首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
To investigate the dynamic change of plant nitrogen (N) absorption and accumulation from different root zones under the partial root-zone irrigation (PRI), maize plants were raised in split-root containers and irrigated on both halves of the container (conventional irrigation, CI), on one side only (fixed partial root-zone irrigation, FPRI), or alternatively on one of two sides (alternate partial root-zone irrigation, APRI). And the isotope-labeled 15N-(NH4)2SO4 was applied to one half of the container with (14NH4)2SO4 to the other half so that N inflow rates can be tracked. Results showed that APRI treatment increased root N absorption in the irrigated zone significantly when compared to that of CI treatment. The re-irrigated half resumed high N inflow rate within 5 days after irrigation in APRI, suggesting that APRI had significant compensatory effect on N uptake. The amount of N absorption from two root zones of APRI was equal after two rounds of alternative irrigation (20 days). The recovery rate, residual and loss percentages of fertilizer-N applied to two zones were similar. As for FPRI treatment, the N accumulation in plant was mainly from the irrigated root zone. The recovery rate and loss percentage of fertilizer-N applied to the irrigated zone was higher and the residual percentage of fertilizer-N in soil was lower if compared to those of the non-irrigated zone. The recovery rate of fertilizer-N in APRI treatment was higher than that of the non-irrigated zone but lower than that of the irrigated zone in FPRI treatment. In total, both FPRI and APRI treatments increased N and water use efficiencies but only consumed about 70% of the irrigated water when compared to CI treatment.  相似文献   

2.
Partial root-zone irrigation (PRI) is an effective water-saving irrigation method but the heterogeneous soil moisture distribution that may affect soil enzymatic activities and crop water use. With pot-grown maize, we investigated the dry mass accumulation, crop water-use efficiency and the activities of four major soil enzymes from jointing to grain filling stages of maize plants subjected to PRI and also different ratios of inorganic to organic N fertilizers. Three irrigation methods, i.e. conventional irrigation (CI), alternate PRI (APRI) and fixed PRI (FPRI) and three ratios of inorganic to organic N, i.e. 100% inorganic (F1), 70% inorganic + 30% organic (F2) and 40% inorganic + 60% organic (F3), were applied. Compared to CI, PRI reduced total dry mass and water consumption of maize by 9.5 and 15.7%, respectively, which led to an increase of canopy water-use efficiency by 7.4%. Within the same irrigation method (CI, APRI or FPRI), added organic N increased total dry mass and canopy WUE. During the whole period, maximal soil catalase, urease and acid-phosphatase activities occurred in the wet root-zone of PRI, but maximal invertase activity occurred in the dry root-zone of PRI. When organic N was the most (F3), APRI increased soil catalase, urease and invertase activities at jointing stage if compared to CI, but PRI reduced the acid-phosphatase activity from jointing to filling stages. Soil catalase, urease and invertase activities generally increased with more organic manure, but the maximal acid-phosphatase activities occurred under moderate amount of organic N (F2). Our results indicate that APRI increases canopy WUE and the catalase, urease and invertase activities in its wet zone and organic N plays a major role in enhancing canopy WUE and soil enzymatic activities.  相似文献   

3.
Alternate partial root-zone irrigation (APRI) is a water-saving irrigation method but also can regulate crop physiological responses. This study investigated how water-use efficiency (WUE) and other physiological responses were regulated at different growth stages when maize plants were applied with APRI and how these responses were recovered to control levels when full irrigation was resumed. A pot experiment was carried out at two fertilization levels and with three irrigation methods at the jointing stage (29-38 days after sowing) or during the jointing and tasselling stages (29-77 days after sowing). The irrigation methods included the conventional irrigation (CI), APRI and fixed PRI (FPRI, watering was fixed to one side). Compared to the CI, APRI at the jointing stage for 10 days or during the jointing and tasselling stages for 49 days reduced water consumption by 10.6-12.9 and 31.7-32.4%, respectively, but did not reduce total dry mass accumulation significantly, thus increased canopy WUE by 10.4-13.6 and 41.2-41.8%, respectively. FPRI reduced the total dry mass significantly even though it also improved canopy WUE. APRI had slight effect on the leaf relative water content (RWC), chlorophyll (Chl), carotenoid (CAR), proline (Pro) and malondialdehyde (MDA) contents and superoxide dismutase (SOD) and peroxidase (POD) activities from jointing to tasselling stages but recovery to the levels of CI was rapid after receiving full watering. In comparison, FPRI treatment significantly reduced leaf RWC, Chl and CAR contents and SOD and POD activities and increased the Pro and MAD contents. After receiving full watering, the above-mentioned physiological indexes in FPRI could not recover fully to the levels of CI. High fertilization treatment only increased leaf Chl content significantly and contributed little to the total dry mass accumulation. Our result suggests that APRI can make plants use water and nutrients more efficiently with better drought tolerance.  相似文献   

