首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
鲤雌核发育子代基因的杂合度分析   总被引:2,自引:2,他引:0  
通过热休克法抑制第一次有丝分裂(抑制第一次卵裂)和减数分裂(抑制第二极体排除),分别获得鲤(Cyprinus carpio L.)的2个雌核发育家系.利用13对具有高多态性的微卫星分子标记,分别对2个雌核发育家系的观测杂合度(Ho、期望杂合度(He)、等位基因频率(P)和有效等位基因数(Ne等进行遗传背景调查.结果表明,抑制第一次有丝分裂家系的等位基因频率为0.063~1.000,平均观测杂合度为0.22,平均期望杂合度为0.24,平均有效等位基因数为1.41,该家系在6个微卫星座位上表现为纯合子,在7个微卫星座位上表现为杂合子,其中位点MFW4完全表现为杂合子;抑制减数分裂的等位基因频率为0.056~0.889,观测杂合度的平均值为0.37,期望杂合度的平均值为0.47,平均有效等位基因数为1.93,该家系中没有得到完全纯合的个体,其中在2个位点上全部表现为杂合子.在所分析的鲤雌核发育群体中,有3个基因座位(HLJ034、HLJ044和HLJ071)有重组现象,重组率为20.00%.综合上述结果推断,鲤2个雌核发育家系在个体和群体上都具有一定的基因杂合性.[中国水产科学,2009,16(1):47-53]  相似文献   

2.
采用筛选获得的5对多态性微卫星引物对栉孔扇贝(Chlamys farreri)减数分裂雌核发育家系A和家系B、有丝分裂雌核发育家系A和家系B各30个个体、双亲及对照组40个个体进行了遗传变异分析,并对减数分裂和有丝分裂雌核发育后代的纯合性进行了比较。电泳结果表明,5对微卫星引物在减数分裂雌核发育和有丝分裂雌核发育个体中均能稳定重复地扩增出相应的序列;各雌核发育家系中均有部分个体出现父本基因,表明精子遗传物质失活不彻底,雌核发育组中存在正常受精个体;有丝分裂雌核发育二倍体在所有检测位点全部纯合,减数分裂雌核发育二倍体在部分位点纯合,但未发现在所有位点全部纯合的个体,在CFMSP007、CFMSP075、CFMSM009、CFMSM014和CFMSM020位点,杂合子比例分别为0.3400、0.3611、0.4884、0.4750和0.7500,平均杂合子比例为0.4829。研究结果显示,栉孔扇贝有丝分裂雌核发育二倍体均为纯合子,如精子的灭活率达到100%,有丝分裂雌核发育二倍体一代即可实现纯合,如再进行一次减数雌核发育即可建立纯系;减数分裂雌核发育二倍体由于具有较高的重组率,其与母本的遗传同质性较高。  相似文献   

3.
鲤和牙鲆的两种雌核发育子代的基因型分析   总被引:3,自引:1,他引:2  
孙效文 《水产学报》2008,32(4):545-551
研究调查了鲤和牙鲆经两种雌核发育操作获得的子代的基因型纯合情况.结果显示,多数子代在母本杂合基因座上的纯合速率并不快,如鲤抑制第一次卵裂的44尾子代平均纯合化程度为30.2%,纯合化程度最高的个体为53.3%,纯合化程度最低的仅有13.3%,没有得到纯合个体;牙鲆抑制第一次卵裂22个子代中有3个纯合个体;而抑制第二极体的牙鲆4个家系中纯合化最高的个体是C家系的第18号子代为56%,平均纯合度为19%,14个子代的纯合化速率为零.结合鲤抑制第二极体和牙鲆抑制第一次卵裂的实验结果对两种雌核发育产生的纯化作用进行了分析和评价;并针对育种过程中的雌核发育技术进行了讨论.  相似文献   

