首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
为了准确识别成熟的西红柿目标,提出了一种模糊C-均值聚类算法(Fuzzy Clustering Means,FCM)的西红柿目标分割方法。该方法首先利用FCM算法对西红柿图像进行模糊聚类,并对聚类后的果实图像与丢失的部分目标图像进行相加,以得到更加完整的西红柿目标;然后对西红柿目标进行二值化、去噪、开运算与闭运算等处理,完成西红柿目标的分割。为了验证算法的有效性,利用20幅图像进行了试验并与K-means算法和Otsu算法分割效果进行了对比。结果表明:利用文中算法所分割出的西红柿目标最高分割误差率均低于Kmeans算法和Otsu算法,平均分割错误率为1 6.5 5%,比K-means算法低了3.5 6%,比Otsu算法低了1 2.8 0%。这表明,将该方法应用于西红柿目标的识别是可行的。  相似文献   

2.
基于机器视觉的自然环境中成熟荔枝识别   总被引:13,自引:0,他引:13  
研究了自然场景下成熟荔枝的识别技术.通过分析荔枝彩色图像的颜色和灰度特征,选取YCbCr颜色模型进行处理,对其Cr分量图进行阈值分割去除复杂背景,并采用形态学和连通区域标注法消除分割后的随机噪声;然后结合一维随机信号直方图分析法与模糊C均值聚类法( FCM)对处理后的荔枝图像进行聚类和分割,实现荔枝果实和果梗的识别.不同光照条件下的识别实验结果表明,算法均能有效分割出果实和果梗,综合识别率达到95.5%.  相似文献   

3.
基于K均值聚类的成熟草莓图像分割算法   总被引:1,自引:0,他引:1  
成熟草莓图像分割是草莓收获机器人识别和定位系统的关键技术.考虑到成熟草莓和其所处环境的颜色特性,在Lab彩色模式下将K均值聚类用于成熟草莓图像的分割.首先把输入的草莓图像从RGB空间转换到Lab空间下,然后初始化三个聚类中心进行K均值聚类的迭代算法,最后为消除成熟草莓花托表面细小瘦果对分割产生的影响,利用数学形态学的闭运算对分割的图像进行了修正加工.研究表明,K均值聚类分割算法在Lab模式下能够较好地分割出成熟草莓图像,并且Lab模式比其他彩色模式更适用于K均值聚类的图像分割算法.  相似文献   

4.
图像分割是图像进行分析处理的首要步骤。为此,针对彩色农作物图像的特征,首先将RGB彩色图像转换到HIS色彩空间,运用均值一方差与粗糙集理论选取适当的初值聚类中心和聚类个数,再进行聚类计算,实现了色彩分量的快速自动化分割,较准确地从背景中提取出了目标物体,为农作物图像的识别与分析、后续计算和处理提供了可靠的基础。实验结果表明,改进的k-均值算法减少了运算量,提高了分类精度和准确性。  相似文献   

5.
基于改进人工蜂群模糊聚类的葡萄图像快速分割方法   总被引:1,自引:0,他引:1  
为解决基于模糊C-均值聚类(FCM)的图像分割算法需要预先给定初始聚类数目和聚类中心,易使得算法陷入局部最优的问题,提出一种改进的人工蜂群优化模糊聚类的图像分割方法。该方法在传统的人工蜂群的基础上进行优化,以FCM算法中目标函数为基础改进人工蜂群的适应度函数,运用蜂群行为中的采蜜蜂、跟随蜂和侦察蜂的分工合作来快速求解图像中的最优初始聚类中心,将求出的最优聚类中心输入给FCM进行处理,根据最大隶属度原则对果实图像进行分割。以300幅不同光照情况下拍摄的夏黑葡萄果进行分割试验,试验结果表明,改进的图像分割方法能更快地将水果从自然环境中分割识别出来,单幅图像平均分割时间为0.219 3 s,正确分割率达到90.33%,能满足采摘机器人及水果分级系统对目标图像的实时性要求。  相似文献   

6.
为适应农业采摘机器人对葡萄对象快速准确识别的需要,提出了基于HSI色彩空间与以直方图信息为特征的快速模糊C-均值聚类(FFCM)算法相结合的葡萄图像分割方法。该方法以H分量作为葡萄图像聚类分割的处理数据,根据FFCM算法对灰度图像聚类分割。试验对夏黑葡萄果实在自然光、顺光、背光照射环境下拍摄的图像进行分割。结果表明:葡萄图像分割方法能够快速且较好地从复杂自然环境中将葡萄目标分割出来,为葡萄采摘机器人的研制提供了重要参考。  相似文献   

7.
冯高峰 《农机化研究》2024,(3):30-33+41
介绍了FCM (Fuzzy C-Means)模糊聚类算法的原理,采用权重分配的方法对该算法进行了改进,通过建立模糊的相似矩阵,对目标对象的特征聚类图进行分析,并引入隶属度矩阵对FCM算法进行优化,以加快算法的迭代速度。实验结果表明:农业机器人采用该方法对农作物轮廓分割识别度较高,算法计算效率较快,验证了其可靠性,该方法可用于目标农作物的分割和目标识别。  相似文献   

