首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
为了探索中国大蒜种质个体的SSR位点的分布情况,为品种鉴定、保存及遗传改良提供分子生物学依据,利用6对SSR引物对40个大蒜(Allium sativumL.)品种进行聚类分析、主成分分析及遗传多样性评价。共检测到21个多态性位点,平均每对引物可扩增出约3.5条多态性片段,多态性百分率为56.76%;SSR引物组合平均有效等位基因数、Nei基因多样度和Shannon信息指数分别为1.5551、0.3414和0.5188。聚类分析显示,6对SSR引物可把40份大蒜种质资源从0.59相似系数水平上3个类群。第一类群包含28份种质,在相似系数为0.73的水平上进一步又被分成了3个亚类;第二亚类仅包含2份种质;第三亚类包含10份种质,在0.68的相似系数水平上分成了2个亚类。主成分分析和UPGMA的结果基本一致。不同地理来源的大蒜种质的Shannon-Weaver多样性指数的变幅为0.0576~0.4179,说明大蒜种质遗传多样性丰富。本研究利用SSR分子标记技术较准确地解析大蒜不同材料间的亲缘关系及遗传多样性,为中国大蒜SSR分子标记提供基础资料。  相似文献   

2.
为了解节水抗旱稻品种的多样性,利用SSR分子标记技术对24份节水抗旱稻和2份普通水稻品种进行DNA指纹图谱构建和遗传多样性分析。结果表明,24对引物共扩增出96个多态性片段,平均每对引物可检测到4个等位基因,每个SSR位点可以检测到2~6个等位基因。引物多态信息含量(PIC)的变化范围为0.36~0.75,平均值为0.58。指纹图谱显示至少可以利用RM71、RM72、RM336、RM337、RM1195和RM5414这6个核心标记的不同组合鉴别区分26份供试材料。聚类分析结果表明,26份材料间遗传相似系数为0.54~0.98,在遗传相似系数0.65处可以将供试材料分为籼、粳两类,较好地反映了供试材料的亲缘关系。本研究结果为节水抗旱稻新品种保护、真伪鉴定及亲本选配提供了参考。  相似文献   

3.
山东省46个花生品种SSR指纹图谱构建与遗传多样性分析   总被引:2,自引:0,他引:2  
为从分子水平上快速鉴别花生品种和选配优良杂交组合,以山东省审定的46个花生品种为材料,利用微卫星(SSR)标记进行DNA指纹图谱的构建和遗传多样性分析。从788对SSR引物中筛选出50对多态性高、稳定性好、谱带清晰的引物,共检测到175个等位位点,其中122个为多态性位点,多态性比率达70.52%;每对SSR引物扩增出的等位位点数为2~7个,多态性信息量变化范围为0.6753~0.8412,平均为0.823。此外,利用14对引物可将46份材料完全区分开。聚类分析表明,在相似系数0.77处,所有供试材料聚为一类,在相似系数0.80处,仍有76%的材料聚在一起。利用SSR标记构建的指纹图谱可为花生种质资源管理及育种实践提供依据。  相似文献   

4.
SSR标记的彩色马铃薯遗传多样性分析及指纹图谱构建   总被引:1,自引:0,他引:1  
彩色马铃薯(指块茎的皮或肉为红、蓝、紫、橙色等)近年来日益为育种工作者所关注,很多彩色马铃薯品种(系)从形态学上难以鉴定是否为同一基因型,给育种工作带来诸多不便。本研究利用SSR标记对50份彩色马铃薯(Solanum tuberosumL.)材料进行了遗传多样性分析及指纹图谱构建。研究筛选出56对马铃薯SSR引物,对50份材料的基因组DNA进行PCR扩增,共检测出236个等位位点,其中多态性位点230个,多态性比率达97.46%。分析显示,基因型间遗传相似性系数在0.50~1.00之间。UPGMA聚类分析表明,在相似系数0.63处可将全部材料分为3大类。利用5对核心引物构建了50份供试材料的指纹图谱,并证明其属于44个基因型的,为彩色马铃薯资源鉴定和利用提供了依据。  相似文献   

5.
为探明山西芝麻种质资源的遗传特性,本研究利用30对简单重复序列标记(SSR)对71份山西芝麻种质资源进行遗传多样性分析及群体结构分析。结果表明,30对SSR标记共检测到144个等位基因位点,平均每个SSR标记4.800个等位基因;有效等位基因数在1.058~5.149之间,平均2.805个;Shannon指数变幅为0.128~1.813,平均为1.096;Nei's遗传多样性指数变幅为0.055~0.806,平均为0.558;多态性信息含量变幅为0.053~0.783,平均为0.515。基于SSR标记对参试材料进行聚类分析,遗传相似系数为0.21~0.67,在遗传相似系数0.27处将参试材料分为6个类群;基于SSR标记对参试材料进行群体结构分析,将参试材料划分为5个组群。综上所述,山西芝麻种质资源间遗传差异相对较高,具有丰富的遗传多样性,在今后芝麻种质资源创制利用中,加大山西芝麻种质资源的开发与利用,可为芝麻品种遗传改良和优异基因发掘奠定良好的基础。  相似文献   

