首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the histidine requirement of fingerling Catla catla (3.65 ± 0.15 cm; 0.65 ± 0.36 g), six casein‐gelatin based diets (33% CP; 13.58 kJ g?1 DE) containing graded levels of L‐histidine (0.25%, 0.39%, 0.53%, 0.67%, 0.83%, 0.96% of the dry diet) were fed near to satiation thrice a day for 12 weeks. Maximum absolute weight gain (AWG; 8.63 g fish?1), protein gain (PG; 1.45 g fish?1), histidine gain (HG, 48.19 mg fish?1), RNA/DNA ratio (4.15), best feed conversion ratio (FCR; 1.31), highest haemoglobin (Hb, 9.61 g dL?1), RBCs (2.84 × 106 mm?3) and haematocrit (Ht, 30.12%) were recorded in fish fed diet containing 0.67% histidine. However, broken‐line regression analysis of AWG, PG, HG, RNA/DNA ratio, FCR, Hb, Ht and RBCs against dietary histidine reflected the histidine requirement at 0.65%, 0.64%, 0.63%, 0.68%, 0.63%, 0.66%, 0.68% and 0.65% dry diet respectively. Carcass protein was found to improve significantly (P < 0.05) from 13.36% to 16.42% with the increase in dietary histidine from 0.25% to 0.67%. Based on regression analysis of AWG, PG, HG, RNA/DNA ratio, FCR, Hb, Ht and RBCs, it is recommended that the diet for fingerling catla should contain histidine in the range of 0.63–0.68% dry diet, equivalent to 1.91–2.06% of the dietary protein for optimum growth, feed utilization, blood profile and carcass composition.  相似文献   

2.
To quantify dietary L‐tryptophan requirement of fingerling Heteropneustes fossilis (6.66 ± 0.08 g), casein–gelatin‐based isonitrogenous (38% CP) and isoenergetic (14.72 kJ g?1 DE) purified diets with eight levels of L‐tryptophan (0.12%, 0.16%, 0.20%, 0.24%, 0.28%, 0.32%, 0.36%, 0.40% dry diet) were fed to triplicate groups of fish twice daily to apparent satiation for 12 weeks. Incremental levels of dietary tryptophan from 0.12 to 0.28% significantly (P < 0.05) improved absolute weight gain (AWG; 14.3–65.9 g fish?1), feed conversion ratio (FCR; 5.9–1.5), protein retention efficiency (PRE; 6.2–32.2%), haemoglobin (Hb; 6.5 to 11.9 g dL?1) and haematocrit (Hct; 23.5–33.8%). To determine the precise information on tryptophan requirement, data were subjected to broken‐line and second‐degree polynomial regression analysis. Broken‐line regression analysis reflected highest R2 values for AWG g fish?1 (0.999), PRE% (0.993), Hb g dL?1 (0.995) and Hct% (0.993) compared with R2 values obtained using second‐degree polynomial regression analysis of AWG g fish?1(0.949), PRE% (0.890), Hb g dL?1(0.969) and Hct% (0.943), indicating that data were better fit to broken‐line regression analysis. Hence, based on broken‐line regression analysis at 95% maximum response, tryptophan requirement of fingerling H. fossilis is recommended between 0.24% and 0.27% dry diet (0.63–0.71% protein).  相似文献   

3.
Dietary lysine requirement of fingerling Heteropneustes fossilis (6.96 ± 0.05 g) was quantified by conducting 12‐week feeding trial in a flow‐through system at 28°C. Casein–gelatin based isonitrogenous (38% CP) and isocaloric (14.7 kJ g?1 DE) amino acid test diets with six levels of dietary lysine (1.5%, 1.75%, 2.0%, 2.25%, 2.5%, 3.0% dry diet) were fed to apparent satiation in triplicates. Broken‐line and second‐degree polynomial regression analyses at 95% plateau of absolute weight gain (AWG; g fish?1), feed conversion ratio (FCR), protein deposition (PD; g fish?1) and lysine deposition (LD; g fish?1) exhibited lysine requirement between 2.0% to 2.3% of the dry diet, corresponding to 5.3–6.1% protein.  相似文献   