4.
局部灌水方式下玉米根系对干旱及复水的生理生化响应   总被引:1,自引:0,他引:1  
采用分根装置,在均匀灌溉、固定灌溉和交替灌溉3种方式下,分区测定轻、中、重度3种胁迫条件下以及复水后玉米根系的丙二醛MDA含量、过氧化物酶POD和超氧化物歧化酶SOD活性。不同于以往的分根交替灌溉研究的内容,重点研究在局部灌水条件下玉米根系对干旱及复水的生理生化响应。研究结果表明,无论干旱还是复水后,固定灌水条件下,作物根系受活性氧伤害较之均匀灌水增大,而交替灌水使作物受活性氧的危害减小,这对交替灌溉的节水效应的进一步研究具有重要的意义。  相似文献   

5.
为探讨玉米节水灌溉方式的理论依据,通过桶栽试验研究了分根区交替灌溉(APRI)方式下,不同生育期水分亏缺对夏玉米生长、干物质累积质量、籽粒产量、总耗水量和水分利用效率(WUE)的影响.结果表明:常规灌溉(CI)方式下,苗期和全生育期水分亏缺的株高、叶面积和总耗水量均显著低于充分灌溉,但苗期水分亏缺可以提高WUE.相同的灌水方式和亏缺时期,中度亏缺的根干物质质量、地上和总干物质质量以及籽粒产量均显著高于重度亏缺;相同的灌水方式和灌水水平,苗期水分亏缺的株高、叶面积、根干物质质量、地上和总干物质质量以及总耗水量均显著的低于灌浆期,但籽粒产量和WUE均显著高于灌浆期;相同的灌水水平和亏缺时期,APRI的根干物质质量和总耗水量均显著低于CI的,但APRI的籽粒产量和水分利用效率均显著高于CI的.本研究结果表明,APRI在苗期进行中度亏缺有利于营养生长的调控,并达到节水高产,提高WUE的目的.  相似文献   

6.
两种施肥水平下根区局部灌溉对甜玉米水分利用的效应   总被引:10,自引:0,他引:10  
根区局部灌溉如分根区交替灌溉和部分根干燥灌溉是新的高效节水技术。研究了两种施肥水平条件下根区局部灌溉对甜玉米叶片光合、叶面积、干物质积累和水分利用的影响。结果发现,与常规均匀灌水相比,根区局部灌溉高、低肥处理的蒸腾速率分别降低19.01%和17.50%.光合速率分别提高8.88%和18.34%,叶片水分利用效率分别提高34.69%和43.45%。随着甜玉米生育期的推进.各灌溉处理间的叶面积差异逐渐缩小;单株干物重分别下降15.14%和24.38%,蒸散量(即作物耗水量)分别下降31.28%和29.58%;冠层水分利用效率分别提高23.48%和7.40%。这表明较高肥条件下根区局部灌溉的冠层水分利用效率提高较多,因而根区局部灌溉技术的节水效应要与合理施肥相结合才能发挥更好的作用。  相似文献   

