首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
To quantify dietary L‐tryptophan requirement of fingerling Heteropneustes fossilis (6.66 ± 0.08 g), casein–gelatin‐based isonitrogenous (38% CP) and isoenergetic (14.72 kJ g?1 DE) purified diets with eight levels of L‐tryptophan (0.12%, 0.16%, 0.20%, 0.24%, 0.28%, 0.32%, 0.36%, 0.40% dry diet) were fed to triplicate groups of fish twice daily to apparent satiation for 12 weeks. Incremental levels of dietary tryptophan from 0.12 to 0.28% significantly (P < 0.05) improved absolute weight gain (AWG; 14.3–65.9 g fish?1), feed conversion ratio (FCR; 5.9–1.5), protein retention efficiency (PRE; 6.2–32.2%), haemoglobin (Hb; 6.5 to 11.9 g dL?1) and haematocrit (Hct; 23.5–33.8%). To determine the precise information on tryptophan requirement, data were subjected to broken‐line and second‐degree polynomial regression analysis. Broken‐line regression analysis reflected highest R2 values for AWG g fish?1 (0.999), PRE% (0.993), Hb g dL?1 (0.995) and Hct% (0.993) compared with R2 values obtained using second‐degree polynomial regression analysis of AWG g fish?1(0.949), PRE% (0.890), Hb g dL?1(0.969) and Hct% (0.943), indicating that data were better fit to broken‐line regression analysis. Hence, based on broken‐line regression analysis at 95% maximum response, tryptophan requirement of fingerling H. fossilis is recommended between 0.24% and 0.27% dry diet (0.63–0.71% protein).  相似文献   

2.
The effects of feeding rates on growth, feed conversion, protein deposition and carcass quality of fingerling Catla catla (3.61 ± 0.03 cm; 0.71 ± 0.04 g) were worked out by conducting a 16‐week feeding trial. Fingerlings were fed with a casein‐gelatin‐based purified diet (40% crude protein CP; 14.95 MJ kg?1 digestible energy; DE) at 1%, 2%, 3%, 4%, 5%, 6% and 7% body weight per day. The absolute weight gain (AWG; 10.50 g fish?1) and feed conversion ratio (FCR; 1.41) were highest at the feeding rate of 5% body weight per day. However, protein gain (PG; 0.36 g fish?1) and carcass protein content attained the maximum values at 4% BW day?1. Quadratic regression analyses of AWG g fish?1 and PG g fish?1 at 95% maximum response indicated that these parameters attained the best values at 4.19% and 3.81% BW day?1. On the basis of the above results it is recommended that the feeding rate in the range of 3.81–4.19% BW day?1 with a P:E ratio of 26.69–27.74 mg protein MJ?1 DE is optimum for maximum growth, efficient feed conversion and best carcass quality in fingerling C. catla.  相似文献   

3.
To investigate the histidine requirement of fingerling Catla catla (3.65 ± 0.15 cm; 0.65 ± 0.36 g), six casein‐gelatin based diets (33% CP; 13.58 kJ g?1 DE) containing graded levels of L‐histidine (0.25%, 0.39%, 0.53%, 0.67%, 0.83%, 0.96% of the dry diet) were fed near to satiation thrice a day for 12 weeks. Maximum absolute weight gain (AWG; 8.63 g fish?1), protein gain (PG; 1.45 g fish?1), histidine gain (HG, 48.19 mg fish?1), RNA/DNA ratio (4.15), best feed conversion ratio (FCR; 1.31), highest haemoglobin (Hb, 9.61 g dL?1), RBCs (2.84 × 106 mm?3) and haematocrit (Ht, 30.12%) were recorded in fish fed diet containing 0.67% histidine. However, broken‐line regression analysis of AWG, PG, HG, RNA/DNA ratio, FCR, Hb, Ht and RBCs against dietary histidine reflected the histidine requirement at 0.65%, 0.64%, 0.63%, 0.68%, 0.63%, 0.66%, 0.68% and 0.65% dry diet respectively. Carcass protein was found to improve significantly (P < 0.05) from 13.36% to 16.42% with the increase in dietary histidine from 0.25% to 0.67%. Based on regression analysis of AWG, PG, HG, RNA/DNA ratio, FCR, Hb, Ht and RBCs, it is recommended that the diet for fingerling catla should contain histidine in the range of 0.63–0.68% dry diet, equivalent to 1.91–2.06% of the dietary protein for optimum growth, feed utilization, blood profile and carcass composition.  相似文献   