4.
Two experiments were conducted to quantify the dietary thiamin (experiment I) and pyridoxine (experiment II) requirements of fingerling Cirrhinus mrigala for 16 weeks. In experiment I, dietary thiamin requirement was determined by feeding seven casein–gelatin‐based diets (400 g kg?1 CP; 18.69 kJ g?1 GE) with graded levels of thiamin (0, 0.5, 1, 2, 4, 8 and 16 mg kg?1 diet) to triplicate groups of fish (6.15 ± 0.37 cm; 1.89 ± 0.12 g). Fish fed diet with 2 mg kg?1 thiamin had highest specific growth rate (SGR), protein retention (PR), RNA/DNA ratio, haemoglobin (Hb), haematocrit (Hct), RBCs and best feed conversion ratio (FCR). However, highest liver thiamin concentration was recorded in fish fed 4 mg thiamin kg?1 diet. Broken‐line analysis of SGR, PR and liver thiamin concentrations exhibited the thiamin requirement in the range of 1.79–3.34 mg kg?1 diet (0.096–0.179 μg thiamin kJ?1 gross energy). In experiment II, six casein–gelatin‐based diets (400 g kg?1 CP; 18.69 kJ g?1 GE) containing graded levels of pyridoxine (0, 2, 4, 6, 8 and 10 mg kg?1 diet) were fed to triplicate groups of fish (6.35 ± 0.37 cm; 1.97 ± 0.12 g). Fish fed diet containing 6 mg kg?1 pyridoxine showed best SGR, FCR, PR, RNA/DNA ratio, Hb, Hct and RBCs, whereas maximum liver pyridoxine concentration was recorded in fish fed 8 mg kg?1 dietary pyridoxine. Broken‐line analysis of SGR, PR and liver pyridoxine concentrations reflected the pyridoxine requirement from 5.63 to 8.61 mg kg?1 diet. Data generated during this study would be useful in formulating thiamin‐ and pyridoxine‐balanced feeds for the intensive culture of this fish.  相似文献   

5.
The effects of feeding rates on growth, feed conversion, protein deposition and carcass quality of fingerling Catla catla (3.61 ± 0.03 cm; 0.71 ± 0.04 g) were worked out by conducting a 16‐week feeding trial. Fingerlings were fed with a casein‐gelatin‐based purified diet (40% crude protein CP; 14.95 MJ kg?1 digestible energy; DE) at 1%, 2%, 3%, 4%, 5%, 6% and 7% body weight per day. The absolute weight gain (AWG; 10.50 g fish?1) and feed conversion ratio (FCR; 1.41) were highest at the feeding rate of 5% body weight per day. However, protein gain (PG; 0.36 g fish?1) and carcass protein content attained the maximum values at 4% BW day?1. Quadratic regression analyses of AWG g fish?1 and PG g fish?1 at 95% maximum response indicated that these parameters attained the best values at 4.19% and 3.81% BW day?1. On the basis of the above results it is recommended that the feeding rate in the range of 3.81–4.19% BW day?1 with a P:E ratio of 26.69–27.74 mg protein MJ?1 DE is optimum for maximum growth, efficient feed conversion and best carcass quality in fingerling C. catla.  相似文献   