4.
牙鲆连续两代减数分裂雌核发育家系的遗传特征   总被引:5,自引:3,他引:2  
对牙鲆(Paralichthys olivaceus)减数分裂雌核发育二倍体(Meio-G1)再次诱导减数分裂雌核发育,获得连续两代雌核发育二倍体家系(Meio-G2),以Meio-G1亲本与1尾普通牙鲆雄鱼人工授精获得的家系作为对照组(control)。利用15个微卫星标记对3个家系进行遗传特征分析。结果显示,15个微卫星位点在Meio-G1、Meio-G2和对照组3个家系中,分别扩增到30、28、50个等位基因,平均等位基因数为2.0、1.9、3.3,平均观测杂合度(Ho)分别为0.875 3、0.774 2、0.908 3,平均纯合度分别为0.124 7、0.221 5、0.091 7。3个家系个体间的平均遗传相似系数分别为0.891 7、0.923 8、0.520 2,亲代与子代之间的平均相似系数分别为0.916 6、0.930 4、0.560 3。高重组率的Poli9-8tuf、Poli18tuf、Poli107tuf 3个位点在Meio-G1和Meio-G2中观测杂合度均为1.0,低重组率的Poli33tuf、Poli24MHFS两个位点在Meio-G1和Meio-G2中均全部纯合,观测杂合度为0。结果表明,Meio-G2的纯合度、个体间平均相似系数以及亲子之间的平均相似度均略高于Meio-G1,显著高于对照组家系,证明连续两代诱导减数分裂雌核发育,能提高鱼类纯合度和遗传相似度,具有固定母本遗传性状的作用。  相似文献   

5.
牙鲆减数分裂与有丝分裂雌核发育的遗传差异   总被引:9,自引:2,他引:7  
利用同一尾牙鲆亲鱼的同一批卵子诱导减数分裂雌核发育二倍体和有丝分裂雌核发育二倍体,同时用牙鲆精子做人工授精制备普通二倍体,作为对照组。利用10对微卫星引物对普通二倍体和两种雌核发育二倍体进行遗传分析。结果表明,母本基因型在8个位点为杂合,2个位点为纯合。普通二倍体有6种基因型,等位基因均来自父母本的随机结合,类型丰富;母本与子代、子代个体之间的遗传相似系数分别为0.452 8和0.560 3,接近随机交配群体的遗传相似度。减数分裂雌核发育二倍体有3种基因型,除在1个位点出现异于母本的纯合基因型外,其他所有位点的基因型与母本完全一致;母本与子代、子代个体之间遗传相似系数分别为0.976 6和0.959 5,接近近交系的遗传相似度。有丝分裂雌核发育二倍体有2种基因型,且全部为纯合型;母本与子代、子代个体之间遗传相似系数分别为0.806 2和0.742 5,有丝分裂雌核发育二倍体全部为纯合个体。减数分裂雌核发育二倍体具有高度的遗传相似性,适于固定母本性状;有丝分裂雌核发育二倍体纯合度高,适于作为制备克隆的亲本;两者具有明显不同的遗传特性,均可作为特征不同的育种材料。  相似文献   

6.
为了研究纯合度和遗传相似度在牙鲆(Paralichthys olivaceus)连续四代减数分裂雌核发育家系中的变化规律,本研究利用分布在不同连锁群上的24个高重组率微卫星标记对牙鲆连续减数分裂雌核发育二代(G2)、三代(G3)、四代(G4)家系及普通家系对照组进行了遗传分析。结果显示,24个微卫星位点在对照组、G2、G3、G4家系中,分别检测到96、42、32和32个等位基因,平均等位基因数分别为4.00、1.98、1.33和1.33;期望杂合度分别为0.6416、0.3472、0.1694和0.1492;纯合度分别为0.3503、0.6528、0.8306和0.8508;遗传相似系数分别为0.5822、0.9238、0.9890和0.9988。24个位点中已有17个纯合,但尚有7个保持杂合状态。同时,将上述结果和已发表的减数分裂雌核发育一代(G1)家系的数据进行分析,结果表明,诱导连续减数分裂雌核发育不仅能提高个体的纯合度,同时也可提高子代个体间的遗传相似度;纯合度和遗传相似度在G1、G2和G3家系中能够得到逐步提高,代际之间差异显著(P<0.05);但在G4家系中趋于稳定,与G3家系差异不显著。G4家系的遗传相似性(0.9988)已高于连续20代全同胞交配所获得的理论值(0.9860),连续诱导减数分裂雌核发育是快速建立鱼类近交系的良好方法。  相似文献   