4.
This study was aimed at quantifying methionine requirement of Indian major carp fry, Cirrhinus mrigala (2.2 ± 0.2 cm; 0.19 ± 0.02 g) by conducting a 12‐week feeding trial. Casein–gelatine‐based isonitrogenous (40 g 100 g?1 crude protein) and isoenergetic (15.42 kJ g?1 DE) amino acid test diets were prepared to contain six levels of l ‐methionine (1.1, 1.3, 1.5, 1.7, 1.9 and 2.1 g 100 g?1 dry diet) at a fixed level of cysteine (0.85 g 100 g?1 dry diet) and fed to apparent satiation thrice daily to triplicate groups of fish. When absolute weight gain (g per fish), feed conversion ratio, protein deposition (g per fish) and nitrogen retention efficiency data were subjected to broken‐line and second‐degree polynomial regression analysis, 95% of the plateau of above parameters was achieved at dietary methionine concentrations between 1.60 and 1.69 g 100 g?1 dry diet or 0.10 to 0.11 g methionine kJ?1 DE, corresponding to 4.1–4.22 g 100 g?1 protein or 0.44–0.47 g methionine kJ?1 DE. Based on these results, dietary methionine requirement of fry C. mrigala is recommended 1.60–1.69 g 100 g?1 diet or 0.10–0.11 g methionine kJ?1 DE.  相似文献   

5.
Amino acids are vital for all living organisms including fish and histidine is an essential amino acid for fish. In view of this, dietary histidine requirement of fry Heteropneustes fossilis was determined by feeding casein–gelatin‐based isonitrogenous (430 g kg?1 CP) and isocaloric (17.9 MJ kg?1 GE; 15.5 MJ kg?1 DE) amino acid test diets (10 to 20 g histidine kg?1 dry diet) to quadruplicate groups of randomly assigned fish to apparent satiety for 12 weeks. Maximum absolute weight gain (AWG; 44 g fish?1), protein retention efficiency (PRE; 20%), protein efficiency ratio (PER; 1.04), haemoglobin (Hb; 11.24 g dL?1), haematocrit (Hct; 35.11%), red blood count (RBCs; 2.98 × 109 mL?1) and lowest erythrocyte sedimentation rate (ESR; 1.92 mm h?1) were obtained at 16 g histidine kg?1 dry diet. The 95% maximum quadratic response of above data exhibited the requirement to be at 15.2, 15.1, 15.6 and 15.5 g histidine kg?1 diet. As histidine is found in higher concentration in haemoglobin, requirement obtained for Hct% and Hb is 4% greater than that required for maximizing weight gain and protein retention. Based on these results, dietary histidine requirement of H. fossilis fry is recommended between 15.1 and 15.6 g kg?1, corresponding to 35.1–36.3 g kg?1 protein.  相似文献   

6.
An 8‐week feeding trial was conducted to assess dietary protein and lipid levels on growth performance, feed utilization and body composition of juvenile red‐spotted grouper (7.85 ± 0.03 g fish?1). Nine semi‐purified diets were formulated containing varying protein levels (440–520 g kg?1, dry matter) and lipid levels (60–120 g kg?1, dry matter). The weight gain of juvenile Epinephelus akaara was affected by dietary protein (= .005) and its interaction with dietary lipid (= .020). Viscerosomatic index, intraperitoneal fat ratio and whole‐body lipid level increased with increasing dietary lipid level (p < .001). Nitrogen retention was not affected by dietary protein and lipid, while lipid retention decreased with increasing dietary lipid level (p < .001). The plasma blood urea nitrogen increased with increasing dietary protein level (= .003). This study showed that diet with 520 g kg?1 protein and 60 g kg?1 lipid with 30.58 mg kJ?1 P:E provided a maximal growth for this species. Moreover, an increase in dietary lipid levels (from 60 to 90 g kg?1) could reduce the protein requirement (from 520 to 480 g kg?1) without affecting the growth performance, while higher fat deposition was observed in fish fed high‐lipid diets.  相似文献   

