首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 339 毫秒
1.
Two experiments were conducted to quantify the dietary thiamin (experiment I) and pyridoxine (experiment II) requirements of fingerling Cirrhinus mrigala for 16 weeks. In experiment I, dietary thiamin requirement was determined by feeding seven casein–gelatin‐based diets (400 g kg?1 CP; 18.69 kJ g?1 GE) with graded levels of thiamin (0, 0.5, 1, 2, 4, 8 and 16 mg kg?1 diet) to triplicate groups of fish (6.15 ± 0.37 cm; 1.89 ± 0.12 g). Fish fed diet with 2 mg kg?1 thiamin had highest specific growth rate (SGR), protein retention (PR), RNA/DNA ratio, haemoglobin (Hb), haematocrit (Hct), RBCs and best feed conversion ratio (FCR). However, highest liver thiamin concentration was recorded in fish fed 4 mg thiamin kg?1 diet. Broken‐line analysis of SGR, PR and liver thiamin concentrations exhibited the thiamin requirement in the range of 1.79–3.34 mg kg?1 diet (0.096–0.179 μg thiamin kJ?1 gross energy). In experiment II, six casein–gelatin‐based diets (400 g kg?1 CP; 18.69 kJ g?1 GE) containing graded levels of pyridoxine (0, 2, 4, 6, 8 and 10 mg kg?1 diet) were fed to triplicate groups of fish (6.35 ± 0.37 cm; 1.97 ± 0.12 g). Fish fed diet containing 6 mg kg?1 pyridoxine showed best SGR, FCR, PR, RNA/DNA ratio, Hb, Hct and RBCs, whereas maximum liver pyridoxine concentration was recorded in fish fed 8 mg kg?1 dietary pyridoxine. Broken‐line analysis of SGR, PR and liver pyridoxine concentrations reflected the pyridoxine requirement from 5.63 to 8.61 mg kg?1 diet. Data generated during this study would be useful in formulating thiamin‐ and pyridoxine‐balanced feeds for the intensive culture of this fish.  相似文献   

2.
Five diets were formulated to provide an isoproteic daily dietary intake of 15 g kg?1 day?1, while maintaining daily starch intake ranging from 0 to 40 g kg?1 day?1. The 4‐week experiments started with initial mean weights of 4.7 and 4.4 g for Pangasius bocourti and P. hypophthalmus, respectively. The results clearly show the protein sparing action of starch in both species. Best protein retention was obtained with starch intake of 20 and 10 g kg?1 day?1 for P. bocourti and P. hypophthalmus, respectively, which was equivalent to 40 and 20% starch in the feed. Pangasius bocourti and P. hypophthalmus fingerlings attained maximal growth with starch intake of 30 and 10 g kg?1 day?1, equivalent to 60 and 20% starch in the feed. It was noted that body lipid accumulation was much higher in P. bocourti than in P. hypophthalmus, and that excess dietary starch intake depressed diet digestibility and growth.  相似文献   

3.
A 90‐day experiment was conducted by rearing 1020 prawn juveniles (0.54 ± 0.03 g) in water supplemented with three different concentrations of probiotic bacteria viz. T1 (107 cfu L?1), T2 (108 cfu L?1), T3 (109 cfu L?1) and the control (C) (unsupplemented water), to evaluate probiotic effect of Lactobacillus plantarum. In the present study, the growth parameters (WG%, SGR) and feed utilization parameters (FCR, PER) significantly improved (P < 0.05) in T3. The growth and feed utilization parameters though improved marginally in T1 and T2, the difference was not significant (P > 0.05) compared to the control. The gastro‐intestinal Lactobacillus sp. count increased significantly (P < 0.05) in all the treatment groups, whereas the decrease in harmful bacteria was significant (P < 0.05) in T3 compared to the control. Similarly, the Lactobacillus sp. count in culture water increased significantly (P < 0.05) in all the experimental groups, whereas the decrease in harmful bacteria was significant (P < 0.05) in T2 and T3. The immune parameters (THC, PO and RB activity) and clearance efficiency significantly improved (P < 0.05) in T3 with concurrent decrease (P < 0.05) in cumulative mortality against Aeromonas hydrophila challenge. However, water quality did not improved (P > 0.05) in any of the treatment groups. The results indicate that Lactobacillus plantarum at a minimum concentration of 109 cfu L?1 could be used as water additive to confer its probiotic effect in prawn, Macrobrachium rosenbergii. Moreover, future studies with higher probiotic concentrations should be conducted for its efficient commercial scale field application.  相似文献   