6.
A 75‐day experiment was conducted with juvenile gibel carp (Carassius auratus gibelio) (4.80 ± 0.01 g) to evaluate effects of dietary chitosan on fish growth performance, haematology, intestine morphology and immune response. Six isonitrogenous (crude protein: 383 g kg?1), isolipid (97.5 g kg?1) and isocaloric (gross energy: 16.7 kJ g?1) diets were formulated to contain 0, 1800, 4000, 7500, 10 000, 20 000 mg kg?1 chitosan, respectively. The results showed that the growth was depressed when the fish fed with 10 000 mg kg?1 chitosan. Serum cholesterol, triglyceride and low‐density lipoprotein decreased in 10 000 and 20 000 mg kg?1 chitosan. On day 75, blood leucocyte phagocytic activity respiratory burst and alternative pathway of complement haemolytic activity were enhanced in 4000 mg kg?1 chitosan. The number of goblet cell, intraepithelial lymphocyte of mid‐intestine and microvilli height of distal intestine increased at 4000 mg kg?1 dietary chitosan. Dietary chitosan modulated intestine microbiota, depressed pathogen bacteria Aeromonas veronii‐like and improved Cellulomonas hominis‐like, Bacillus oceanisediminis‐like and two uncultured bacterium‐like species on day 75. Dietary 7500 and 10 000 mg kg?1 chitosan enhanced the protection against Aeromonas hydrophila infection. In conclusion, oral administration of dietary 7500 mg kg?1 chitosan for 75 days is recommended for the survival of gibel carp.  相似文献   

7.
A 12‐week feeding trial was conducted to evaluate the optimum dietary inorganic copper (copper sulphate) in juvenile beluga, Huso huso. Eight semi‐purified diets containing 1.1 (Cu1.0), 3.5 (Cu4.0), 7.1 (Cu7.0), 9.7 (Cu10), 13.1 (Cu13), 25.1 (Cu25), 49.9 (Cu50) and 195 (Cu195) mg Cu kg?1 diet in the form of CuSO4.5H2O were fed to fish of initial body weight 8.49 ± 0.32 g and length 11.85 ± 0.66 cm (mean ± SD) in triplicate groups in a flow‐through system. Weight gain (WG) of fish fed Cu10 and Cu13 diets was significantly higher than that of fish fed Cu1.0, Cu4.0, Cu25, Cu50 and Cu195 diets (P < 0.05). Whole‐body and muscle crude protein increased with dietary Cu up to the supplementation level of 13.1 mg kg?1 diet and then decreased. Whole‐body lipid content was negatively correlated, while whole‐body ash was positively correlated with dietary copper concentration. Hepatic copper–zinc superoxide dismutase activity of fish fed Cu10 and Cu13 diets was significantly higher than that of fish fed Cu1.0, Cu4.0 and Cu195 diets. Hepatic thiobarbituric acid‐reactive substances of fish fed Cu13 diet was significantly lower than those of fish fed the other diets except for that of fish fed Cu10 diet. Aspartate aminotransferase, alanine aminotransferase and copper accumulation in tissues increased with dietary copper. Broken‐line analysis of WG suggested that the optimum dietary Cu level was 10.3 mg Cu kg?1 diet. Therefore, these results may indicate that the optimum dietary Cu levels could be greater than 10.3 mg Cu kg?1 diet but less than 13.1 mg Cu kg?1 diet in juvenile beluga, when copper sulphate is used as the dietary source of inorganic copper.  相似文献   

8.
Six isonitrogenous and isocaloric semi‐purified diets were prepared with different levels of microbial levan: control (Basal), T1 (Basal + 2.5 g kg?1 diet), T2 (Basal + 5 g kg?1 diet), T3 (Basal + 7.5 g kg?1 diet), T4 (Basal + 10 g kg?1 diet) and T5 (Basal + 12.5 g kg?1 diet), fed to six groups of fish in triplicate tanks. The results of the 60 days feeding trail showed that supplementation of dietary levan significantly affected the weight gain percentage and specific growth rate of the treatment groups fed at 10 g kg?1 or more levan. Lowest feed conversion ratio (FCR) value and highest survival percentage among levan fed groups were observed with 12.5 g kg?1 incorporation (T5) and was comparable with (T4) group. Significant increase in muscle RNA level and RNA/DNA ratio was observed with the increasing dietary levan. Fish fed 12.5 g kg?1 levan had significantly higher protease, amylase and lipase activities compare with the control group. Lowest Aspartate aminotransferase (AST) activity in the liver and muscle was observed in the T5 group fed with highest level of dietary levan. Overall results conclude that dietary microbial levan incorporation at 12.5 g kg?1 could be used as potent dietary prebiotic for the culture of L. rohita juveniles.  相似文献   