7.
A 12‐week feeding trial was conducted in eighteen 70 L indoor polyvinyl circular troughs provided with a water flow‐through system (1–1.5 L min?1) at 28 ± 1 °C to evaluate the dietary tryptophan requirement of fingerling Catla catla (3.45 ± 0.24 cm; 0.60 ± 0.13 g). Six casein‐gelatin‐based amino acid test diets (330 g kg?1 crude protein; 13.6 kJ g?1 digestible energy) containing graded levels of L‐tryptophan (1.0, 1.4, 1.9, 2.3, 2.8, 3.4 g kg?1 dry diet) were fed to triplicate groups of fish near to satiation at 08:00, 12:30 and 17:30 h. Absolute weight gain, feed conversion ratio, protein gain, RNA/DNA ratio, hepatosomatic index, viscerosomatic index, condition factor and haematological indices improved with the increasing levels of tryptophan from 1.0 to 2.3 g kg?1 of dry diet. Significantly higher carcass protein was obtained at 2.3 g tryptophan per kilogram of the dry diet. Exponential analysis of absolute weight gain, feed conversion ratio, protein gain and RNA/DNA ratio against dietary tryptophan levels at 95% maximum and minimum responses displayed the tryptophan requirement at 2.5, 2.3, 2.5 and 2.1 g kg?1 dry diet, respectively. Inclusion of dietary tryptophan in the range of 2.1–2.5 g kg?1 dry diet, equivalent to 6.4–7.6 g kg?1 dietary protein, is recommended in formulating tryptophan‐balanced feed for the culture of this fish species.  相似文献   

8.
A 12‐week feeding trial was conducted to estimate the dietary copper requirement of fingerling Channa punctatus. Six casein?gelatin‐based test diets (450 g kg?1 crude protein; 18.81 kJ g?1 gross energy) with graded levels of copper as copper sulphate (3.7, 4.7, 5.7, 6.7, 7.7 and 8.7 mg copper equivalent kg?1 diet) were formulated and fed to triplicate groups of fish (7.25 ± 0.81 cm; 5.21 ± 0.27 g) near to satiation. Fish fed diet with 6.7 mg kg?1 copper had highest absolute weight gain (AWG; 51.63 g fish?1), protein efficiency ratio (PER; 1.42 g fish?1), protein gain (PG; 8.34 g fish?1), haemoglobin (Hb; 9.68 g dL?1), haematocrit (Hct; 31.18%) and RBCs (3.24 × 106 × mm?3). Feed conversion ratio (FCR) was found to be best (1.57) at above level of dietary copper. Whole body copper concentration was found to increase with the increasing levels of dietary copper. Hepatic thiobarbituric acid‐reactive substances concentration was found to decrease with increasing dietary concentrations of copper up to 6.7 mg kg?1 beyond which a reverse trend in this parameter was noted. Broken‐line regression analysis of AWG, FCR and PG concentrations against varying levels of dietary copper yielded the requirement in the range of 6.66–6.78 mg kg?1. Data generated during this study would be useful in formulating copper‐balanced commercial feeds for the intensive culture of this fish.  相似文献   

9.
The experiment was conducted to determine the leucine requirement of juvenile Pacific white shrimp Litopenaeus vannamei (Boone) in low‐salinity water (0.50–1.20 g L?1). Six diets were formulated to contain 410 g kg?1 crude protein with fish meal, peanut meal and precoated crystalline amino acids with different concentration of l ‐leucine (16.72, 19.60, 22.06, 24.79, 27.28 and 30.16 g kg?1 dry diet). Each diet was randomly assigned to triplicate groups of 30 shrimps (0.38 ± 0.002 g), and the feed trial lasted for 8 weeks. The results indicated that the maximum weight gain was observed at 24.95 g kg?1 dietary leucine group, whereas the diets containing higher leucine concentration conversely reduced the growth performance (P < 0.05). Moreover, the highest body protein content and body protein deposition and the lowest haemolymph AST and ALT activities were also found at 24.95 g kg?1 dietary leucine group. With the increase in leucine in diets, a dose‐dependent increase was found in body lipid content and haemolymph urea concentration. The polynomial regression calculated using weight gain, feed efficiency and body protein deposition indicated that the optimal dietary leucine requirement for L. vannamei reared in low‐salinity water was 23.73 g kg?1 leucine of dry diet, correspondingly 57.88 g kg?1 of dietary protein.  相似文献   

