首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
枯草芽孢杆菌与腐植酸钠合剂净水效果的研究   总被引:1,自引:0,他引:1  
养殖水体中高含量氨氮和亚硝酸盐对水产动物有害。试验通过不同配比腐植酸钠与枯草芽孢杆菌(Bacillus subtili)混合剂处理模拟养殖污水,结果表明养殖水体投入10 mg/L腐植酸钠与1.2×10~3 cfu/mL枯草芽孢杆菌混合剂对水体中氨氮和亚硝酸盐的处理效果较好。  相似文献   

2.
枯草芽孢杆菌改善水质提高凡纳滨对虾幼体抗逆性的研究   总被引:2,自引:0,他引:2  
投放不同浓度梯度的枯草芽孢杆菌于凡纳滨对虾幼体养殖环境中,监测不同枯草芽孢杆菌使用浓度下与养殖环境相关的水质因子(氨氮、亚硝酸盐氮、化学需氧量)的变化;观察不同枯草芽孢杆菌使用浓度下凡纳滨对虾幼体对人工制造的胁迫环境的抗逆性;观测不同枯草芽孢杆菌使用浓度下凡纳滨对虾幼体的成活率与体重增长率。研究枯草芽孢杆菌对水质改善和凡纳滨对虾幼体抗逆性的影响。结果表明,枯草芽孢杆菌能显著(P〈0.05)降低化学需氧量、氨氮含量,抑制亚硝酸盐氮的产生;当枯草芽孢杆菌投放浓度为1.25×10^4cfu/ml时,水体中化学需氧量、氨态氮、亚硝酸盐氮含量均值比对照组分别降低了65.30%、59.70%、88.64%,成活率比对照组提高了10.00%,体重增长率是对照组的2.44倍;当枯草芽孢杆菌使用浓度为1.25×10^4~1.25×10^6cfu/ml时,对虾抗逆性显著(P〈0.05)增强,对虾在氨氮、亚硝酸盐氮、高锰酸钾、甲醛胁迫下24小时的成活率均值分别比对照组提高了16.94%、24.44%、44.17%、18.61%。  相似文献   

3.
产乳酸芽孢杆菌对对虾养殖水体水质的影响   总被引:2,自引:0,他引:2  
在温度(28±1)℃、盐度28下,将产乳酸芽孢杆菌制剂添加到养殖10尾凡纳滨对虾、容水200L的0.3m~3室内玻璃钢桶中,使芽孢杆菌终密度为10~4、10~5、10~6 cfu/mL,以无益生菌添加组为对照组。定期测定养殖水体中的氨氮、亚硝酸盐氮和硝酸盐氮的含量,以及总异养菌、弧菌和芽孢杆菌的数量。试验结果显示,试验结束时,添加芽孢杆菌各试验组养殖水体中氨氮、亚硝酸盐氮和弧菌的含量显著低于对照组(P0.05);添加高密度芽孢杆菌试验组(10~6 cfu/mL)养殖水体中总异养菌的数量显著高于对照组(P0.05);添加芽孢杆菌对养殖水体中的硝酸盐氮含量未产生显著的影响(P0.05);添加芽孢杆菌后养殖水体中的芽孢杆菌数量在第4d后会出现下降趋势。试验还发现,在养殖后期初次投入芽孢杆菌时会引起养殖水体中氨氮含量的短期升高。试验结果表明,芽孢杆菌能改善对虾养殖水体水质,可作为益生菌用于对虾养殖中。  相似文献   

4.
为研究甘蔗渣作为载体填料用于海水曝气生物滤池中的可行性,在海水曝气生物滤池中培养生物膜,并以此为基础构建海水养殖排放水处理系统。通过监测水体总氨氮(TAN)、亚硝酸盐氮(NO2--N)等水质指标浓度变化,水体游离细菌与载体附着细菌密度变化,评价甘蔗渣载体生物滤池的降解效果。结果显示,以甘蔗渣为载体的生物滤池挂膜所需时间为26 d,挂膜完成后甘蔗渣附着可培养总菌和芽孢杆菌密度分别为3×108cfu/g和7.8×107cfu/g。在处理养殖水体时,生物滤池中水体氨氮和亚硝酸盐氮浓度分别控制在0.2 mg/L和0.05 mg/L以下,同时,水体中芽孢杆菌数量由3.3×103cfu/L增加至7×104cfu/L,弧菌数量由4.9×103cfu/L下降至3.1×101cfu/L。研究表明,以甘蔗渣为载体的海水曝气生物滤池能快速有效地完成挂膜,并在海水养殖排放水处理中取得较好效果。  相似文献   