7.
雌核发育草鱼群体及两个普通草鱼群体的微卫星遗传分析   总被引:1,自引:1,他引:0  
以草鱼(Ctenopharyngodon idellus)养殖群体(YZ)为母本,以紫外线灭活的鲤鱼精子激活草鱼卵子,冷休克抑制第二极体排出的方法诱导获得异精雌核发育草鱼群体(CH)。利用12对微卫星引物对YZ群体、YS (扬州广陵长江系家鱼原种场引进草鱼群体)群体、CH群体进行PCR扩增并分析,共检测出194个等位基因,其中75.8个有效等位基因。YZ群体、YS群体、CH群体的平均等位基因数依次为13.0、12.6、4.7;平均有效等位基因数依次是7.7、6.6、2.3;平均期望杂合度依次为0.87、0.82、0.56;平均多态信息含量依次为0.84、0.79、0.49。从每个个体在微卫星位点的纯合率看,YZ群体中个体的纯合度在0.00~0.33, YS群体r中个体的纯合度在0.00~0.42, CH群体中个体的纯合度在0.42~0.92。这表明与YZ群体和YS群体相比,CH群体的遗传多样性显著下降,并且在每个位点的纯合率CH群体均高于普通草鱼群体,表明人工诱导减数雌核发育可加速草鱼大多数基因位点的纯合,是快速建立高纯品系的有效手段。同时,本研究筛选并利用微卫星位点组合建立了雌核发育草鱼子代不同家系及其母本亲缘关系的简易、高效鉴别技术,旨在为雌核发育草鱼标记辅助育种打下基础。  相似文献   

8.
ENU诱变草鱼及其雌核发育后代的微卫星遗传分析   总被引:1,自引:1,他引:0  
为了获得雌核发育ENU诱变草鱼(Cetpharyngodon idellus)群体的相关遗传参数,实验采用Partec Cy Flow倍性分析仪测定ENU诱变草鱼群体(Q群体)和雌核发育ENU诱变草鱼群体(E群体)相对DNA含量分别为24.02和23.80,二者的DNA含量接近,均为二倍体。选取28个微卫星标记对Q群体和E群体多样性进行了检测。结果表明,E群体和Q群体的平均等位基因分别为3.7143、5.1786,平均有效等位基因分别为2.1857、4.0028,平均期望纯合度分别为0.5122、0.2814,平均期望杂合度分别为0.4878、0.7186,多态信息含量(PIC)平均值分别为0.4282、0.6606。从个体在微卫星位点的纯合率分析,在E群体中,每个个体的纯合度均小于1.00,说明没有完全纯合的个体。从每个微卫星位点在群体的纯合率分析,除了微卫星位点5476,HLJC118和HLJC81外,其他位点的纯合度以不同的速率得到明显的提高。综上所述,经过减数雌核发育方法,ENU诱变草鱼群体的各微卫星位点的纯合度以不同的速率得到提升,遗传多样性明显降低,此方法可以获得纯合度较高的雌核发育ENU诱变草鱼个体,为ENU诱变草鱼良种选育提供了重要的遗传数据资料。  相似文献   

9.
为了解黄姑鱼(Nibea albiflora)异质雌核发育子代的基因纯合情况,利用微卫星标记(SSR)和扩增片段长度多态性标记(AFLP)对黄姑鱼异质雌核发育家系进行遗传鉴定和分析。结果显示:(1)雌核发育家系在4个SSR位点和5对AFLP引物组合扩增出的位点均未发现父本特异性等位条带,表明雌核发育体比率为100%。(2)用于遗传分析的7个SSR位点在雌核发育家系和正常交配家系中均未见完全纯合的情况,雌核发育家系7个SSR位点的平均纯合度为0.382,是正常交配家系(0.161)的2.37倍。雌核发育家系各个体的纯合位点数为0~6个,纯合位点所占比例为0~85.7%。(3)5对AFLP引物共扩增出182条清晰的扩增条带,其中有21条父本特异性条带和16条母本特异性条带。16条母本特异性条带中有7个条带在雌核发育家系中显著偏分离(P<0.05)。雌核发育家系和正常交配家系多态性条带比例分别为14.7%和20.3%。(4)雌核发育家系与母本的遗传相似度高于与正常交配家系的遗传相似度,正常交配家系同父本和母本的遗传距离大致相同。研究结果表明,黄姑鱼异质雌核发育二倍体家系的遗传纯合度显著高于正常交配家系,人工诱导雌核发育是促进基因纯合的一个有效途径,它不仅可以加速有利基因的纯合固定,还可以加速有害基因的淘汰,从而有效提高育种效率。  相似文献   