10.
An 8‐week feeding trial was conducted to assess the effects of dietary l ‐threonine on growth, protein utilization, threonine retention efficiencies, nucleic acid indices and body composition of fingerling Heteropneustes fossilis (6.6 ± 0.1 g; 10.9 ± 0.2 cm). Casein–gelatin based isonitrogenous (38% crude protein; CP) and isocaloric (15.3 kJ g?1 digestible energy; DE) amino acid test diets with six levels of dietary l ‐threonine (0.75%; 1.0%; 1.25%; 1.5%; 1.75%; 2.0% dry diet) were prepared and hand‐fed to quadruplicate groups of fingerling to apparent visual satiation twice daily. Weight gain (WG; 46.3 g fish?1), feed conversion ratio (FCR; 1.98), protein utilization efficiency (PUE; 0.25), threonine retention efficiency (TRE; 0.69), lipid productive value (LPV; 0.45), body protein (18.2%) and RNA/DNA ratio (3.6) of fish fed graded levels of dietary threonine increased significantly (P < 0.05) up to 1.49% threonine of dry diet. To generate precise information, the WG, RNA/DNA and LPV data were subjected to broken‐line and quadratic regression analyses. The two models were superimposed and requirement was determined by establishing the point, where the quadratic curve first intersected the plateau of broken‐line. Based on the above mathematical analyses, optimum dietary threonine requirement of fingerling Hfossilis was estimated to range between 1.62% and 1.69% of the diet, corresponding to 4.26–4.44% protein.  相似文献   

11.
A 12‐week feeding trial was conducted to determine the dietary threonine requirement of fingerling Indian major carp, Catla catla (3.35 ± 0.11 cm; 0.59 ± 0.06 g). Six casein‐gelatin based (33% crude protein; 3.23 kcal g?1 digestible energy) amino acid test diets with graded levels of analysed threonine (0.74%, 0.96%, 1.21%, 1.48%, 1.72% and 1.93% dry diet) were fed to satiation to triplicate groups of fish. Absolute weight gain (g per fish), feed conversion ratio, protein retention efficiency, threonine deposition, RNA/DNA ratio and carcass protein significantly improved with the increase in dietary threonine and peaked at 1.48% of the dry diet. Haematological indices were also found to be best in fish fed at 1.48% threonine diet. Quadratic regression analysis of absolute weight gain, feed conversion ratio, protein retention efficiency, threonine deposition, RNA/DNA ratio, carcass protein, haemoglobin (g dL?1), haematocrit (%) and RBCs (106 × mm?3) at 95% of maximum and minimum response exhibited the threonine requirement of fingerling C. catla between 1.35% and 1.48% dry diet, corresponding to 4.09–4.48% dietary protein. Present finding would be useful in formulating threonine‐balanced feeds for the intensive culture of C. catla.  相似文献   

12.
A 63‐day growth trial was undertaken to estimate the effects of supplemented lysine and methionine with different dietary protein levels on growth performance and feed utilization in Grass Carp (Ctenopharyngodon idella). Six plant‐based practical diets were prepared, and 32CP, 30CP and 28CP diets were formulated to contain 320 g kg?1, 300 g kg?1 and 280 g kg?1 crude protein without lysine and methionine supplementation. In the supplementary group, lysine and methionine were added to formulate 32AA, 30AA and 28AA diets with 320 g kg?1, 300 g kg?1 and 280 g kg?1 dietary crude protein, respectively, according to the whole body amino acid composition of Grass Carp. In the groups without lysine and methionine supplementation, weight gain (WG, %) and specific growth rate (SGR, % day?1) of the fish fed 32CP diet were significantly higher than that of fish fed 30CP and 28CP diets, but no significant differences were found between 30CP‐ and 28CP‐diet treatments. WG and SGR of the fish fed 32AA and 30AA diets were significantly higher than that of fish fed 28AA diets, and the performance of grass carp was also significantly improved when fed diets with lysine and methionine supplementation (P < 0.05), and the interaction between dietary protein level and amino acid supplementation was noted between WG and SGR (P < 0.05). Feed intake (FI) was significantly increased with the increase in dietary protein level and the supplementation of lysine and methionine (P < 0.05), but feed conversion ratio (FCR) showed a significant decreasing trend (P < 0.05). Two days after total ammonia nitrogen (TAN) concentration test, the values of TAN discharged by the fish 8 h after feeding were 207.1, 187.5, 170.6, 157.3, 141.3 and 128.9 mg kg?1 body weight for fish fed 32CP, 32AA, 30CP, 30AA, 28CP and 28AA diets, respectively. TAN excretion by grass carp was reduced in plant‐based practical diets with the increase in dietary protein level and the supplementation of lysine and methionine (P < 0.05). The results indicated that lysine and methionine supplementation to the plant protein sources‐based practical diets can improve growth performance and feed utilization of grass carp, and the dietary crude protein can be reduced from 320 g kg?1 to 300 g kg?1 through balancing amino acids profile. The positive effect was not observed at 280 g kg?1 crude protein level.  相似文献   