5.
罗非鱼鱼苗的养殖水体中引入不同浓度的枯草芽孢杆菌,检测水体的水质指标、鱼苗体内与免疫相关酶的酶活力、鱼苗的生长率和成活率。实验结束时,引入1.0×10^4 cfu/mL枯草芽孢杆菌实验组,氨氮和亚硝酸盐氮含量分别为2.72 mg/L、0.15 mg/L,显著低于对照组(P〈0.05);AKP活力、抗菌活力分别达249.9 U/g prot、0.59μg/mL,显著高于对照组(P〈0.05);鱼苗成活率也显著高于对照组(P〈0.05),比对照组提高了11.0%。结果显示:适合浓度的枯草芽孢杆菌能有效地改善鱼苗养殖水体的水质,提高机体免疫力和成活率。  相似文献   

6.
枯草芽孢杆菌HAINUP40水质净化作用的研究   总被引:2,自引:0,他引:2  
在筛选得到适宜枯草芽孢杆菌HAINUP40生长的最佳液体培养基基础上,探讨枯草芽孢杆菌HAINUP40对2种模拟废水及养殖废水的水质净化作用。生长曲线测定结果显示,枯草芽孢杆菌HAINUP40在不同培养基中的生长速度不同,由快到慢依次为普通淡水培养基细菌基础培养基2216E培养基普通海水培养基;氨氮降解筛选培养基试验表明,枯草芽孢杆菌HAINUP40对氨氮的降解效果显著,在试验的第4d时氨氮去除率达到最高值(57.58%);8.64×105cfu/mL、8.64×10~6 cfu/mL、8.64×10~7 cfu/mL 3种密度的枯草芽孢杆菌HAINUP40对模拟废水的净化试验结果显示,枯草芽孢杆菌HAINUP40均可显著降低模拟废水中的化学需氧量和pH值,在第24h,试验组化学需氧量去除率均超69%,而且pH均降至6.7~6.9(对照组为8.0);8.64×106 cfu/mL枯草芽孢杆菌HAINUP40对高含量氨氮和化学需氧量模拟废水的净化效果试验表明,该菌株在第7d时对化学需氧量的去除率达到90.37%。8.64×10~6cfu/mL枯草芽孢杆菌HAINUP40对养殖废水的净化效果试验表明,该菌株在第12h时对亚硝酸盐的去除率达到94.12%,在72h时对化学需氧量的去除率达到72.13%。试验结果显示,枯草芽孢杆菌HAINUP40可显著降低水体中的亚硝酸盐、氨氮和化学需氧量,具有较好水质净化效果。本试验为枯草芽孢杆菌HAINUP40在罗非鱼生产中作为潜在的水质改良剂提供了数据资料和科学依据。  相似文献   

7.
采用平板法测定标注为地衣芽孢杆菌、枯草芽孢杆菌、粪肠球菌和植物乳杆菌制剂的活菌密度,通过16S rRNA基因测序分析对其进行菌种鉴定。在盛水250 L的玻璃钢桶中投放凡纳滨对虾无特定病原的无节3期幼体5×10~4尾,各组由溞状Ⅰ初期至仔虾Ⅰ期,连续10 d,每日分别投菌制剂1次,地衣芽孢杆菌和枯草芽孢杆菌组每次投菌5×10~8 cfu/L,粪肠球菌和植物乳杆菌组每次投菌1×10~8 cfu/L,同时投放饵料,对照组始终不投菌制剂,定期测定水质并分析仔虾存活情况。试验结果显示,4种制剂均由密度高的单一菌种构成;地衣芽孢杆菌组水体氨氮、无机磷和化学需氧量均显著高于对照组,而在育苗早期粪肠球菌和植物乳杆菌组亚硝态氮含量显著降低(P0.05);除地衣芽孢杆菌组仔虾Ⅲ期存活率显著低于枯草芽孢杆菌组外,各组存活率间差异不显著(P0.05),但枯草芽孢杆菌组仔虾存活率和活力均表现最佳,而地衣芽孢杆菌组表现最差。可见,无明显胁迫条件下,连续投放微生物制剂对凡纳滨对虾育苗水质及仔虾存活率总体上无显著提高作用,但两种芽孢杆菌制剂的作用效果存在明显差异。  相似文献   

