蛋白酶活力表现为饥饿第0~6天不断上升,第9天下降,第12天又显著升高(P﹤0.01),并且饥饿后的蛋白酶活力始终高于对照组(P﹤0.01);淀粉酶活力不断下降,并在第3天下降最显著(P﹤0.01);脂肪酶活力在饥饿前9 d总体上下降,第12天活力明显上升并高于对照组(P﹤0.01)。饥饿第8天开始出现幼鱼死亡,至第12天幼鱼的存活率为64.67%,表明第8天是卵形鲳鲹幼鱼饥饿致死的临界期。  相似文献   

13.
为了解氨氮胁迫下翘嘴鳜(Siniperca chuatsi)幼鱼肝脏、胃抗氧化系统和消化系统的响应机制,以体质量为(15.27±0.67)g的翘嘴鳜幼鱼为研究对象,探讨了6个氨氮胁迫质量浓度(0、10、20、30、40、50 mg/L)下肝脏和胃中谷胱甘肽(GSH)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、脂质过氧化物(LPO)、胃蛋白酶(pepsin)、胃淀粉酶(AMS)、胃脂肪酶(LPS)的活性和IL-1β、IL-8、TNF-α、HSP90α等应激相关基因的表达情况。试验结果表明,随着氨氮质量浓度的提高,肝脏抗氧化相关酶中的SOD、CAT、GSH活性呈先升高后下降的趋势,LPO活性呈逐渐升高的趋势,IL-1β、HSP90α基因表达量呈先升高后降低的趋势,TNF-α表达量呈逐渐升高的趋势,IL-8表达量呈降低-升高-降低的趋势;胃消化酶中的胃蛋白酶活性呈现先升高后降低的趋势,而AMS和LPS活性呈逐渐升高的趋势。结果表明,在低浓度氨氮胁迫条件下,鱼体通过诱导抗氧化酶活性升高和应激相关基因表达上调来应对氧化应激损伤,同时诱导升高胃消化酶活性为机体提供能量,而高浓度氨氮胁迫则抑制...  相似文献   

14.
研究了盐度对黄鳍鲷幼鱼主要消化酶(蛋白酶、淀粉酶、脂肪酶)的影响及消化酶活性的昼夜变化。实验设计5、10、15、20、25、30等6个盐度梯度组。结果表明,蛋白酶、脂肪酶的比活在盐度为25时最高,而淀粉酶的比活在盐度为20时最高。各种消化酶在盐度20~30时消化酶比活的平均值要明显高于5~15时消化酶的平均值。对黄鳍鲷消化酶比活昼夜变化的测定表明,蛋白酶、淀粉酶、脂肪酶比活的最高值分别在14∶00、20∶00和18∶00,最低值分别是12∶00、10∶00和6∶00。  相似文献   

15.
采用盐度渐变的方法,研究了盐度2、10、18、26、34共5个梯度对四指马鲅幼鱼(7.82± 0.43 g)生长及其鳃丝Na+/K+-ATP酶的影响.结果表明,盐度对四指马鲅幼鱼的生长和存活均有不同程度的影响.在实验盐度范围内,随着盐度的升高,四指马鲅幼鱼的最终体重、特定增长率(SGR)、日增重(DWG)、增重率(GBW)和增长率(GBL)均出现逐渐降低的趋势,且部分盐度组间差异显著(P<0.05),其中上述各项指标中,盐度2组均最高,与盐度10组差异不显著(P>0.05),而与盐度18、26、34组存在显著性差异(P<0.05),盐度34组显著低于其他盐度组(P<0.05);幼鱼的饲料系数随盐度升高逐渐增大,且部分盐度组间差异显著(P<0.05).在成活率方面,除盐度34组的成活率为72.2%,显著低于其他盐度组外(P<0.05),其他各盐度组成活率均达到90%以上.盐度对四指马鲅幼鱼鳃丝Na+/K+-ATP酶也存在一定影响,经过3 d的盐度驯化后,实验第0天部分盐度组幼鱼鳃丝Na+/K+-ATP酶的活力有显著差异,其中盐度 34 组显著高于其他组(P<0.05),盐度 18、26 组显著低于其他组(P<0.05).实验开始后到第10天,盐度2、10、34组幼鱼鳃丝Na+/K+-ATP酶的活力有所降低,此后,各盐度组幼鱼鳃丝Na+/K+-ATP酶的活力趋于稳定.经过30d的养殖发现,盐度34组幼鱼鳃丝Na+/K+-ATP酶的活力最高,显著高于其他组(P<0.05),而盐度2、10组幼鱼鳃丝Na+/K+-ATP酶的活力略低于盐度18、26组,但差异并不显著(P>0.05).从以上结果可见,盐度对四指马鲅幼鱼的生长和鳃丝Na+/K+-ATP酶活力有一定影响.  相似文献   