13.
This study was conducted to evaluate and refine the dietary lysine requirement of Atlantic salmon (Salmo salar) smolts using both the dose–response technique to determine the minimum dietary requirement and different ration levels to determine the maintenance lysine requirement and the efficiency of lysine utilization for growth. Diets containing 1.97–3.16% lysine (presented in protein‐bound form of lysine) were fed to satiation or at 25–75% ration levels to smolts during the last week in fresh water and the following 9 weeks in seawater. Based on the exponential lysine gain response to increasing dietary lysine concentrations, the minimum lysine requirement was found to be 2.67% of diet (dry matter basis; protein‐bound form or 3.05% free form). The smolts fed the unsupplemented diet maximally utilized the digestible lysine intake for growth. The efficiency of digestible lysine utilization for growth was 0.85 in the diet containing 2.88% lysine and the maintenance requirement was 21.7 mg digestible lysine kg?0.7 day?1.  相似文献   

14.
Two feeding trials of 8 and 10 weeks each were conducted to quantify the dietary lysine requirement of juvenile striped bass, Morone saxatilis. Diets in both experiments contained approximately 420 g crude protein kg–1 and 13.4 MJ digestible energy (DE) kg?1. L ‐Lysine‐HCl was added to the basal diet to yield five and six treatments in the two experiments. Diets in the first experiment were determined to contain 9.2, 14.1, 14.6, 19.9 and 21.0 g available lysine kg?1 on a dry‐matter basis. Diets in the second experiment were determined to contain 14.8, 18.1, 21.3, 24.5, 27.6 and 30.9 g available lysine kg?1 on a dry‐matter basis. Weight gain, specific growth rate (SGR), feed conversion ratio (FCR), and apparent nitrogen utilization (ANU) were significantly (P < 0.05) improved by increasing dietary lysine concentrations to approximately 20 g kg?1 of diet. Least‐squares regression analysis of weight gain and SGR in the first experiment indicated a minimum dietary lysine requirement of 20.1 ± 2 g kg?1 dry diet. Least‐squares regression analysis of the same criteria measured in the second experiment yielded the following estimates of dietary lysine requirements (g kg?1 dry diet): 19.8 ± 2.3 for weight gain, 21.7 ± 1.5 for SGR, 23.7 ± 3.5 for FCR and 18.6 ± 1.3 for ANU. From these results the minimum recommended dietary lysine requirement for optimal growth of juvenile striped bass is approximately 21 g kg?1 dry diet which equates to 49 g kg?1 dietary protein or 1.57 mg kJ?1 DE. Although higher than that reported for hybrid striped bass, this requirement level is similar to those reported for many other fish species.  相似文献   