8.
2016年和2017年分别调查了位于浙江省绍兴市滨海新区的12口凡纳滨对虾围垦滩涂养殖池塘内的理化环境和浮游植物。结果显示:池塘内盐度变化范围为0~2,溶氧为6.2~13.9 mg/L,pH为7.5~9.8,总氨氮(TAN)为0.00~0.72 mg/L,亚硝酸盐氮(NO_2~--N)为0.00~1.70 mg/L,硝酸盐氮(NO_3~--N)为0.18~4.77 mg/L,总氮为1.74~6.08 mg/L,总磷为0.20~2.72 mg/L,总有机碳为1.88~42.57 mg/L,C/N为10~39。池塘内浮游植物种类隶属6门、24科、42属,其中蓝藻和绿藻为优势种。浮游植物生物量为(0.15~2.30)×107cell/L,叶绿素a(Chl.a)为2.62~37.24μg/L。Chl.a与蓝藻生物量显著正相关。NO_2~--N和NO3--N均与pH显著负相关。初步分析认为高pH可能是导致2016年池塘养殖凡纳滨对虾死亡率较高的重要原因,因此采取措施控制蓝藻生物量和水体的p H应有助于提高对虾养殖的存活率。  相似文献   

9.
枯草芽孢杆菌B115株对水质改良效果研究   总被引:10,自引:2,他引:10  
不同养殖水体用20亿/g枯草芽孢杆菌B115株0.5 mg/L后,对养殖水体的溶氧和pH无明显的影响;氨氮最大降解值出现在使用后的第3~4天,平均降低(45.40±5.06)%;亚硝酸盐氮的最大降解值出现在使用后第3天,平均降低率为(16.03±3.82)%;硫化物的最大降解值出现在使用后第3~4天,平均降低率为(23.01±7.27)%。与对照组相比有明显差异(P>0.1),对总大肠菌群也有明显的抑制作用。  相似文献   

10.
养殖水体中微生物全程自养脱氮初步研究   总被引:1,自引:0,他引:1  
利用3种微生物对养殖水体的不同脱氮特性,研究了微生物对养殖水体的全自养脱氮.结果表明,水温25~30 ℃、pH 7.0~7.3及最大DO 3.5 mg/L时,光合细菌、枯草芽孢杆菌以1:1的接种水平,养殖水体中氨氮、亚硝酸盐氮的去除率分别为85.4%、89.5%,可以很好地实现对养殖水体的全自养脱氮.  相似文献   

11.
泥鳅养殖水体中一株芽孢杆菌的筛选及其净水效果研究   总被引:1,自引:0,他引:1  
从泥鳅(Misgurnus anguillicaudatus)养殖池塘水体中分离到4株芽孢杆菌,筛选后获得1株优势目的菌株NQ1;根据形态学特征和生理生化特性结果,将其鉴定为枯草芽孢杆菌(Bacillus subtilis)。安全性试验证实,试验浓度(最高为1×107 cfu/mL)的枯草芽孢杆菌NQ1对泥鳅是安全的。水质净化试验结果显示,在泥鳅养殖水体中加入1×107 cfu/mL浓度的NQ1,14天后氨氮和亚硝酸盐含量较对照组分别降低34.97%和89.46%,表明该菌的净水效果明显,具有作为水质改良微生态制剂开发应用的潜力。  相似文献   

12.
该文采用生态学试验方法,对鳜池塘和大棚养殖模式的水质变化规律进行了调查分析,同时采用不同微生态制剂商品(光合细菌、枯草芽孢杆菌、乳酸菌)对鳜养殖水体水质调节效果进行了研究。结果显示,整个鳜养殖周期(苗种至商品鱼),大棚养殖模式水体温度、溶氧、pH值与池塘养殖模式无明显区别;大棚养殖模式三氮(铵态氮、硝态氮、亚硝态氮)变化规律与池塘养殖模式大致相同,但大部分时间前者水体含量较高;大棚养殖模式水体总磷含量高于池塘养殖模式,且总磷最高值出现时间较池塘养殖模式推迟了近1个月。光合细菌对鳜养殖水体氨氮、亚硝态氮以及总氮整体调控效果最佳;枯草芽孢杆菌对降低硝态氮和亚硝态氮有良好的效果;乳酸菌对养殖后期降低水体pH值有一定的作用。结论:相对于鳜池塘养殖模式,大棚养殖模式氮磷物质循环转化效率较低,合理搭配使用微生物制剂调节水质养殖效果更佳,同时需注意不良天气对微生态制剂使用效果的影响。  相似文献   