16.
本实验以初始体质量为(4.88±0.90)g、体长为(4.85±0.32)cm的红小丑鱼(Amphiprion frenatus)为养殖对象,研究饲料中添加0(对照组)、2‰、4‰、6‰、8‰的虾青素对红小丑鱼消化酶活性的影响。本试验每组3个重复,每个重复6尾鱼,饱食投喂2次/d(投喂时间为08∶30和14∶30),试验周期为20 d。结果表明:添加虾青素组的红小丑鱼胃肠消化酶活性均高于未添加虾青素组,当虾青素添加量为4‰时,红小丑鱼前肠蛋白酶、脂肪酶、淀粉酶以及后肠淀粉酶活性达到最高(P0.05);当添加量为6‰时,其胃脂肪酶和淀粉酶活性最高(P0.05);当添加量为8‰时,其胃和后肠的蛋白酶以及后肠脂肪酶的活性达到最高(P0.05)。因此,在饲料中添加4‰~8‰的虾青素能够较有效地提高红小丑鱼消化器官的消化酶活性。  相似文献   

17.
为探讨盐度对大口黑鲈(Micropterus salmoides)幼鱼生长性能、肌肉品质和抗氧化能力的影响,分别在淡水、3、6、9、12的盐度梯度下养殖体长为(6.24±0.39) cm、体质量为(5.42±0.58) g的大口黑鲈幼鱼49 d,统计其存活、生长及摄食情况,测定各盐度下大口黑鲈幼鱼肌肉组织的营养成分和大口黑鲈幼鱼肝脏、肾脏、鳃组织中超氧化物歧化酶(SOD)和过氧化氢酶(CAT)的活力。结果显示:(1)各盐度组大口黑鲈幼鱼成活率均为100%;体长、体质量、增长率、特定生长率和摄食率随盐度的升高均表现出逐渐降低的趋势,饵料系数则表现出逐渐升高的趋势。(2)盐度对大口黑鲈幼鱼水分、粗蛋白和灰分的影响不显著;粗脂肪含量差异明显,且盐度越高粗脂肪含量越低。随着盐度的升高,肌肉中各必需氨基酸质量分数、总量、鲜味氨基酸含量及必需氨基酸指数均呈现先增高后降低的趋势。(3)肝脏中SOD活性随盐度的增加先降低后升高,肾脏中SOD活性随盐度的增加先升高后降低;盐度12组幼鱼肝脏中的CAT显著高于其他盐度组,肾脏和鳃组织中CAT活性很低。大口黑鲈在盐度12以下的水环境中可以存活生长,在盐度6以...  相似文献   