15.
Effect of varying dietary lysine levels on growth, feed conversion, nutrient retention, lysine retention efficiency and haematological indices of Heteropneustes fossilis fry (2.97 ± 0.11 cm; 4.78 ± 0.31 g) was studied by conducting a 12‐week feeding trial. Isonitrogenous (450 g kg?1 CP) and isocaloric (17.97 kJ g?1 GE) amino acid test diets with graded concentrations of l ‐lysine (18, 20, 22, 24, 26, 28 g kg?1 dry diet) were fed to triplicate groups of fish to apparent satiation twice daily at 17 and 17:30 h. Maximum thermal growth coefficient (TGC, 0.82), best feed conversion ratio (FCR, 1.28) highest protein retention efficiency (PRE, 36%), energy retention efficiency (ERE, 79%) and lysine retention efficiency (LRE, 75%) were noted at 24 g kg?1 lysine of dry diet. Body protein was also found to be in line with growth data and peaked at 24 g kg?1 lysine of dry diet. Similarly, superior somatic and haematological indices were exhibited by the groups fed dietary lysine at 24 g kg?1 of the dry diet. However, exponential analysis of dietary lysine intake against TGC, lysine retention and protein retention indicated that inclusion of dietary lysine in the range of 13.24–14.14 g kg?1 dry diet, corresponding to 29.42–31.42 g kg?1 dietary protein, is essential for faster growth of this fish.  相似文献   

16.
Growth response of fingerling Heteropneustes fossilis (6.8 ± 0.2 g; 11.2 ± 0.3 cm) to dietary l ‐leucine levels was assessed by conducting 8‐week feeding trial in a flow‐through system (1–1.5 L min?1) at 28 °C water temperature. Casein–gelatin‐based isonitrogenous (380 g kg?1; crude protein) and isoenergetic [17.9 MJ kg?1; gross energy (GE)] basal diet was supplemented with different levels of l ‐leucine to achieve desired leucine levels ranging between 10 and 22.5 g kg?1 dry diet. Analysed values were 9.9 (Lc9.9), 12.4 (Lc12.4), 15.1 (Lc15.1), 17.4 (Lc17.4), 20.1 (Lc20.1) and 22.4 (Lc22.4) g leucine kg?1 diet. Fishes were stocked randomly in quadruplicates and fed to satiation at 07:00 and 17:30 h. Maximum absolute weight gain (AWG g fish?1), feed conversion ratio (FCR), protein utilization efficiency (PUE%), leucine retention efficiency (LRE%) and haematological parameters were found in fish fed diet Lc17.4. For precise determination of dietary leucine requirement of Singhi, AWG g fish?1, FCR, PUE% and LRE% were subjected to broken‐line and second‐degree polynomial regression analysis. Second‐degree polynomial regression analysis fitted the data more accurately (P > 0.05) exhibiting high R2 values. Hence, based on this analysis, dietary leucine requirement of fingerling H. fossilis is recommended to be 16.5 g kg?1 of the diet, corresponding to 43.4 g kg?1 protein for developing leucine‐balanced commercial feeds.  相似文献   

17.
A 30‐day feeding experiment was conducted to estimate the lysine requirement of large yellow croaker larvae (2.75 ± 0.11 mg). Six isonitrogenous (509.5–519.7 g kg?1 crude protein) and isoenergetic (22.3–22.5 kJ g?1 energy) microdiets containing graded levels of lysine·HCl ranging from 24.8 to 41.0 g kg?1 diet in placement of glycine and glutamic acid were formulated. Mixture of crystalline amino acids (MAA) was supplemented to simulate the amino acid (AA) profiles of whole body of this larva, except for lysine. The MAA and supplemented lysine for each diet were coated with tripalmitin. Triplicate groups of 3000 fish were fed to apparent satiation by hand eight times per day. The results showed that specific growth rate (SGR), survival, body composition and the specific activity of digestive enzymes were significantly affected by dietary lysine levels (P<0.05). The optimal dietary lysine requirements estimated by second‐order polynomial model based on SGR and survival were 33.7 (65.5 g kg?1 dietary protein) and 33.4 (64.9 g kg?1 dietary protein) g kg?1 dry diet respectively. The estimated requirements for the other essential AAs were calculated by A/E ratios of whole body AA profile of this larva based on lysine requirement.  相似文献   