13.
放养密度和微生态制剂对施氏鲟养殖水质的影响   总被引:1,自引:0,他引:1  
将初始体质量(54.86±10.19)g的施氏鲟Acipenser schrenckii饲养在面积16m~2(4m×4m)、水深1.7~1.9m的陆基围隔中,密度分别为2 000尾/667m~2、3 000尾/667m~2、4 000尾/667m~2和5 000尾/667m~2,每个密度组均设3个平行,常规饲养,混合泼洒光合细菌、枯草芽孢杆菌和乳酸菌,第一次泼洒量为光合细菌50m L、枯草芽孢杆菌50g和乳酸菌50g,之后每5d泼洒第一次量的1/2,研究微生态制剂对静水土养殖池塘水质的影响。结果显示:水体中溶解氧量随养殖密度的增加逐渐降低(P0.05),氨氮、亚硝酸盐浓度随养殖密度的增加逐渐升高(P0.05)。在使用微孔增氧的条件下,泼洒微生态制剂对溶解氧量和氨氮浓度的影响不显著(P0.05),但显著降低了水体亚硝酸盐浓度(P0.05),显著增加了浮游动物生物量(P0.05)。  相似文献   

14.
于高温多雨季节对广东省清远市鳜(Siniperca chuatsi)养殖基地的6个鳜及饵料鱼养殖池塘发病、用药情况及水质进行调查分析。结果表明,单独施用抑菌类药物,鳜出血病容易复发,而同时施用增强动物免疫力与减少应激行为药物及抑菌类药物,鳜出血病不易复发。鳜及饵料鱼塘发病期间,水中氨氮(NH4+-N)质量浓度始终高于1.0 mg.L-1,亚硝酸盐氮(NO2--N)质量浓度高于0.18 mg.L-1,氮磷比(N/P)也有偏高的情况发生,而所调查的6个池塘硝酸盐氮(NO3--N)质量浓度均随养殖时间延长而逐渐下降。NH4+-N与NO2--N质量浓度过高可能预示鳜的细菌性疾病即将发生。可按实际情况种植浮萍等植物吸收过量NH4+-N;开增氧机保持水中高溶解氧(DO)以降低NO2--N质量浓度或投放减少动物应激行为的药物。N/P过高可适当释放磷肥以调节水质。  相似文献   

15.
中华鲟子一代亲鱼长途运输试验   总被引:1,自引:0,他引:1  
根据中华鲟子一代亲鱼个体大、体表有硬骨板等生理生态学特征,设计构建大型车载水箱运输系统(4.2×2.0×1.0)m,为防止运输途中鱼体与箱体产生碰撞,在水箱内壁加装泡沫板。运输试验在高氧、适温条件下开展(水温控制在8.9.9.8℃,溶氧含量为10.0.20.1mg/L),以氨氮含量指标作为水体可溶性有毒物质的评价标准,对其进行实时监测。结果表明:试验开始6h时水体中氨氮含量已增至O.8mg/L,此时箱内运输水体更换1,2,再注入等量的优质控温水,换水后运输水体的氨氮降到0.2mg/L以下。经过16h长途运输,亲鱼成活率100%,转入暂养池后,亲鱼能够迅速恢复正常活力。研究结果证实运用该种水箱运输系统进行中华鲟等大型鱼类的长途运输是切实可行的。  相似文献   

16.
静水试验条件下研究了亚硝态氮对体质量(0.636±0.09) g的中华鳑鲏急性毒性及短期胁迫下对其体内两种酶活性的影响。在水温25℃、溶解氧6.3 mg/L、pH 7.4时,测定亚硝态氮对中华鳑鲏的24 h半致死质量浓度,并设置高、中、低3个亚硝态氮质量浓度组[1.28、0.64、0.43 mg/L(1/10×24 h半致死质量浓度、1/20×24 h半致死质量浓度、1/30×24 h半致死质量浓度)],于0、24、48、72 h采集血样,测定血清中过氧化氢酶和碱性磷酸酶的活性。试验结果表明,亚硝态氮对中华鳑鲏的24 h半致死质量浓度为12.76 mg/L。在亚硝态氮胁迫作用下,中华鳑鲏血清中过氧化氢酶活性先显著上升,48 h后开始下降;碱性磷酸酶活性变化则是先显著下降,在48 h恢复,然后再下降。碱性磷酸酶活性在24 h和72 h均受到明显抑制。亚硝态氮质量浓度和暴露时间两者之间存在显著交互作用,碱性磷酸酶可以作为亚硝态氮毒性检测的生物标记物。  相似文献   