8.
自然场景下苹果目标的精确识别与定位是智慧农业信息感知与获取领域的重要内容。为了解决自然场景下苹果目标识别与定位易受枝叶遮挡的问题,在K-means聚类分割算法的基础上,提出了基于凸壳原理的目标识别算法,并与基于去伪轮廓的目标识别算法和全轮廓拟合目标识别算法作了对比。基于凸壳原理的目标识别算法利用了苹果近似圆形的形状特性,结合K-means算法与最大类间方差算法将果实与背景分离,由凸壳原理得到果实目标的凸壳多边形,对凸壳多边形进行圆拟合,标定出果实位置。为验证算法有效性,对自然场景下的157幅苹果图像进行了测试,基于凸壳原理的目标识别算法、基于去伪轮廓的目标识别方法和全轮廓拟合目标识别方法的重叠率均值分别为83.7%、79.5%和70.3%,假阳性率均值分别为2.9%、1.7%和1.2%,假阴性率均值分别为16.3%、20.5%和29.7%。结果表明,与上面两种对比算法相比较,基于凸壳原理的目标识别算法识别效果更好且无识别错误的情况,该算法可为自然环境下的果实识别与分割问题提供借鉴与参考。  相似文献   

9.
解决裂纹鸡蛋图像灰度直方图目标与背景区域分布模糊、图像分割效果差的问题.通过将包含空间信息的二维直方图和改进特征加权FCM算法有机结合,迭代寻求最佳聚类有效性函数和加权矩阵,实现鸡蛋图像缺陷分割.同时,对经典FCM和改进特征加权FCM算法的性能进行了分析比较.结果表明:提出的算法更接近于真实聚类中心,目标函数值亦得到改善;二维直方图的改进特征加权模糊聚类算法更好地提取了裂纹鸡蛋图像的细节信息,图像分割效果好.  相似文献   

10.
基于改进K均值特征点聚类算法的作物行检测   总被引:1,自引:0,他引:1  
精准施药是现代精准农业发展不可或缺的一部分,而准确地提取作物行是进行精准施药的关键环节。为此,以苗期的玉米为研究对象,提出一种基于改进K均值特征点聚类算法的作物行检测方法。该方法根据距离函数最值关系求出最佳聚类数目,再依据点密度大小和邻域半径确定初始聚类中心,减少了迭代次数,提高了算法的执行效率和划分效果。首先,采用改进的超绿法(1.27G-R-B)进行灰度化和Otsu方法进行二值化,得到作物行的二值图像;然后,利用左右边缘中间线算法提取作物行特征点;最后,采用改进K均值算法和最小二乘法对作物行中心线特征点进行聚类和直线拟合。试验数据表明:提出的改进K均值特征点聚类算法识别效果好,精确度高,可为精准施药提供理论依据。  相似文献   

11.
荔枝采摘机械手视觉定位系统设计   总被引:2,自引:0,他引:2  
建立了基于双目立体视觉的荔枝采摘机械手视觉定位系统.通过对成熟荔枝颜色特征的分析,选取YCbCr颜色模型进行处理,利用Otsu算法结合模糊C均值聚类法(FCM)对荔枝果实和果梗进行了分割,实验结果表明:有效识别果实和果梗的正确率为94.2%.通过计算果实质心与果梗的距离最大值确定荔枝采摘点,利用基于色调空间的彩色图像匹配法和极限约束法进行果梗采摘点的立体匹配,实现了采摘点的空间定位.通过定位误差分析,采用直线插值法进行定位误差补偿,定位实验结果表明:定位的深度误差小于10 mm,能满足荔枝机械手视觉精确定位的要求.  相似文献   

12.
为提高田间复杂环境下传统图像分割法分割葡萄果穗图像准确度低的问题,提出一种基于改进红绿色差和Otsu算法的田间葡萄果穗图像分割方法。选取与人类视觉相近的RGB颜色空间,提取并分析R、G特征图的直方图,经分析对其点乘特征图并进行Otsu运算,再经过形态学处理,实现对田间环境下葡萄果穗图像的分割。与灰度图、(R-G)特征图和(R-G)/(R+G)特征图分别采用最大阈值分割法(Otsu)分割的结果进行对比,试验结果表明,红绿色差点乘Otsu分割法的分割结果最优,准确率为92.37%,F1值90.13%。对50幅图像做了测试,其中图像准确率最高为97%,准确率最低为79%,其平均准确率为88.75%。所提出的方法能够实现葡萄果穗较完整的分割,并可为葡萄果穗的识别、定位提供研究基础。  相似文献   