18.
盐度对施氏鲟幼鱼消化酶活力的影响   总被引:4,自引:0,他引:4  
研究了盐度对施氏鲟幼鱼消化酶活力的影响.将施氏鲟(Acipenser schrenckii Brandt)幼鱼[初始体长(24.95±1.89)cm,初始体质量(117.80±16.72)g]分别在淡水(盐度0)、盐度10、盐度25条件下饲养10 d,检测不同盐度下施氏鲟幼鱼消化器官(幽门盲囊、瓣肠、十二指肠、胃和肝脏)蛋白酶、淀粉酶和脂肪酶的活力.结果表明:(1)在相同盐度条件下,不同消化器官中同种消化酶活力高低顺序不同.在不同消化器官中蛋白酶活力(淡水和盐度25时)及淀粉酶活力(淡水时)由大到小依次为幽门盲囊、瓣肠、十二指肠、胃和肝脏;蛋白酶活力(盐度10时)及淀粉酶活力(盐度10和25时)由大到小依次为瓣肠、幽门盲囊、十二指肠、胃和肝脏;在淡水和盐度10时脂肪酶活力由大到小依次为瓣肠、十二指肠、胃、肝脏和幽门盲囊:在盐度25时脂肪酶活力由大到小依次为瓣肠、十二指肠、肝脏、胃和幽门盲囊.(2)同种消化器官中不同盐度条件下同种消化酶的活力不同.幽门盲囊、十二指肠、胃和肝脏中的蛋白酶、淀粉酶和脂肪酶的活力均在淡水中最高(P<0.05),盐度25中最低,说明盐度对以上消化器官中3种消化酶均具有抑制作用;瓣肠中蛋白酶、淀粉酶和脂肪酶的活力均在盐度10下最高(P<0.05),说明一定的盐度对瓣肠中3种酶具有激活作用,但盐度过高则会抑制这些酶的活性.  相似文献   

19.
文章旨在探讨饲料中不同水平的Bio100对虎龙斑(Epinephelus fuscoguttatus♀×E.lanceolatus♂)幼鱼生长性能、消化酶活性、血清免疫指标和血清生化指标的影响。配制6种实验饲料,Bio100质量分数分别为0%(对照)、0.05%(T1)、0.10%(T2)、0.15%(T3)、0.20%(T4)和0.25%(T5)。选取均体质量为(23.33±0.33)g的虎龙斑幼鱼随机分配6组,每组3个重复,每个重复20尾鱼,置于室内玻璃钢纤维桶(500 L)中喂养。每天饲喂2次,为期8周。结果显示,随着饲料中Bio100质量分数的增加,虎龙斑的增重率和特定生长率先升高后降低,T3和T4组显著高于对照组(P0.05);处理组的饲料系数显著低于对照组(P0.05);肌肉灰分含量逐渐升高,T5组显著高于T1组和对照组(P0.05)。胃蛋白酶活性先升高后降低,T3组显著高于T1、T5和对照组(P0.05);肠道脂肪酶活性先升高后降低,T4组显著高于T1、T2和对照组(P0.05);各组间肠道淀粉酶活性无显著性差异(P0.05)。处理组溶菌酶、碱性磷酸酶活性和补体3含量较对照组有一定程度提高,各组间无显著性差异(P0.05)。饲料中Bio100水平显著影响了血清中胆固醇含量和谷丙转氨酶活性。综合分析表明,虎龙斑幼鱼饲料中Bio100的适宜添加量为0.15%。  相似文献   

20.
本研究以珍珠龙胆石斑鱼(Epinephelus fuscoguttatus♀×E. lanceolatus♂)幼鱼[(29.99±2.60) g]为研究对象,旨在探究不同盐度对珍珠龙胆石斑鱼幼鱼生长性能、机体化学组成、消化能力、抗氧化能力及血清部分生化指标的影响。实验设计6个盐度梯度,分别为10、15、20、25、30和35,分别命名为S1、S2、S3、S4、S5和S6,每个实验组3个重复,实验期为28 d。结果显示,增重率(WGR)和饲料效率(FE)随盐度升高均呈先升高后降低的趋势,且最大值均在S4组,显著高于S1和S6组(P<0.05),存活率在不同实验组间无显著性差异(P>0.05)。全鱼和肌肉粗脂肪含量呈现同WGR相似的变化趋势。肠道脂肪酶和胰蛋白酶活性在S3和S4组处于较高水平,显著高于其他各组(P<0.05)。S1和S6组的肝脏超氧化物歧化酶(SOD)、总抗氧化能力(T-AOC)和过氧化氢酶(CAT)活性显著高于其他各实验组(P<0.05)。丙二醛(MDA)含量在S3和S4组较低,显著低于其他4个实验组(P<0.05)。随盐度升高,血清中谷草转...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号