9.
An 8‐week feeding trial was conducted to investigate the optimum dietary protein and lipid levels for growth, feed utilization and body composition of Pseudobagrus ussuriensis fingerlings (initial weight: 3.40 ± 0.01 g). Twelve diets containing four protein levels (350, 400, 450 and 500 g kg?1 crude protein) and three lipid levels (50, 100 and 150 g kg?1 crude lipid) were formulated. Fish were randomly allotted to 36 aquaria (1.0 × 0.5 × 0.8 m) with 25 fish to each glass aquarium. Fish were fed twice daily (08:00 and 16:00) to apparent satiation. The results showed that weight gain and specific growth rate (SGR) decreased with increasing dietary lipid level from 50 to 150 g kg?1 at the same dietary protein level. Fish fed the diets containing 150 g kg?1 lipid exhibited higher feed conversion ratio (< 0.05), lower protein efficiency ratio (PER) and nitrogen retention efficiency (NRE) relative to fish fed the diet containing 50 and 100 g kg?1 lipid. Weight gain and SGR significantly increased with increasing dietary protein from 350 to 450 g kg?1 at the same dietary lipid level, and even a little decline in growth with the further increase in dietary protein to 500 g kg?1. Daily feed intake, NRE and PER were significantly affected by both dietary protein and lipid levels (P < 0.05) and tended to decrease with increasing dietary protein and lipid levels. Whole‐body protein content increased as protein levels increased and lipid levels decreased. Whole‐body lipid and muscle lipid content increased with increasing dietary lipid level, and decreased with increasing dietary protein at each lipid level. There was no significant difference in condition factor and viscerosomatic index among fish fed the diets. Hepatosomatic index was affected by dietary lipid level (P < 0.05), and increased with increasing dietary lipid level at the same protein level. These results suggest that the diet containing 450 g kg?1 protein and 50 g kg?1 lipid with a P/E ratio of 29.1 mg protein kJ?1 is optimal for growth and feed utilization of P. ussuriensis fingerlings under the experimental conditions used in the study.  相似文献   

10.
Two trials were conducted to evaluate the performance of Pacific white shrimp Litopenaeus vannamei offered diets containing various copper (Cu) levels from Cu hydroxychloride (Cu2(OH)3Cl) containing 58.81% copper in the clear water recirculating system. In both trials, the basal diet (360 g kg?1 protein, 80 g kg?1 lipid) containing approximately 10 mg Cu kg?1 was primarily comprised of fishmeal, soybean meal, corn protein concentrate and whole wheat. In trial 1, test diets were produced supplementing the basal diet with 5, 10, 20, 40 and 60 mg Cu kg?1 from Cu hydroxychloride. Four replicate groups of 15 shrimp per tank (initial weight 0.28 g) were offered diets in slight excess over 8 weeks. In trial 2, the basal diet was supplemented with 30, 90, 150, 210 and 270 mg Cu kg?1 from Cu hydroxychloride. Seven replicate groups of 15 shrimp per tank (initial weight 0.22 g) were offered feed in slight excess over 7 weeks. At the end of the two growth trials, no significant differences were observed in final biomass, final mean weight, percentage weight gain, feed conversion ratio (FCR) and survival. In trial 1, the Cu concentrations of the carapace, hepatopancreas and whole shrimp linearly increased with increasing dietary Cu supplements. In trial 2, polynomial regression of Cu concentrations of the carapace, hepatopancreas and whole shrimp against analysed dietary Cu content indicated that a plateau was reached at 215 mg analysed Cu kg?1. Results of this study indicate that there was no negative effect of high levels of Cu supplement with regard to growth and survival. Tissue levels generally increased up to around 200 mg Cu kg?1 diet and then decreased, possibly indicating a shift in physiology.  相似文献   