7.
不同灌溉模式下草莓对水分胁迫的生理响应研究   总被引:1,自引:0,他引:1  
【目的】探究不同灌溉模式下草莓对水分胁迫的生理响应,确定草莓节水灌溉适宜模式。【方法】采用3种灌溉模式:充分灌溉(FI,CK)、分根灌溉(PRI)和亏缺灌溉(DI),PRI和DI模式下设置3个水分胁迫水平:轻度(LS)、中度(MS)和重度(SS),研究了不同灌溉模式下水分胁迫对草莓叶片叶绿素量、光合与蒸腾速率、渗透调节物质和丙二醛(MDA)量的影响。【结果】DI与PRI灌溉模式下,草莓叶片叶绿素a(Chl a)和叶绿素b(Chl b)量都显著低于CK,且随着基质水分胁迫程度的加剧而呈下降趋势;与DI模式相比,PRI模式下草莓叶片叶绿素量相对较高;随着水分胁迫程度的增强,DI和PRI草莓叶片蒸腾速率下降幅度明显,分别为35.2%~44.7%和21.0%~47.0%,而净光合速率变化不明显;MS和SS水平下DI和PRI的水分利用效率(WUE)分别较CK高101.8%~117.9%和68.8%~149.8%;不同水分胁迫水平下,PRI草莓叶片脯氨酸(PRO)累积量显著高于CK(19.0%~26.0%),且在LS和MS水平下显著高于DI;PRI草莓叶片MDA累积量仅在SS水平下显著高于CK(30.2%),而DI草莓叶片MDA累积量在MS和SS水平下显著高于CK,分别为34.4%和56.4%。【结论】PRI模式草莓比DI模式具有更强的渗透调节能力和耐旱性,PRI-MS组合为草莓节水灌溉适宜模式。  相似文献   

8.
再生水根区交替灌溉对马铃薯中重金属累积和分布的影响   总被引:3,自引:0,他引:3  
通过田间小区试验,研究了再生水根区交替灌溉对马铃薯重金属累积及分布的影响.结果表明,不同的灌溉条件处理下,4种重金属在马铃薯内积累趋势表现为:Zn>Cu>Pb>Cd;Cd在马铃薯内的分布趋势为茎>叶、根>果实;Pb在马铃薯内的分布趋势为叶>根>茎、果实;Cu在马铃薯内的分布趋势为茎>叶>根>果实;Zn在马铃薯内的分布趋...  相似文献   

9.
通过盆栽试验研究了在2种施肥条件下,不同生育时期分根区交替灌溉(APRI)对烤烟生长、干物质积累与分配以及烟叶氮(N)、钾(K)含量的影响。结果表明,伸根期和成熟期APRI不但对烤烟植株有明显的增高作用,而且能显著提高烟叶中N、K含量。与常规灌溉(CI)相比,低肥时伸根期和成熟期APRI的株高、烟叶N含量、K含量分别提高5.19%、9.16%、6.42%和14.02%、28.03%、28.13%;高肥时分别提高9.11%、23.71%、18.75%和16.55%、38.57%、50.84%。可见在较高肥条件下,烤烟伸根期和成熟期进行分根区交替灌溉是烟叶适产优质生产中一种较好的水分调控方式。  相似文献   

10.
Carbon (C) sequestration through irrigation management is a potential strategy to reduce C emissions from agriculture. Two experiments (Exps. I and II) were conducted to investigate the effects of different irrigation strategies on C retention in the soil-plant system in order to evaluate their environmental impacts. Tomato plants (Lycopersicon esculentum L., var. Cedrico) were grown in split-root pots in a climate-controlled glasshouse and were subjected to full irrigation (FI), deficit irrigation (DI) and alternate partial root-zone irrigation (PRI) at early fruiting stage. In Exp. I, each plant received 2.0 g chemical nitrogen (N), while in Exp. II, 1.6 g chemical N and maize residue containing 0.4 g organic N were applied into the pot. The results showed that, in both experiments, the concentration and the amount of total C in the soil were lower in FI and PRI as compared to DI, presumably due to a greater microbial activity in the two treatments; particularly the PRI induced drying and wetting cycles of the soils may cause an increase of microbial activities and respiration rate, which could lead to more C losses from the soil. However, in both experiments the total C concentration in the PRI plants was the highest as compared with the FI and DI plants, and this was seemingly due to improved plant N nutrition under the PRI treatment. Consequently, the total amount of C retained in the soil-plant system was highest in the FI and was similar, but lower, for the PRI and DI. The different N input in the two experiments might have affected the C retention in the soil and in the plant biomass. Nevertheless, with a same degree of water saving, PRI was superior to DI in terms of enhancing C concentration in the plant biomass, which might have contributed to a better fruit quality in tomatoes as reported by [Zegbe et al., 2004] and [Zegbe et al., 2006].  相似文献   