4.
A ten‐week feeding trail was conducted to investigate the effects of increasing DL‐methionine (Met) supplementation on the success of fish meal (FM) replacement with plant proteins in practical diets for juvenile gibel carp, Carassius auratus gibelio. Twelve isoenergetic diets were formulated including two 150 g kg?1 FM diets (Diet 1—positive control 1 reflecting a commercial diet and Diet 2—positive control 2 reflecting a commercial diet but with balanced essential amino acid (EAA) profile) and ten 50 g kg?1 FM diets (negative controls) supplemented with graded levels (0–3.0 g kg?1) of DL‐Met (Diets 3–12). Each diet was fed to triplicate groups of gibel carp, near satiation four times daily for 10 weeks. Diet 2 with balanced EAA profile produced better final weight, specific growth rate (SGR) and feed conversion ratio (FCR) than the negative control diet containing no supplemental Met (Diet 3), but did not significantly differ from Diet 1. However, DL‐Met supplementation (0.5–3.0 g kg?1) in the negative control diets (Diets 4–12) produced growth performances similar to those fed the positive control diets (Diets 1 and 2). Based on quadratic regression analysis, the optimal dietary Met level with 5.2 g kg?1 of dietary cysteine (Cys) was found to be 7.1 g kg?1 dry diet for SGR and FCR. The corresponding total sulphur amino acid requirements (Met + Cys) of this species were calculated to be 12.3 g kg?1 dry diet for SGR and FCR. DL‐Met supplementation in 50 g kg?1 FM diets showed a decreasing trend in plasma cholesterol contents (< .05). No significant differences were observed in whole‐body composition, plasma protein, triglyceride and free EAA contents among dietary treatments, while plasma aspartate transaminase, albumin and ammonia contents were significantly influenced by dietary Met levels. Juvenile gibel carp grew equally well on 150 g kg?1 FM diet or 50 g kg?1 FM diets balanced for EAA profile with supplemental amino acids. The results of this study overall indicate that balancing dietary amino acid levels with DL‐Met supplementation is a key strategy in successfully reducing FM levels in the diets of gibel carp.  相似文献   

5.
The effects of dietary calcium chloride (CaCl2) concentration on the growth, survival, moulting and body composition of Astacus leptodactylus were studied. Diets were prepared using supplementation of 0 (control), 30, 60 and 120 g kg?1 calcium chloride commercial trout larvae diet containing 50% protein and 12% lipid. Astacus leptodactylus larvae with an average total length of 22.0 ± 0.05 mm (TL) and weight of 0.53 ± 0.01 g obtained from eighteen ovigerous females collected from Seydisehir Sugla Dam lake in Konya, Turkey, were stocked in 0.2‐m2 aquariums at a rate of 50 crayfish m?2 and reared for 90 days. The experiments included four treatments (diets) with three replicates each. Calcium chloride exerted positive effects on growth, moulting frequency, feed efficiency and survival of narrow‐clawed crayfish. Crayfish fed with 60 g calcium kg?1 calcium chloride‐supplemented diet exhibited the highest weight gain and specific growth rate (SGR) but the lowest survival rate (63.3%) (P < 0.05). There were no significant differences (P > 0.05) in mean moisture (803.5 g kg?1) and protein content (177.0 g kg?1) in crayfish tail meat. However, lipid values were between 3.8 and 11.6 g kg?1 and significantly different among the diets (P < 0.05). Diet with 60 g kg?1 calcium chloride is recommended for the best growth of freshwater crayfish.  相似文献   