11.
Amino acids are vital for all living organisms including fish and histidine is an essential amino acid for fish. In view of this, dietary histidine requirement of fry Heteropneustes fossilis was determined by feeding casein–gelatin‐based isonitrogenous (430 g kg?1 CP) and isocaloric (17.9 MJ kg?1 GE; 15.5 MJ kg?1 DE) amino acid test diets (10 to 20 g histidine kg?1 dry diet) to quadruplicate groups of randomly assigned fish to apparent satiety for 12 weeks. Maximum absolute weight gain (AWG; 44 g fish?1), protein retention efficiency (PRE; 20%), protein efficiency ratio (PER; 1.04), haemoglobin (Hb; 11.24 g dL?1), haematocrit (Hct; 35.11%), red blood count (RBCs; 2.98 × 109 mL?1) and lowest erythrocyte sedimentation rate (ESR; 1.92 mm h?1) were obtained at 16 g histidine kg?1 dry diet. The 95% maximum quadratic response of above data exhibited the requirement to be at 15.2, 15.1, 15.6 and 15.5 g histidine kg?1 diet. As histidine is found in higher concentration in haemoglobin, requirement obtained for Hct% and Hb is 4% greater than that required for maximizing weight gain and protein retention. Based on these results, dietary histidine requirement of H. fossilis fry is recommended between 15.1 and 15.6 g kg?1, corresponding to 35.1–36.3 g kg?1 protein.  相似文献   

12.
An 8‐week feeding trial was conducted to assess dietary protein and lipid levels on growth performance, feed utilization and body composition of juvenile red‐spotted grouper (7.85 ± 0.03 g fish?1). Nine semi‐purified diets were formulated containing varying protein levels (440–520 g kg?1, dry matter) and lipid levels (60–120 g kg?1, dry matter). The weight gain of juvenile Epinephelus akaara was affected by dietary protein (= .005) and its interaction with dietary lipid (= .020). Viscerosomatic index, intraperitoneal fat ratio and whole‐body lipid level increased with increasing dietary lipid level (p < .001). Nitrogen retention was not affected by dietary protein and lipid, while lipid retention decreased with increasing dietary lipid level (p < .001). The plasma blood urea nitrogen increased with increasing dietary protein level (= .003). This study showed that diet with 520 g kg?1 protein and 60 g kg?1 lipid with 30.58 mg kJ?1 P:E provided a maximal growth for this species. Moreover, an increase in dietary lipid levels (from 60 to 90 g kg?1) could reduce the protein requirement (from 520 to 480 g kg?1) without affecting the growth performance, while higher fat deposition was observed in fish fed high‐lipid diets.  相似文献   

13.
This study was designed to assess the protective effects of dietary selenium (Se) on abalone Haliotis discus hannai Ino against the toxicity of waterborne copper (Cu). A 60‐day feeding trial was conducted in a static water system for abalone (initial weight: 3.17 ± 0.01 g) exposed to 0.02 mg L?1 of waterborne Cu. The animals were fed one of the three experimental diets with 0.10, 1.31 and 4.20 mg kg?1 of Se from Na2SeO3·5H2O respectively. Results showed that the abalone fed 1.31 mg kg?1 of dietary Se had the lowest Cu concentration in shell, muscle, mantle, gill, hepatopancreas and serum. Meanwhile, the significant lowest contents of malondiadehyde and protein carbonyl in hepatopancreas were also found in the treatment with 1.31 mg kg?1 of dietary Se (P < 0.05). In addition, this treatment had significant higher glutathione content and thioredoxin reductase activity in hepatopancreas (P < 0.05). However, the activity of Se‐dependent glutathione peroxidase (Se‐GPx) was significantly decreased in the treatment with 4.20 mg kg?1 of dietary Se (P < 0.05). In this treatment, the protein carbonyl content in hepatopancreas was significantly higher than that in the group with 1.31 mg kg?1 of dietary Se (P < 0.05). In conclusion, in terms of anti‐oxidation and Cu accumulation, the protective effects of dietary Se on abalone against waterborne Cu were dose‐dependent. The 1.31 mg kg?1 of dietary Se had this effect, but not 4.20 mg kg?1 of dietary Se. Moreover, the latter increased the oxidative stress in abalone exposed to the waterborne Cu.  相似文献   