10.
秦皇岛海域野生牙鲆群体遗传多样性分析   总被引:2,自引:0,他引:2  
用18对多态性微卫星标记对采自秦皇岛海域的90尾野生牙鲆(Paralichthys olivaceus)进行遗传分析。18个微卫星位点共检测出161个等位基因;各位点等位基因数为7~11个,平均为8.9;有效等位基因为3.7~8.0,平均有效等位基因为5.9;各个位点多态信息含量为0.69~0.86,平均值为0.80;Shannon多样性指数平均值为1.9;观测杂合度(Ho)值为0.33~0.87,平均值为0.64;期望杂合度为0.74~0.89,平均期望杂合度(He)为0.84。χ2检验表明,18个位点中有9个的等位基因分布偏离了哈迪温伯格平衡(P<0.05)。研究结果表明,秦皇岛海域野生牙鲆群体遗传信息含量丰富、等位基因分布均匀,遗传多样性较高,但是,存在Hardy-Weinberg不平衡现象。  相似文献   

11.
A range of phenotypic characters were measured and their mean and coefficient of variation (CV) calculated in meiotic and mitotic gynogenetic individuals and normal diploids produced from the same full-sib family of Oreochromis niloticus (L.). The traits studied in all three groups were weight, length, various fin ray and scale counts, gonadosomatic index (GSI) and reproductive response. The study revealed two main trends in the majority of the traits studied in the gynogenetic fish: a decrease in the mean of each trait in the ranked order normal diploid > meiotic gynogenetic > mitotic gynogenetic, and an expansion of its phenotypic variation (CV) in the order normal diploid < meiotic gynogenetic < mitotic gynogenetic. This could be related to the levels of genetic homozygosity and a possible reduction in developmental homeostasis in the gynogenetics. The utility and potential of gynogenetic individuals in research and the use of the technique in the improvement of fish strains for aquaculture are discussed.  相似文献   

12.
The Japanese flounder is a major species in both aquaculture and research. Inbred strains of Japanese flounder were developed efficiently in our laboratory by meiotic and mitotic gynogenetic reproduction techniques. To determine the induction efficiency of gynogenesis and the rate at which full homozygosity is produced, six meiotic gynogenetic females (G1–G6) that had experienced meiotic gynogenesis once and three common females (C1–C3) were selected for production of mitotic gynogenesis in our experiments. Of the nine adult females, all six gynogenetic fish successfully produced viable offspring. However, only one of the three common fish did. Using microsatellite markers, we estimated the homozygosity of gynogenetic fish induced by mitotic gynogenesis. We found that the homozygosity of seven lines (C1, G1–G6) increased quickly, individually from 43%, 72%, 69%, 71%, 78%, 69% and 58% to 100%, 100%, 100%, 90%, 100%, 100% and 90% offspring complete homozygosity. Under mitotic gynogenesis, individuals with higher homozygosity had a higher induction rate. The G4 line showed the highest induction rate, achieving 44.59% convert hatching rate and 29.28% convert normality rate. We conclude that meiotic gynogenesis may be a feasible method to produce DH genetic material in Japanese flounder.  相似文献   

13.
Production of heterozygous and homozygous clones of Nile tilapia (Oreochromis niloticus L.) was successfully carried out. An outbred clonal line was produced by cross-breeding between a viable mitotic gynogenetic female and male (recessive mutation in a sex determining gene). At the same time, an inbred clonal line was produced by gynogenetic reproduction (retention of 2nd polar body) using optimal pressure/heat shock treatments. The heterozygous and homozygous nature of the two types of clonal lines were checked and identified at the adenosine deaminase ADA* marker locus. A model for the large scale production of similar clones is presented. The possible implications of such clonal lines in genetic research and in the culture of Oreochromis spp. are discussed. © Rapid Science Ltd. 1998  相似文献   