11.
This study was undertaken to investigate genotypic differences of five maize cultivars in grain yield response to two different modes of deficit irrigation, conventional deficit irrigation and partial root zone irrigation. Three irrigation treatments were implemented: (1) FULL irrigation, the control treatment where plant water requirement, 100% Class-A pan evaporation, was fully met and the furrows on both sides of the plant rows were irrigated; (2) partial root zone irrigation (PRI), 35% deficit irrigation, compared to FULL treatment, was applied in every other furrow thus irrigating only one side of the plant rows. The furrows irrigated were alternated every irrigation; (3) conventional deficit irrigation (CDI), the same amount of water as PRI was applied in furrows on both sides of the plant rows, similar to FULL irrigation treatment. Five maize cultivars (P.31.G.98, P.3394, Rx:9292, Tector and Tietar) showing extreme growth response to water stress were selected out of ten cultivars tested with earlier completed greenhouse-pot experiment. A split-plot experimental design, comprising three irrigation treatments and five maize cultivars with four replicates, was used during two years of work, in 2005 and 2006. Total of nine irrigations, with one-week irrigation interval, were annually applied using a drip-irrigation system. Soil water status was monitored using a neutron moisture gauge, in addition to measuring leaf water potential and above-ground biomass production throughout the growing season. Grain yield and other yield attributes were measured at harvest as well as assessing differences in plant root distributions. Decrease in grain yield and harvest index of the tested cultivars, compared to FULL treatment, was proportionally less under PRI than CDI. Whether or not a significant yield advantage can be obtained under PRI compared to CDI showed significant (P < 0.05) genotypic variability. Tector and Tietar among the tested cultivars of maize showed significantly higher grain yield (P < 0.05) under PRI than CDI. The yield advantage of the genotypes (P.3394 and Tector) under PRI compared to CDI seems related to their enhanced root biomass developed under PRI.  相似文献   

12.
根系分区灌水(Partial Rootzone Irrigation,PRI)是一种新型的地面节水灌溉技术,节水潜力巨大.通过分根盆栽苹果不同根系灌水体积试验研究认为,当减少灌水根系体积后,苹果叶片净光合速率(Pn)、蒸腾速率(TT)均降低,但TT降低程度大于Pn,故单叶水分利用效率(WUE)明显提高;同时当减少灌水根系体积后植株新梢和叶片生长速率降低,新梢停长率增加;经过一个生长季的处理发现,减少灌水根系体积增大了植株的中短枝比例,降低了长度大于60 cm旺枝的比例,苹果来年的开花株率、单株花序总数、坐果率均增加.  相似文献   

13.
Water shortage is the major bottleneck that limits sustainable development of agriculture in north China. Crop physiological water-saving irrigation methods such as temporal (regulated deficit irrigation) and spatial (partial root zone irrigation) deficit irrigation have been tested with much improved crop water use efficiency (WUE) without significant yield reduction. Field experiments were conducted to investigate the effect of (1) spatial deficit irrigation on spring maize in arid Inland River Basin of northwest China during 1997–2000; (2) temporal deficit irrigation on winter wheat in semi-arid Haihe River Basin during 2003–2007 and (3) temporal deficit irrigation on winter wheat and summer maize in Yellow River Basin during 2006–2007. Results showed that alternate furrow irrigation (AFI) maintained similar photosynthetic rate (Pn) but reduced transpiration rate (Tr), and thus increased leaf WUE of maize. It also showed that the improved WUE might only be gained for AFI under less water amount per irrigation. The feasible irrigation cycle is 7d in the extremely arid condition in Inner River Basin of northwest China and less water amount with more irrigation frequency is better for both grain yield and WUE in semi-arid Haihe River Basin of north China. Field experiment in Yellow River Basin of north China also suggests that mild water deficit at early seedling stage is beneficial for grain yield and WUE of summer maize, and the deficit timing and severity should be modulated according to the drought tolerance of different crop varieties. The economical evapotranspiration for winter wheat in Haihe River Basin, summer maize in Yellow River Basin of north China and spring maize in Inland River Basin of northwest China are 420.0 mm, 432.5 mm and 450.0 mm respectively. Our study in the three regions in recent decade also showed that AFI should be a useful water-saving irrigation method for wide-spaced cereals in arid region, but mild water deficit in earlier stage might be a practical irrigation strategy for close-planting cereals. Application of such temporal and spatial deficit irrigation in field-grown crops has greater potential in saving water, maintaining economic yield and improving WUE.  相似文献   