17.
从刺参(Stichopus japonicus)养殖池塘底泥中分离芽孢杆菌,筛选后获得1株优势目的菌株YT-2;根据形态学特征和生理生化特性结果,将其鉴定为枯草芽孢杆菌(Bacillus subtilis)。安全性试验证实,枯草芽孢杆菌YT-2对孔雀鱼(Poecilia reticulata)和南美白对虾(Penaeus vannamei)无毒性;水质净化试验结果显示,10d后菌株YT-2对养殖水体中氨氮和亚硝酸盐的降解率分别为81.9%和64.3%,表明该菌对净化养殖池塘水质有明显的作用,具有作为益生菌开发应用的潜力。  相似文献   

18.
分别在饲料中添加不同含量的枯草(Bacillus subtilis)芽孢(A组实测芽孢数量为2.6×107 cfu/g,B组为4.4×106 cfu/g,空白组为0),饲喂静水水族箱中100 g左右的草鱼(Ctenopharyngodon idellus)10 d,测定饲喂枯草芽孢后草鱼粪便、养殖水体中芽孢数量和水质的变化。结果表明:(1)9 d内,水体中芽孢数量A组和B组在前6 d时不断增加,在6 d时达到稳定,其中A组和B组稳定时的含量分别为2.22×106 cfu/g和3.98×105 cfu/g。(2)10 d内,草鱼粪便干物质中的芽孢数量与饲料中的枯草芽孢含量相比,A组和B组粪便中的枯草芽孢损失率分别为89.76%~90.71%和83.83%~86.84%。(3)草鱼饲喂枯草芽孢后,A组和B组粪便中排出的枯草芽孢对水体中亚硝酸盐和氨氮有降低的趋势,但各组之间差异不显著(P>0.05),对化学需氧量(COD)没有影响。  相似文献   

19.
自河口污泥中分离到两株有益菌,通过形态分析、革兰氏染色、生理生化测定、16S rRNA序列分析和系统发育树构建,其中一株鉴定为植物乳杆菌(Lactobacillus plantarum),另一株为枯草芽孢杆菌(Bacillus subtilis).建立了两株细菌的适宜生长条件,植物乳杆菌适宜生长pH为6.5、温度为30℃,枯草芽孢杆菌的适宜生长pH为6.0、温度为36℃.在实验室条件下,两株有益菌1∶1组合制剂对人工配制的海水中氨氮、亚硝酸盐、磷酸盐的降解率分别达到了73.2%、58.0%和52.4%;池塘养殖环境下,其对养殖水体中氨氮、亚硝酸盐、磷酸盐的降解率分别达到了86.3%、88.9%和68.3%,具有明显的水质净化效果.本研究结果可为建立两株有益菌的规模化发酵生产技术和生产应用奠定基础.  相似文献   

20.
枯草芽孢杆菌的培养条件及对水质的净化作用   总被引:16,自引:3,他引:16  
研究了枯草芽孢杆菌(Bacillus subtilis Cohn,1872)(菌株编号:LB-B3)的培养条件及其在净化对虾养殖池水样方面的效果。实验分别设置了9个不同的pH值梯度(pH 2~10)和6个不同接种量梯度(0.3%、0.5%、1%、3%、5%和7%),以吸光值(OD)为生长指标,进行了枯草芽孢杆菌培养条件的优化实验;同时又设置了5个不同接种浓度(0 CFU/mL、5.2×104CFU/mL、1.04×105CFU/mL、1.56×105CFU/mL和2.08×105CFU/mL)接种待处理水样,测定了96 h内化学耗氧量、亚硝酸氮、氨态氮和溶氧等4个水质指标的变化情况。结果表明:pH=7.0、接种量为7.0%时,OD值最大;枯草芽孢杆菌能显著净化水质,但使用后会暂时性增加耗氧。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号