6.
This study was conducted to investigate the effects of fructooligosaccharide (FOS) and Bacillus licheniformis (B. licheniformis) on growth performance, body composition, intestinal enzymes activities and gut histology of Megalobrama terminalis. Nine experimental diets were formulated to contain three FOS levels (0, 3 and 6 g kg?1) and three B. licheniformis levels (0, 1 and 5 × 107 CFU g?1) following a 3 × 3 factorial design. Accordingly, diets were named as 0/0, 0/3, 0/6, 1/0, 1/3, 1/6, 5/0, 5/3 and 5/6 (B. licheniformis/FOS). At the end of the 8‐week feeding trial, weight gain (WG) and specific growth rate (SGR) of fish fed 6 g kg?1 FOS were both significantly (< 0.01 and < 0.05) higher than that of the other groups in terms of dietary FOS levels. Besides, WG and SGR of fish fed 1 × 107 CFU g?1 B. licheniformis were significantly (< 0.05) higher than that of the control group in terms of dietary B. licheniformis levels. In addition, a significant interaction (< 0.05) between dietary FOS and B. licheniformis was observed in finial weight, WG, SGR as well as the survival rate with the highest values all observed in fish fed diet 1/3. Hepatosomatic index, carcass lipid content, lipase activities as well as microvilli length increased significantly (< 0.05) from 0 to 1 × 107 CFU g?1, but no significant difference (> 0.05) was observed in terms of dietary FOS levels. In addition, a significant (< 0.05) interaction of FOS and B. licheniformis was observed in both protease and Na+, K+‐ATPase activities with the highest value obtained in fish fed diet 1/3. The results indicated that the dietary applications of dietary FOS and B. licheniformis alone or in combination can significantly improve the growth performance, survival rate, intestinal enzymes activities as well as microvilli length of triangular bream. In addition, there is a significant interaction between dietary FOS and B. licheniformis. The best combination for this species is 3 g kg?1 FOS with 1 × 107 CFU g?1 B. licheniformis.  相似文献   

7.
This study was aimed to address the promising evaluation of Cissus quadrangularis plant (stem) and lipopolysaccharide (LPS from bacteria) supplemented diets on innate immune response in Lates calcarifer fingerlings against Aeromonas hydrophila infection. Fingerlings were fed supplemented diets containing four different concentrations of C. quadrangularis (0.5, 1.0, 1.5 and 2.0 g kg?1 feed), LPS (25, 50, 75 and 100 mg kg?1 feed) and control (normal formulated diet) for 60 days. The fish fingerlings fed supplemented diet displayed significant differences (P < 0.05) in specific growth rate (SGR) and relative percentage survival compared to the control group fed without C. quadrangularis and LPS‐supplemented diet. Fingerlings were injected intraperitoneally with 100 μL lethal dose of A. hydrophila containing 1 × 106 CFU g?1. Supplementation of C. quadrangularis and LPS diet significantly increased biochemical profile such as protein, lipid and carbohydrate content, haematological parameters of L. calcarifer fingerlings in different experimental periods when compared with the control group. Dietary doses of C. quadrangularis and LPS‐supplemented diet significantly influenced growth performance and increased survival rate in L. calcarifer fingerlings against A. hydrophila infection.  相似文献   

8.
A total of 630 juvenile Chinese sucker, with an average initial weight of 1.72 ± 0.05 g, were fed seven diets for 56 days to study the effect of dietary methionine levels on growth, feed utilization, body composition and haematological parameters on juvenile Chinese sucker. Diet 1 using fish meal as the sole protein source and diets 2–7 using fish meal and fermented soybean meal as intact protein sources supplemented with crystalline amino acids contained six levels of l ‐methionine ranging from 6.4 to 18.9 g kg?1 of dry diet at a constant dietary cystine level of 3.7 g kg?1. Each diet was randomly assigned to three aquaria. Results indicated that the highest weight gain, specific growth rate (SGR), feed efficiency ratio, protein efficiency ratio and protein productive value occurred at 13.9 g methionine kg?1 diet among the methionine supplemented dietary groups, beyond which they showed declining tendency. The whole body and muscle protein contents of juvenile Chinese sucker were positively correlated with dietary methionine level, while muscle lipid content was negatively correlated with it. The total essential amino acids content of muscle was increased significantly with increasing dietary methionine level from 6.4 to 13.9 g kg?1 (< 0.05). Apparent digestibility coefficients of dietary protein were significantly affected by dietary treatments. Serum protein, cholesterol and triacylglycerol increased with increasing dietary methionine levels, but showed a relatively lower value for fish fed the 18.9 g methionine kg?1 diet. Quadratic regression analysis of SGR against dietary methionine level indicated that optimal dietary methionine requirement for juvenile Chinese sucker was 14.1 g kg?1 of the diet in the presence of 3.7 g kg?1 cystine (corresponding to 32.0 g kg?1 of dietary protein on a dry‐weight basis).  相似文献   