14.
为了研究玉米补充灌溉的最佳时间和增产效果,采用田间微区试验方法,研究了不同生育时期补充灌溉对玉米叶片生理特性(叶绿素、SOD、POD、MDA、可溶性蛋白)、根系生长发育及产量的影响。研究结果表明:1试验区最佳灌溉时间为玉米生育后期;2在灌浆期补灌一次即能起到显著的增产效果;3全生育期灌溉可增产6.36%,但灌溉水利用率较低。得出结论,最佳补充灌溉方式为抽雄和灌浆期各补充灌溉一次。  相似文献   

15.
This study compares the effects of different irrigation regimes on seed yield and oil yield quality and water productivity of sprinkler and drip irrigated sunflower (Helianthus annus L.) on silty-clay-loam soils in 2006 and 2007 in the Mediterranean region of Turkey. In sprinkler irrigation a line-source system was used in order to create gradually varying irrigation levels. Irrigation regimes consisted of full irrigation (I1) and three deficit irrigation treatments (I2, I3 and I4), and rain-fed treatment (I5). In the drip system, irrigation regimes included full irrigation (FI-100), three deficit irrigation treatments (DI-25, DI-50, DI-75), partial root zone drying (PRD-50) and rain-fed treatment (RF). Irrigations were scheduled at weekly intervals both in sprinkler and drip irrigation, based on soil water depletion within a 0.90 m root zone in FI-100 and I1 plots. Irrigation treatments influenced significantly (P < 0.01) sunflower seed and oil yields, and oil quality both with sprinkler and drip systems. Seed yields decreased with increasing water stress levels under drip and sprinkler irrigation in both experimental years. Seed yield response to irrigation varied considerably due to differences in soil water contents and spring rainfall distribution in the experimental years. Although PRD-50 received about 36% less irrigation water as compared to FI-100, sunflower yield was reduced by an average of 15%. PRD-50 produced greater seed and oil yields than DI-50 in the drip irrigation system. Yield reduction was mainly due to less number of seeds per head and lower seed mass. Soil water deficits significantly reduced crop evapotranspiration (ET), which mainly depends on irrigation amounts. Significant linear relationships (R2 = 0.96) between ET and oil yield (Y) were obtained in each season. The seed yield response factors (kyseed) were 1.24 and 0.86 for the sprinkler and 1.19 and 1.06 for the drip system in 2006 and 2007, respectively. The oil yield response factor (kyoil) for sunflower was found to be 1.08 and 1.49 for both growing seasons for the sprinkler and 1.36 and 1.25 for the drip systems, respectively. Oil content decreased with decreasing irrigation amount. Consistently greater values of oil content were obtained from the full irrigation treatment plots. The saturated (palmitic and stearic acid) and unsaturated (oleic and linoleic acid) fatty acid contents were significantly affected by water stress. Water stress caused an increase in oleic acid with a decrease in linoleic acid contents. The palmitic and stearic acid concentrations decreased under drought conditions. Water productivity (WP) values were significantly affected by irrigation amounts and ranged from 0.40 to 0.71 kg m−3 in 2006, and from 0.69 to 0.91 kg m−3 in 2007. The PRD-50 treatment resulted in the greatest WP (1.0 kg m−3) and irrigation water productivity (IWP) (1.4 kg m−3) in both growing seasons. The results revealed that under water scarcity situation, PRD-50 in drip and I2 in sprinkler system provide acceptable irrigation strategies to increase sunflower yield and quality.  相似文献   

16.
交替隔沟灌溉下玉米根长密度分布及水分利用   总被引:1,自引:0,他引:1  
为了探明交替隔沟灌溉和常规沟灌条件下玉米根长密度的分布规律及水分利用效率(WUE),研究了2种沟灌方式下玉米根长密度的空间分布和水分利用情况。结果表明,玉米根长密度在根区水平向和垂向呈指数分布。交替隔沟灌溉促进了玉米根系的水平向伸展和下扎深度,常规沟灌在垄位的大密度根系分布集中在20~60cm。交替隔沟灌溉增大了根系下扎深度,有利于根系吸收深层土壤水分,在非充分供水条件下提高了作物的水分利用效率,交替隔沟灌溉水分利用效率较常规沟灌提高5%以上。  相似文献   