14.
为了分析连锁群上不同位置的微卫星标记对鉴定牙鲆二倍体遗传特征的作用,实验以牙鲆选育基础群体为亲本,选择性腺发育良好的个体制备普通二倍体(ND),减数分裂雌核发育二倍体(MGD-1)、连续两代减数分裂雌核发育二倍体(MGD-2),并利用MGD-1发育达性成熟的雌鱼与同时诱导的性反转伪雄鱼交配制备近交二倍体(MGD1H)。从牙鲆遗传连锁图谱选择均匀分布于24个连锁群的72个微卫星标记,用4个MGD-1家系估计微卫星标记与着丝粒之间的相对距离。在假设无交叉干涉的情况下,17个标记位于着丝粒区域,19个标记位于连锁群中部,36个标记位于远着丝粒区域。分别选择上述区域的微卫星标记鉴定牙鲆4种二倍体的遗传特征。结果显示,4种二倍体的等位基因数(A)和多态信息含量(PIC)在不同区域变化范围较小,ND的A和PIC均为最高,MGD1H则表现为最低。随着标记与着丝粒之间距离的增加,4种二倍体的观测杂合度逐渐升高,纯合度逐渐降低。纯合个体比例在着丝粒区域最高,为8.8%~29.1%;在远着丝粒区域最低,为2.4%~23.2%。其中,MGD-1和MGD-2的变化幅度显著高于其余二倍体。结果表明,选择连锁群上不同位置的微卫星标记对鉴定牙鲆不同二倍体的遗传特征具有显著影响。  相似文献   

15.
雌核发育草鱼的遗传结构分析和微卫星鉴别方法的建立   总被引:2,自引:0,他引:2  
采用微卫星标记检测草鱼群体的遗传多样性,并根据纯合度的变化建立了雌核发育草鱼的鉴别技术。结果显示,8个位点共扩增出33个等位基因;在普通草鱼中,平均纯合度和PIC分别为0.203 1和0.552 8;在雌核发育群体中,则为0.716 1和0.357 2;2个群体间遗传相似度为0.873 3。其中,5个位点在雌核发育草鱼中纯合度明显提高,雌核发育草鱼在这5个位点的扩增总条带数为5~7个,普通草鱼则为8~10个,由此可100%区分2个草鱼群体。通过概率计算,理论鉴别概率达到99.92%。研究表明,雌核发育技术对草鱼的群体遗传结构改变较大,是快速建立纯系、固定优良性状的有效手段;根据群体遗传纯合度的改变、扩增条带数目差异,应用多态性微卫星分子标记可以简单、有效地区分雌核发育群体(或与之相似的高度近交群体)与普通群体。  相似文献   

16.
To develop an effective system for parentage analysis in gynogenetic and clonal progeny of Nile tilapia, Oreochromis niloticus L., polymorphic microsatellite loci and amplified fragment length polymorphisms (AFLPs) were investigated in several gynogenetic families and clonal lines. Six microsatellite loci were screened in two meiotic gynogenetic families to look for loci with high gene–centromere recombination rates, which can be used to discriminate meiotic from mitotic gynogenetics. Microsatellite loci UNH189 and UNH211 showed 96.7% and 92.0% heterozygosity, respectively, in these families, while other loci showed lower recombination frequencies. Scoring both UNH189 and UNH211 would give a very low probability of an individual meiotic gynogenetic being homozygous for both loci. Multiplex polymerase chain reaction of microsatellite loci was used to verify parentage in four families of mitotic gynogenetics and five fully inbred clonal lines. The genotype of each clonal line should serve as a unique identifier. Twelve AFLP primers were also investigated and 26 diagnostic AFLP bands were identified to follow inheritance in mitotic gynogenetic individuals. Amplified fragment length polymorphisms were found to be effective for this purpose but microsatellites were more appropriate since they are co‐dominant, while AFLPs are dominant markers. A multiplex of the microsatellite loci used in this study would be useful for general parental assignment as well as for the analysis of the products of chromosome set manipulations.  相似文献   

17.
In the present study, methodology of gynogenetic induction in spotted halibut were developed and optimized; the sex ratio of putative meiotic gynogenetic diploids was determined using AFLP-based molecular sexing technique; the homozygosity of gynogenetic population was assessed as opposed to cultivated population. The results showed that high percentage of meiotic gynogenetic diploids were generated when the eggs fertilized with irradiated heterologous sea perch frozen sperm (30–50 mJ cm−2) were cold shocked in sea water of −1°C for 40–75 min at 5 min after fertilization. About 15,200 diploid gynogenetic larvae were achieved and they exhibited normal morphology similar to diploid control. The gynogenetic diploids were 100% female, which first confirmed the female homogamete (XX/XY) sex determination in spotted halibut. The genetic analysis showed that the average H O was, respectively, 0.404 and 0.724 in gynogenetic population and cultivated population, indicating an increase of homozygosity in gynogenetic population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号