9.
A 75‐day experiment was conducted with juvenile gibel carp (Carassius auratus gibelio) (4.80 ± 0.01 g) to evaluate effects of dietary chitosan on fish growth performance, haematology, intestine morphology and immune response. Six isonitrogenous (crude protein: 383 g kg?1), isolipid (97.5 g kg?1) and isocaloric (gross energy: 16.7 kJ g?1) diets were formulated to contain 0, 1800, 4000, 7500, 10 000, 20 000 mg kg?1 chitosan, respectively. The results showed that the growth was depressed when the fish fed with 10 000 mg kg?1 chitosan. Serum cholesterol, triglyceride and low‐density lipoprotein decreased in 10 000 and 20 000 mg kg?1 chitosan. On day 75, blood leucocyte phagocytic activity respiratory burst and alternative pathway of complement haemolytic activity were enhanced in 4000 mg kg?1 chitosan. The number of goblet cell, intraepithelial lymphocyte of mid‐intestine and microvilli height of distal intestine increased at 4000 mg kg?1 dietary chitosan. Dietary chitosan modulated intestine microbiota, depressed pathogen bacteria Aeromonas veronii‐like and improved Cellulomonas hominis‐like, Bacillus oceanisediminis‐like and two uncultured bacterium‐like species on day 75. Dietary 7500 and 10 000 mg kg?1 chitosan enhanced the protection against Aeromonas hydrophila infection. In conclusion, oral administration of dietary 7500 mg kg?1 chitosan for 75 days is recommended for the survival of gibel carp.  相似文献   

10.
Six isonitrogenous and isocaloric semi‐purified diets were prepared with different levels of microbial levan: control (Basal), T1 (Basal + 2.5 g kg?1 diet), T2 (Basal + 5 g kg?1 diet), T3 (Basal + 7.5 g kg?1 diet), T4 (Basal + 10 g kg?1 diet) and T5 (Basal + 12.5 g kg?1 diet), fed to six groups of fish in triplicate tanks. The results of the 60 days feeding trail showed that supplementation of dietary levan significantly affected the weight gain percentage and specific growth rate of the treatment groups fed at 10 g kg?1 or more levan. Lowest feed conversion ratio (FCR) value and highest survival percentage among levan fed groups were observed with 12.5 g kg?1 incorporation (T5) and was comparable with (T4) group. Significant increase in muscle RNA level and RNA/DNA ratio was observed with the increasing dietary levan. Fish fed 12.5 g kg?1 levan had significantly higher protease, amylase and lipase activities compare with the control group. Lowest Aspartate aminotransferase (AST) activity in the liver and muscle was observed in the T5 group fed with highest level of dietary levan. Overall results conclude that dietary microbial levan incorporation at 12.5 g kg?1 could be used as potent dietary prebiotic for the culture of L. rohita juveniles.  相似文献   

11.
A 12‐week feeding trial was conducted to estimate the dietary copper requirement of fingerling Channa punctatus. Six casein?gelatin‐based test diets (450 g kg?1 crude protein; 18.81 kJ g?1 gross energy) with graded levels of copper as copper sulphate (3.7, 4.7, 5.7, 6.7, 7.7 and 8.7 mg copper equivalent kg?1 diet) were formulated and fed to triplicate groups of fish (7.25 ± 0.81 cm; 5.21 ± 0.27 g) near to satiation. Fish fed diet with 6.7 mg kg?1 copper had highest absolute weight gain (AWG; 51.63 g fish?1), protein efficiency ratio (PER; 1.42 g fish?1), protein gain (PG; 8.34 g fish?1), haemoglobin (Hb; 9.68 g dL?1), haematocrit (Hct; 31.18%) and RBCs (3.24 × 106 × mm?3). Feed conversion ratio (FCR) was found to be best (1.57) at above level of dietary copper. Whole body copper concentration was found to increase with the increasing levels of dietary copper. Hepatic thiobarbituric acid‐reactive substances concentration was found to decrease with increasing dietary concentrations of copper up to 6.7 mg kg?1 beyond which a reverse trend in this parameter was noted. Broken‐line regression analysis of AWG, FCR and PG concentrations against varying levels of dietary copper yielded the requirement in the range of 6.66–6.78 mg kg?1. Data generated during this study would be useful in formulating copper‐balanced commercial feeds for the intensive culture of this fish.  相似文献   