17.
通过日光温室试验,研究磁化水灌溉对番茄幼苗期和开花期生长性状与生理特性的影响,为磁化水灌溉在蔬菜生产中的应用提供依据。试验设置2个处理:磁化水灌溉、普通水灌溉(CK)。试验结果表明:与普通水灌溉相比,磁化水灌溉处理的番茄植株株高增长15%、茎粗增长8.2%;磁化水灌溉处理后的幼苗期番茄叶片SOD、POD和CAT活性分别增长22%、44.4%、18.4%,开花期番茄叶片SOD、POD、CAT活性分别增长15.8%、21.5%、48.3%;磁化水灌溉处理后的开花期番茄根系活力增长56%。磁化水灌溉能有效提升番茄生长性能、酶活性和根系活力,可为绿色、无公害蔬菜生产技术的应用提供参考。   相似文献   

18.
【目的】寻找适宜的低压滴灌节水模式。【方法】以8 a生"不知火"柑橘为试材,2017—2018年在柑橘抽梢开花期(Ⅰ)、幼果期(Ⅱ)、果实膨大期(Ⅲ)和果实成熟期(Ⅳ)各设置4个亏水处理,即轻度亏水(LD)、中度亏水(MD1)、偏重度亏水(MD2)和重度亏水(SD)处理,并设置1个对照(CK,充分灌水)。探究了低压滴灌不同生育期水分亏缺对柑橘叶片生理特性的影响。【结果】Ⅰ期MD1和LD处理对H_2O_2量、GSH量和PRO量并没有显著影响,但可以显著提高NR活性和产量,分别较CK提高20.9%和21.7%以及5.1%和3.1%;在Ⅱ期进行MD1和LD处理对灌水后的H_2O_2量和GSH量以及PRO量、NR活性和产量都没有显著影响,但可以显著提高作物水分利用效率;在Ⅲ期进行水分亏缺会导致H_2O_2量和GSH量以及PRO量上升,以及NR活性和产量的下降;在Ⅳ期进行LD处理的H_2O_2、GSH、PRO、NR活性和产量均与CK处理无显著差异,但可以提高水分利用效率。【结论】Ⅰ期中度亏水处理(Ⅰ-MD1),Ⅱ期轻度亏水处理(Ⅱ-LD),Ⅲ期充分灌溉,Ⅳ期轻度亏水处理(Ⅳ-LD)在维持柑橘叶片生理活性的同时,可以获得最高产量和较高的水分利用效率,是适合低压滴灌柑橘的灌溉方式。  相似文献   

19.
亏缺灌溉对棉花生长发育和产量的影响   总被引:2,自引:0,他引:2  
1998~ 1 999年 ,研究了滴灌和地面灌二种灌水方式下 ,亏缺灌溉对棉花生长发育和产量的影响。试验结果表明 ,在亏缺灌溉条件下 ,花铃期干旱对棉花生长发育和产量影响最大。但随着亏缺灌溉程度由重到轻 ,即随着供水量的增加 ,棉花生长发育趋向良好 ,总耗水量和产量相应增加 ,二者均呈现出良好的直线关系 ;与地面灌相比 ,因滴灌是一种小定额灌溉 ,供水时段、水量分配较为均匀 ,又直接把水送至棉花根部 ,故灌水前后土壤湿度变幅小 ,棉花株高、果枝、蕾、铃的生长发育和叶面积系数乃至产量均优于地面灌方式  相似文献   

20.
灌水方式与施钙水平对盆栽番茄产量和品质的影响   总被引:1,自引:0,他引:1  
分别在喷施氯化钙溶液质量分数为0%、0.3%、0.5%、0.8%、1.0%条件下进行3种不同灌水方式即常规全根灌溉(CI)、分根区固定灌溉(PRD)和分根区交替灌溉(APRI)的盆栽试验,测定番茄产量和品质.结果表明,分根区交替灌溉(APRI)番茄植株长势、果实产量和品质均显著优于分根区固定灌溉(PRD)和常规全根灌溉...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号