14.
Two trials were conducted to investigate protein requirements of juvenile (3.18 g in Trial 1) and on‐growing (87.1 g in Trial 2) gibel carp, Carassius auratus gibelio var. CAS III. Six isoenergetic diets containing 250–500 g kg?1 dietary protein were formulated using soy protein concentrate (SPC) and casein as protein sources. The results showed that weight gain (WG) increased when dietary protein increased from 250 to 400 g kg?1 and decreased at 400 to 500 g kg?1 CP in Trial 1, while WG increased when dietary protein increased from 250 to 350 g kg?1 and kept constant at 350 to 500 g kg?1 CP in Trial 2. With increasing dietary protein, feed conversion ratio (FCR) decreased, while protein retention efficiency (PRE) decreased in Trial 1 and was not affected in Trial 2. Apparent digestibility coefficient of protein (ADCp) increased with increasing dietary protein in two trails. Trypsin activity increased with dietary protein in the juveniles and was not affected in on‐growing fish. Hepatic alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities increased with dietary protein. Broken‐line and quadratic regression of WG estimated that dietary protein requirements for maximum growth were about 402–427 g kg?1 for the juvenile and 337–418 g kg?1 for on‐growing gibel carp.  相似文献   

15.
Oriental river prawn (Macrobrachium nipponense) has been widely cultured in Asian countries. However, its nutritional studies are very limited. In the present 8‐week study, we investigated the effects of dietary protein to energy ratio (P/E ratio) on the growth, feed utilization and body composition in juvenile M. nipponense (initial weight 0.302 ±0.03 g). Two‐factor experiment was designed and nine semi‐purified diets were formulated to contain three lipid levels (20, 80 and 140 g kg?1) and three protein levels (330, 380 and 430 g kg?1), producing P/E ratios from 16.5 to 23.4 mg KJ?1 protein. The results indicated that the growth, survival rate and protein efficiency were dose dependently improved by the increased dietary lipid, but not dietary protein content. Increased dietary lipid content and/or protein content increased lipid accumulation in whole body, hepatopancreas and muscle, but did not change the feed intake and hepatopancreas weight. In conclusion, our present study indicated that M. nipponense is a species with relatively high‐energy requirement. It could utilize dietary lipid content up to 140 g kg?1, while the dietary protein with more than 330 g kg?1 would not promote growth and protein efficiency. Taken together, 330 g kg?1 dietary protein and 140 g kg?1 dietary lipid level with P/E ratio 16.49 could be optimum for M. nipponense.  相似文献   