12.
The aim of this study was to examine the effects of the immunostimulant combination (IC) containing β‐glucan, A3α‐peptidoglycan, vitamin C and vitamin E on the growth performance, non‐specific immunity and protection against Vibrio harveyi infection in cobia (Rachycentron canadum). Fish were fed diets containing six graded levels of IC (0, 1, 2, 3, 4 and 5 g kg?1 diet) for 8 weeks. The results showed that the survival rate ranged from 81.1 to 84.4% with no significant difference among all the groups (P > 0.05) after the feeding experiment. Dietary IC significantly increased the specific growth rate (SGR), serum lysozyme, alternative complement pathway (ACH50) activity, phagocytosis percentage (PP) and respiratory burst activity of head kidney macrophages of cobia. Moreover, feeding of supplemented diets containing 3.0 g kg?1 IC resulted in significantly lower mortality against the pathogens, V. harveyi compared with the control group. To elevate the growth and immune resistance ability of cobia, the optimal dose of dietary IC administration, determined by second‐order polynomial regression analysis was 3.43 and 2.71 g kg?1 diet, respectively, on the basis of the SGR and mortality after challenge with V. harveyi.  相似文献   

13.
An 8‐week feeding trial was conducted to determine the optimal dietary arginine requirement for juvenile swimming crab Portunus trituberculatus. Six isonitrogenous and isolipidic experimental diets were formulated to contain graded arginine levels which ranged from 15.9 to 33.0 g kg?1. Each diet was randomly assigned to triplicate groups of 60 juvenile swimming crabs (4.72 ± 0.12 g). The results indicated that dietary arginine had significant effects on weight gain (WG), specific growth rate (SGR), protein productive value, feed efficiency and protein efficiency ratio. Weight gain and SGR significantly increased with the dietary arginine increasing from 15.9 to 27.4 g kg?1, while with the further increasing from 27.4 to 33.0 g kg?1, WG and SGR did not increase significantly. Maximum arginine, proline and total essential amino acid contents in muscle were observed in 27.4 g kg?1 group diet. The swimming crab fed the diet with lower dietary arginine level showed higher AST and lower ALT in the serum. Crab fed with the lower dietary arginine level had significantly lower ALT in the serum than the other groups. Haemolymph indexes were significantly affected by the dietary arginine level except for the cholesterol concentration, and the highest values were all found in 27.4 g kg?1 group diet. The two slope broken‐line model using SGR showed that the optimal dietary arginine requirement was 27.7 g kg?1 of the dry matter (56.0 g kg?1 dietary protein) for juvenile swimming crab.  相似文献   

14.
A 12‐week feeding trial was conducted in eighteen 70 L indoor polyvinyl circular troughs provided with a water flow‐through system (1–1.5 L min?1) at 28 ± 1 °C to evaluate the dietary tryptophan requirement of fingerling Catla catla (3.45 ± 0.24 cm; 0.60 ± 0.13 g). Six casein‐gelatin‐based amino acid test diets (330 g kg?1 crude protein; 13.6 kJ g?1 digestible energy) containing graded levels of L‐tryptophan (1.0, 1.4, 1.9, 2.3, 2.8, 3.4 g kg?1 dry diet) were fed to triplicate groups of fish near to satiation at 08:00, 12:30 and 17:30 h. Absolute weight gain, feed conversion ratio, protein gain, RNA/DNA ratio, hepatosomatic index, viscerosomatic index, condition factor and haematological indices improved with the increasing levels of tryptophan from 1.0 to 2.3 g kg?1 of dry diet. Significantly higher carcass protein was obtained at 2.3 g tryptophan per kilogram of the dry diet. Exponential analysis of absolute weight gain, feed conversion ratio, protein gain and RNA/DNA ratio against dietary tryptophan levels at 95% maximum and minimum responses displayed the tryptophan requirement at 2.5, 2.3, 2.5 and 2.1 g kg?1 dry diet, respectively. Inclusion of dietary tryptophan in the range of 2.1–2.5 g kg?1 dry diet, equivalent to 6.4–7.6 g kg?1 dietary protein, is recommended in formulating tryptophan‐balanced feed for the culture of this fish species.  相似文献   