13.
为了提高采摘机器人的定位速度,对机器人的机器视觉系统进行了改进,设计了一种基于聚类算法和视频对象提取技术的快速定位机器人。该机器人视频对象图像提取过程中,在完成图像进行滤波后,引入了Lab彩色空间聚类算法,有效地降低了图像的色彩数和噪声,实现了图像对象的量化处理,大大提高了果实定位和采摘的效率。为了验证设计的快速定位采摘机器人的可靠性,对机器人的采摘性能进行了测试,测试项目主要包括图像处理和果实定位。通过测试发现:快速定位机器人可以有效地实现图像聚类中心的提取,并对聚类中心进行编码,每次定位用时少、定位速度高且果实采摘的准确性累计概率较高,符合高精度、高效率果实采摘机器人的设计需求。  相似文献   

14.
针对黄瓜表型测量中图像识别问题,为解决黄瓜种子腔与果肉图像灰度差别不大情况下的分割难题,提出了基于随机森林算法(Random Forest,RF)的黄瓜种子腔图像分割方法。首先,通过颜色空间变换,提取样本在RGB、HSV、YCb Cr模型下的9个颜色分量;接着,基于灰度共生矩阵提取样本的能量、熵、对比度、相关性的均值与标准差等8个纹理特征。结合纹理与颜色特征,运用随机森林算法构建像素分类器,实现了种子腔的粗分割。为了提高分割质量,对粗分割的图像进行形态学处理得到最终分割图像。最后,与K-均值聚类(Kmeans)算法、支持向量机(Support Vector Machine,SVM)算法做对比。实验表明:随机森林分割算法正确识别率高达95%,错误识别率在10%之内,处理时间1.6 s左右,分割质量上优于其它两种算法。  相似文献   

15.
针对传统的树干分割算法存在分割精度低、实时性差的问题,提出了一种融合深度特征和纹理特征的树干快速分割算法。首先,通过Realsense深度摄像头采集树干彩色图像和深度图像;随后,采用超像素算法对彩色图像进行分割,并融合深度和纹理相近的相邻超像素块,最后对深度图像进行宽度检测,并对宽度在阈值范围内的物体所属的超像素块进行色调匹配,区分树干与非树干。在室内和室外植株实验中分别运用本文算法、GrabCut算法与K-均值算法进行树干分割,本文算法的平均召回率和平均准确率分别为87. 6%和95. 0%,GrabCut算法分别为78. 0%和92. 8%,K-均值算法分别为80. 2%和89. 1%;本文算法平均耗时为0. 20 s,GrabCut算法为0. 66 s,K-均值算法为4. 42 s。实验结果表明,本文算法的快速分割效果较好,在保证分割精度的同时,简化了识别过程,加快了分割速度,能够应用于室内和室外树干的分割。  相似文献   

16.
针对深层神经网络模型部署到番茄串采摘机器人,存在运行速度慢,对目标识别率低,定位不准确等问题,本文提出并验证了一种高效的番茄串检测模型。模型由目标检测与语义分割两部分组成。目标检测负责提取番茄串所在的矩形区域,利用语义分割算法在感兴趣区域内获取番茄茎位置。在番茄检测模块,设计了一种基于深度卷积结构的主干网络,在实现模型参数稀疏性的同时提高目标的识别精度,采用K-means++聚类算法获得先验框,并改进了DIoU距离计算公式,进而获得更为紧凑的轻量级检测模型(DC-YOLO v4)。在番茄茎语义分割模块(ICNet)中以MobileNetv2为主干网络,减少参数计算量,提高模型运算速度。将采摘模型部署在番茄串采摘机器人上进行验证。采用自制番茄数据集进行测试,结果表明,DC-YOLO v4对番茄及番茄串的平均检测精度为99.31%,比YOLO v4提高2.04个百分点。语义分割模块的mIoU为81.63%,mPA为91.87%,比传统ICNet的mIoU提高2.19个百分点,mPA提高1.47个百分点。对番茄串的准确采摘率为84.8%,完成一次采摘作业耗时约6s。  相似文献   

17.
图像分割是实现田间番茄机器识别的关键部分。根据采摘番茄目标与背景在颜色特征上的差异性,对田间采摘番茄的图像分割算法进行了研究。通过分析比较各种方法的分割效果和所耗费的时间可知,大律分割法具有较好的分割效果,但其在实际应用过程中却存在着一定的问题。针对出现的问题,对该方法进行了相应的改进。研究表明,改进后的大律分割法能较好地处理田间采摘番茄的图像,为进一步采摘识别提供了条件。  相似文献   

18.
首先,设计了一种采用K-means聚类算法和图像处理相结合的目标边缘识别算法,可以获得完整的目标边缘轮廓;然后,利用卷积神经网络和双目视觉技术实现了采摘机器人水果检测及定位方法。实验结果表明:该采摘机器人水果检测及定位方法较好,计算量小,处理速度快,误差较小,能够满足采摘要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号