16.
This study was designed to evaluate the efficacy of eight sources (designated A–H) of soybean meal (SBM) which included six new non‐genetically modified soya varieties in practical feed formulation for Pacific white shrimp, Litopenaeus vannamei, using both growth and digestibility trials. A soybean meal‐based reference diet was formulated using conventional soybean meal (527 g kg?1 diet), which was then replaced on an isonitrogenous basis with various other experimental soybean meals. In a 6‐week growth trial, shrimp in four replicate tanks per dietary treatment (10 shrimp per tank, initial weight 0.52 ± 0.04 g) were cultured in a recirculating system. There were no significant differences with respects to per cent weight gain and survival across all dietary treatments; however, final weights and feed conversion ratio (FCR) were lower in shrimp offered diet 3. Apparent digestibility coefficients for the eight (A–H) different soybean meals were determined in L. vannamei for dry matter (ADMD), gross energy (ADE) and crude protein (ADP) using 10 g kg?1 chromic oxide as inert marker with 70 : 30 replacement techniques. Coefficients ranged from 71.3% to 88.3%, from 76.6% to 91.3% and from 93.6% to 99.8%, for ADMD, ADE and ADP, respectively. Improved digestibility values were observed in soybean C which was characterized by crude protein (471 g kg?1), crude fat (97 g kg?1), low cooking temperature (180 °C), higher nitrogen solubility index (689 g kg?1) and protein dispersibility index (619 g kg?1). This indicates that new lines of soybean meal can be used to improve digestibility coefficients in shrimp feeds.  相似文献   

17.
Growth response of fingerling Heteropneustes fossilis (6.8 ± 0.2 g; 11.2 ± 0.3 cm) to dietary l ‐leucine levels was assessed by conducting 8‐week feeding trial in a flow‐through system (1–1.5 L min?1) at 28 °C water temperature. Casein–gelatin‐based isonitrogenous (380 g kg?1; crude protein) and isoenergetic [17.9 MJ kg?1; gross energy (GE)] basal diet was supplemented with different levels of l ‐leucine to achieve desired leucine levels ranging between 10 and 22.5 g kg?1 dry diet. Analysed values were 9.9 (Lc9.9), 12.4 (Lc12.4), 15.1 (Lc15.1), 17.4 (Lc17.4), 20.1 (Lc20.1) and 22.4 (Lc22.4) g leucine kg?1 diet. Fishes were stocked randomly in quadruplicates and fed to satiation at 07:00 and 17:30 h. Maximum absolute weight gain (AWG g fish?1), feed conversion ratio (FCR), protein utilization efficiency (PUE%), leucine retention efficiency (LRE%) and haematological parameters were found in fish fed diet Lc17.4. For precise determination of dietary leucine requirement of Singhi, AWG g fish?1, FCR, PUE% and LRE% were subjected to broken‐line and second‐degree polynomial regression analysis. Second‐degree polynomial regression analysis fitted the data more accurately (P > 0.05) exhibiting high R2 values. Hence, based on this analysis, dietary leucine requirement of fingerling H. fossilis is recommended to be 16.5 g kg?1 of the diet, corresponding to 43.4 g kg?1 protein for developing leucine‐balanced commercial feeds.  相似文献   

18.
A 63‐day growth trial was undertaken to estimate the effects of supplemented lysine and methionine with different dietary protein levels on growth performance and feed utilization in Grass Carp (Ctenopharyngodon idella). Six plant‐based practical diets were prepared, and 32CP, 30CP and 28CP diets were formulated to contain 320 g kg?1, 300 g kg?1 and 280 g kg?1 crude protein without lysine and methionine supplementation. In the supplementary group, lysine and methionine were added to formulate 32AA, 30AA and 28AA diets with 320 g kg?1, 300 g kg?1 and 280 g kg?1 dietary crude protein, respectively, according to the whole body amino acid composition of Grass Carp. In the groups without lysine and methionine supplementation, weight gain (WG, %) and specific growth rate (SGR, % day?1) of the fish fed 32CP diet were significantly higher than that of fish fed 30CP and 28CP diets, but no significant differences were found between 30CP‐ and 28CP‐diet treatments. WG and SGR of the fish fed 32AA and 30AA diets were significantly higher than that of fish fed 28AA diets, and the performance of grass carp was also significantly improved when fed diets with lysine and methionine supplementation (P < 0.05), and the interaction between dietary protein level and amino acid supplementation was noted between WG and SGR (P < 0.05). Feed intake (FI) was significantly increased with the increase in dietary protein level and the supplementation of lysine and methionine (P < 0.05), but feed conversion ratio (FCR) showed a significant decreasing trend (P < 0.05). Two days after total ammonia nitrogen (TAN) concentration test, the values of TAN discharged by the fish 8 h after feeding were 207.1, 187.5, 170.6, 157.3, 141.3 and 128.9 mg kg?1 body weight for fish fed 32CP, 32AA, 30CP, 30AA, 28CP and 28AA diets, respectively. TAN excretion by grass carp was reduced in plant‐based practical diets with the increase in dietary protein level and the supplementation of lysine and methionine (P < 0.05). The results indicated that lysine and methionine supplementation to the plant protein sources‐based practical diets can improve growth performance and feed utilization of grass carp, and the dietary crude protein can be reduced from 320 g kg?1 to 300 g kg?1 through balancing amino acids profile. The positive effect was not observed at 280 g kg?1 crude protein level.  相似文献   