15.
The experiment was conducted to determine the leucine requirement of juvenile Pacific white shrimp Litopenaeus vannamei (Boone) in low‐salinity water (0.50–1.20 g L?1). Six diets were formulated to contain 410 g kg?1 crude protein with fish meal, peanut meal and precoated crystalline amino acids with different concentration of l ‐leucine (16.72, 19.60, 22.06, 24.79, 27.28 and 30.16 g kg?1 dry diet). Each diet was randomly assigned to triplicate groups of 30 shrimps (0.38 ± 0.002 g), and the feed trial lasted for 8 weeks. The results indicated that the maximum weight gain was observed at 24.95 g kg?1 dietary leucine group, whereas the diets containing higher leucine concentration conversely reduced the growth performance (P < 0.05). Moreover, the highest body protein content and body protein deposition and the lowest haemolymph AST and ALT activities were also found at 24.95 g kg?1 dietary leucine group. With the increase in leucine in diets, a dose‐dependent increase was found in body lipid content and haemolymph urea concentration. The polynomial regression calculated using weight gain, feed efficiency and body protein deposition indicated that the optimal dietary leucine requirement for L. vannamei reared in low‐salinity water was 23.73 g kg?1 leucine of dry diet, correspondingly 57.88 g kg?1 of dietary protein.  相似文献   

16.
Two 8‐week growth trials were conducted in indoor recirculation system to evaluate the protein requirements for juvenile (3.70 ± 0.20 g) and pre‐adult (85.2 ± 0.70 g) gibel carp, Carassius auratus gibelio var. CAS III. Six isoenergetic diets were formulated for each trial using fish meal and casein as protein sources, and protein level was 250–450 g kg?1 in Trial 1 and 200–450 g kg?1 in Trial 2. With the increasing dietary protein, feeding rate (FR) and feed conversion ratio (FCR) significantly decreased (< 0.05). Weight gain (WG) increased first and then reached a plateau in 330–450 g kg?1 in Trial 1 (> 0.05), while decreased after the maximum value in 350 g kg?1 in Trial 2 (< 0.05). Productive protein values (PPVs) were lower in 370–450 g kg?1 in Trial 1 and 400–450 g kg?1 in Trial 2 (< 0.05). Increasing dietary protein level increased protein content and decreased lipid content in whole fish body and white muscle (< 0.05). Apparent digestibility coefficient of dry matters (ADCd) decreased, while apparent digestibility coefficient of protein (ADCp) increased in 370–450 g kg?1 in Trial 1 and 250–450 g kg?1 in Trial 2 (< 0.05). Trypsin activity significantly increased in 370–450 g kg?1 in Trial 1 (< 0.05) and was not affected in Trial 2 (> 0.05). Hepatic alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities in both trials increased when dietary protein was above 400 g kg?1 (< 0.05). Based on quadratic regression of WG, it was estimated that dietary protein requirement for maximum growth was 414 g kg?1 (digestible protein of 376 g kg?1) and 365 g kg?1 (digestible protein of 324 g kg?1) for juvenile (3.70 g) and pre‐adult gibel carp (85.2 g).  相似文献   

17.
Juvenile mirror carp were fed with five different diets containing 303, 322, 341, 361 and 379 g kg?1 protein and reared at three different water temperatures (18, 23 and 28 °C) for 60 days. We investigated the insulin‐like growth factor I (IGF‐I) mRNA expression, growth performance and the relationship between IGF‐I mRNA expression and the growth performance. The results indicated that the IGF‐I mRNA expression, final body weight, specific growth rate (SGR) and feed efficiency (FE) were enhanced significantly with increasing dietary protein levels (< 0.05), whereas the protein efficiency ratio, hepatosomatic index (HSI) and viscerosomatic index (VSI) were decreased. Moreover, the IGF‐I mRNA expression, final body weight and SGR were increased significantly with temperature, whereas the HSI and VSI indices were decreased significantly with temperature. Correlation analysis showed that the IGF‐I mRNA expression levels in the brain and liver were positively related to the SGR and FE growth indices (< 0.01). Finally, the optimal protein requirements for fish growth in different seasons were determined based on the values of SGR and FE, that is 343–348 g kg?1 protein at 18 °C, 354–352 g kg?1 at 23 °C and 371–362 g kg?1 at 28 °C. In this way, we can adjust the dietary protein levels according to culture temperature to reduce any negative impacts on dietary costs and environmental pollution.  相似文献   