18.
A total of 630 juvenile Chinese sucker, with an average initial weight of 1.72 ± 0.05 g, were fed seven diets for 56 days to study the effect of dietary methionine levels on growth, feed utilization, body composition and haematological parameters on juvenile Chinese sucker. Diet 1 using fish meal as the sole protein source and diets 2–7 using fish meal and fermented soybean meal as intact protein sources supplemented with crystalline amino acids contained six levels of l ‐methionine ranging from 6.4 to 18.9 g kg?1 of dry diet at a constant dietary cystine level of 3.7 g kg?1. Each diet was randomly assigned to three aquaria. Results indicated that the highest weight gain, specific growth rate (SGR), feed efficiency ratio, protein efficiency ratio and protein productive value occurred at 13.9 g methionine kg?1 diet among the methionine supplemented dietary groups, beyond which they showed declining tendency. The whole body and muscle protein contents of juvenile Chinese sucker were positively correlated with dietary methionine level, while muscle lipid content was negatively correlated with it. The total essential amino acids content of muscle was increased significantly with increasing dietary methionine level from 6.4 to 13.9 g kg?1 (< 0.05). Apparent digestibility coefficients of dietary protein were significantly affected by dietary treatments. Serum protein, cholesterol and triacylglycerol increased with increasing dietary methionine levels, but showed a relatively lower value for fish fed the 18.9 g methionine kg?1 diet. Quadratic regression analysis of SGR against dietary methionine level indicated that optimal dietary methionine requirement for juvenile Chinese sucker was 14.1 g kg?1 of the diet in the presence of 3.7 g kg?1 cystine (corresponding to 32.0 g kg?1 of dietary protein on a dry‐weight basis).  相似文献   

19.
Relative bioavailability (RBV) of arginine (Arg) from Indian mustard protein concentrate (IMC, 62% crude protein) and Indian mustard meal (IMM, 42% crude protein), and a commercially available soy protein concentrate (SPC, 57% crude protein) was compared with that of crystalline L‐arginine (L‐Arg) in rainbow trout. A basal diet highly deficient in Arg (1.23%) was formulated. Eight other isoproteic and isoenergetic diets were formulated to contain ~1.35% and ~1.5% Arg by adding increasing amount of IMC, IMM, SPC and L‐Arg. The experimental diets were fed for 16 weeks using a standard protocol. Growth rate, weight gain (g fish?1) and protein (PD, g fish?1) and lipid (LD, g fish?1) deposition were increased linearly with increasing level of Arg from all ingredients. Arg availability from protein‐bound sources were equal or higher than those from L‐Arg. RBV of Arg from IMC, IMM and SPC were ranged from 100% and 123% than that from L‐Arg (assumed as 100% bio‐available). Among the ingredients, only the RBV of Arg from IMC was significantly higher than those from SPC (< 0.05). The findings suggest that the RBV of Arg from IMC and IMM are very good and comparable to that of the commercial SPC used in this study.  相似文献   

20.
An 8‐week feeding trial was conducted to determine the effect of dietary l ‐methionine supplementation on growth performance, serum immune and antioxidative responses of juvenile Nile tilapia Oreochromis niloticus. Six iso‐nitrogenous (282 g kg?1 crude protein) diets were formulated to contain graded levels of methionine (0.32%, 0.54%, 0.75%, 0.93%, 1.14% and 1.33% of dry weight) at a constant dietary cysteine level of 0.83 g kg?1. Each diet was randomly assigned to triplicate groups of 25 juvenile fish (2.3 ± 0.0 g), which were fed three times daily (8:30, 12:30 and 17:00 hours). The results showed that growth performance and feed utilization significantly improved when dietary methionine levels increased (P < 0.05). Using quadratic regression analysis of weight gain against dietary methionine levels indicated that, the optimal dietary methionine requirement for maximum growth of juvenile tilapia was 9.12 g kg?1 of the dry diet in the presence of 0.83 g kg?1 cystine. In addition, maximum C4 content and lysozyme activity were observed in fish fed 7.50 g kg?1 methionine diet; maximum C3 content and superoxide dismutase activity were obtained in fish fed 9.30 g kg?1 dietary methionine level. While there was no significant difference in serum glutathione peroxidase activity among all methionine supplemented treatments (P > 0.05). Methionine supplementation decreased malondialdehyde content in serum significantly (P < 0.05) when compared with the control diet, while there was no significant difference among supplemented treatments. These data suggested that l ‐methionine affected antioxidant status and promoted serum immune response in juvenile Nile tilapia, and at non‐stressed status, the requirement of dietary methionine in maintaining normal immunity and physiology is lower than that for maximum growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号