19.
Dietary arginine requirement of Heteropneustes fossilis fry (3.0 ± 0.5 cm; 5.1 ± 0.3 g) was determined by feeding casein‐gelatin‐based isonitrogenous (400 g kg?1 crude protein) and isocaloric (17.97 kJ g?1) amino acid test diets containing graded levels of l ‐arginine (15, 17, 19, 21, 23 and 25 g kg?1 dry diet) for 12 weeks. Maximum absolute weight gain (AWG) (44.4), best feed conversion ratio (FCR) (1.22), highest protein retention efficiency (PRE%) (41%), energy retention efficiency (ERE%) (75%), best condition factor, hepatosomatic index and viscerosomatic index were noted at 21 g kg?1 arginine of the dry diet. Maximum body protein (189.8 g kg?1) was also obtained in fish fed above diet. Highest haematocrit value (35%), Hb concentration (9.54 g dL?1), RBC count (3.44 × 109 mL?1) and lowest Erythrocyte sedimentation rate (ESR) (1.93 mm h?1) were obtained at the above level of arginine in the diet. AWG, FCR, PRE% and ERE% data were analysed using broken‐line and an exponential fit to obtain more precise dietary arginine requirement. On the basis of broken‐line and exponential analyses of AWG, FCR, PRE and ERE data, inclusion of dietary arginine in the range of 20.4–22.6 g kg?1 dry diet, corresponding to 51–56.5 g kg?1 dietary protein, is recommended for formulating arginine‐balanced feeds for rearing H. fossilis fry.  相似文献   

20.
A 12‐week feeding trial was conducted in eighteen 70 L indoor polyvinyl circular troughs provided with a water flow‐through system (1–1.5 L min?1) at 28 ± 1 °C to evaluate the dietary tryptophan requirement of fingerling Catla catla (3.45 ± 0.24 cm; 0.60 ± 0.13 g). Six casein‐gelatin‐based amino acid test diets (330 g kg?1 crude protein; 13.6 kJ g?1 digestible energy) containing graded levels of L‐tryptophan (1.0, 1.4, 1.9, 2.3, 2.8, 3.4 g kg?1 dry diet) were fed to triplicate groups of fish near to satiation at 08:00, 12:30 and 17:30 h. Absolute weight gain, feed conversion ratio, protein gain, RNA/DNA ratio, hepatosomatic index, viscerosomatic index, condition factor and haematological indices improved with the increasing levels of tryptophan from 1.0 to 2.3 g kg?1 of dry diet. Significantly higher carcass protein was obtained at 2.3 g tryptophan per kilogram of the dry diet. Exponential analysis of absolute weight gain, feed conversion ratio, protein gain and RNA/DNA ratio against dietary tryptophan levels at 95% maximum and minimum responses displayed the tryptophan requirement at 2.5, 2.3, 2.5 and 2.1 g kg?1 dry diet, respectively. Inclusion of dietary tryptophan in the range of 2.1–2.5 g kg?1 dry diet, equivalent to 6.4–7.6 g kg?1 dietary protein, is recommended in formulating tryptophan‐balanced feed for the culture of this fish species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号