18.
Two trials were conducted to investigate protein requirements of juvenile (3.18 g in Trial 1) and on‐growing (87.1 g in Trial 2) gibel carp, Carassius auratus gibelio var. CAS III. Six isoenergetic diets containing 250–500 g kg?1 dietary protein were formulated using soy protein concentrate (SPC) and casein as protein sources. The results showed that weight gain (WG) increased when dietary protein increased from 250 to 400 g kg?1 and decreased at 400 to 500 g kg?1 CP in Trial 1, while WG increased when dietary protein increased from 250 to 350 g kg?1 and kept constant at 350 to 500 g kg?1 CP in Trial 2. With increasing dietary protein, feed conversion ratio (FCR) decreased, while protein retention efficiency (PRE) decreased in Trial 1 and was not affected in Trial 2. Apparent digestibility coefficient of protein (ADCp) increased with increasing dietary protein in two trails. Trypsin activity increased with dietary protein in the juveniles and was not affected in on‐growing fish. Hepatic alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities increased with dietary protein. Broken‐line and quadratic regression of WG estimated that dietary protein requirements for maximum growth were about 402–427 g kg?1 for the juvenile and 337–418 g kg?1 for on‐growing gibel carp.  相似文献   

19.
An 8‐week feeding trial was conducted to investigate the optimum dietary protein and lipid levels for growth, feed utilization and body composition of Pseudobagrus ussuriensis fingerlings (initial weight: 3.40 ± 0.01 g). Twelve diets containing four protein levels (350, 400, 450 and 500 g kg?1 crude protein) and three lipid levels (50, 100 and 150 g kg?1 crude lipid) were formulated. Fish were randomly allotted to 36 aquaria (1.0 × 0.5 × 0.8 m) with 25 fish to each glass aquarium. Fish were fed twice daily (08:00 and 16:00) to apparent satiation. The results showed that weight gain and specific growth rate (SGR) decreased with increasing dietary lipid level from 50 to 150 g kg?1 at the same dietary protein level. Fish fed the diets containing 150 g kg?1 lipid exhibited higher feed conversion ratio (< 0.05), lower protein efficiency ratio (PER) and nitrogen retention efficiency (NRE) relative to fish fed the diet containing 50 and 100 g kg?1 lipid. Weight gain and SGR significantly increased with increasing dietary protein from 350 to 450 g kg?1 at the same dietary lipid level, and even a little decline in growth with the further increase in dietary protein to 500 g kg?1. Daily feed intake, NRE and PER were significantly affected by both dietary protein and lipid levels (P < 0.05) and tended to decrease with increasing dietary protein and lipid levels. Whole‐body protein content increased as protein levels increased and lipid levels decreased. Whole‐body lipid and muscle lipid content increased with increasing dietary lipid level, and decreased with increasing dietary protein at each lipid level. There was no significant difference in condition factor and viscerosomatic index among fish fed the diets. Hepatosomatic index was affected by dietary lipid level (P < 0.05), and increased with increasing dietary lipid level at the same protein level. These results suggest that the diet containing 450 g kg?1 protein and 50 g kg?1 lipid with a P/E ratio of 29.1 mg protein kJ?1 is optimal for growth and feed utilization of P. ussuriensis fingerlings under the experimental conditions used in the study.  相似文献   

20.
The aim of the present work was to obtain the lipid utilization of Octopus vulgaris supplying formulated semi‐moist diets with different contents in cod oil (reduced from water content): 0 g kg?1 (A0, 138 g kg?1 lipids DW; N = 4), 100 g kg?1 (A100, 286 g kg?1 lipids DW; N = 6) and 200 g kg?1 (A200, 388 g kg?1 lipids DW; N = 6). The rest of the ingredients were constant in the three diets: 200 g kg?1 gelatin, 100 g kg?1 egg yolk powder, 150 g kg?1 freeze‐dried Todarodes sagittatus and 50 g kg?1 freeze‐dried Sardinella aurita). Survival was 100% with the three diets. The highest absolute feeding (15.8 ± 1.2 g day?1), growth (9.6 ± 1.4 g day?1; 0.91% BW day?1) and feed efficiency rates (60.3%) were obtained with diet A0. This diet also showed greater retention of lipid and protein than A100 and A200. Protein digestibility was above 95% in all of the diets. Only diet A0 led to a high lipid digestibility coefficient (81.25%), which fell drastically to 12.3% in A200. It was notable the high polar lipid digestibility rates (83–89%) respect to neutral lipids (2–87%) in all diets. The best results were obtained with lipid feeding rates of around 1 g day?1 and a suitable lipid content on 130–140 g kg?1 DW in formulated diets for O. vulgaris.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号