6.
为探讨大白菜基因组序列中SSR位点的分布规律并开发SSR引物,利用SSRHunter软件对大白菜A10(16899818~17299817)的DNA序列进行简单序列重复(SSR)位点查找,共得到394个SSRs,平均每1.02kb出现1个SSR。二核苷酸和三核苷酸重复是最主要的SSR类型,分别占79.44%和18.78%。为了提高SSR标记开发的准确性和通用性,对检索得到的含SSR位点的序列进行了同源比对,选取符合条件的15条SSR序列并设计引物;依据Blast过程中发现的在SSR位点不存在差异而在其侧翼序列中存在插入/缺失(InDel)差异的序列,设计了19条InDel引物。用34对SSR及InDel引物在6个大白菜(Brassica rapassp.pekinesis)材料中进行多态性研究,发现28对引物能扩增出理想的PCR产物,有效扩增率为82.35%,其中27对引物具有多态性,多态性比率为79.41%。为验证SSR引物的真实性,随机对4对SSR引物的部分白菜扩增片段进行了测序,发现100%的片段具有相应的SSR位点。28对SSR和InDel引物在甘蓝(B.oleracea)、油菜(B.napus)和萝卜(Raphanus sativus)品种的有效扩增率分别为85.71%、100%和77.78%,说明新开发的SSR和InDel标记具有较好的多态性和通用性。利用6对引物分析了48份十字花科种质的遗传多样性,结果表明48份材料被明显地区分成白菜和甘蓝组、萝卜组、油菜组3大类群,与传统分类一致。大白菜SSR和InDel标记的开发对于十字花科种质亲缘关系及遗传多样性分析具有重要的应用价值。  相似文献   

7.
本研究对50条甘蓝SSR引物在其近缘种青花菜中的通用性进行了分析,结果表明,38对引物在青花菜上可有效扩增,扩增产物分子量在100~1500bp,有效扩增比率为76%,其中18%具有较好的多态性,揭示了两种作物基因组间存在一定的相似性。同时利用获得的多态性较好的9对引物对青花菜进行基因型鉴定和遗传多样性分析,20份青花菜基因型中共检测到51个基因位点,平均每个引物组合可扩增出5.67个条带,多态性为66.7%。多引物组合可鉴别出所有青花菜基因型。聚类分析结果表明同一来源的基因型间具有相近的遗传基础,且聚类与熟性具有一定的相关性。本研究为今后青花菜种质资源的收集、利用及分子标记辅助育种提供了新的SSR标记和参考。  相似文献   

8.
为深入了解番茄种质资源的遗传多样性,运用竞争性等位基因特异性PCR(KASP)技术,利用前期筛选出的60对多态性较高的单核苷酸多态性标记(SNP),对收集的504份番茄种质资源进行遗传多样性分析、聚类分析、主成分分析及群体结构分析。结果表明,60个SNP分子标记共检测到181个等位基因,基因多样性平均值为0.450,期望杂合率(He)平均值为0.069,多态性信息值(PIC)变化范围为0.171~0.583,平均值为0.381。在遗传距离为0.36时,504份番茄材料被划分为7个类群,各材料间的平均遗传距离为0.62;根据主成分分析结果将群体分为3个类群;基于SNP标记对参试材料进行群体结构分析,在K=3时,504份番茄种质资源被划分为3类。本研究筛选出的60对SNP标记的多态性为中度偏高,番茄种质资源遗传多样性较丰富,可为后续宁夏地区番茄的核心种质构建及种质资源的有效利用提供理论依据。  相似文献   

9.
SSR和SRAP标记研究油菜杂交种骨干亲本的遗传多样性   总被引:9,自引:2,他引:7  
用SSR和SRAP两种分子标记方法研究51份甘蓝型油菜杂交种亲本系的遗传多样性,并对两种分子标记研究结果进行比较。结果发现,在51份材料中,45对SSR引物共扩增出194条多态性条带,平均每对引物为4.3条,25对SRAP引物共扩增出197条多态性条带,平均每对引物为7.9条。UPGMA聚类分析表明,SSR和SRAP标记都可将51份亲本材料划分为五大类群,本所选育的玻里马细胞质雄性不育系(Polima CMS)的主要保持系和恢复系都聚在同一类群的不同亚群中。根据系谱资料分析发现,SRAP标记划分的类群与系谱资料更为接近,SRAP标记更适用于遗传关系较近材料的遗传多样性分析。SRAP标记揭示的亲本间遗传距离要大于SSR标记揭示的遗传距离。两种不同标记方法揭示出油菜亲本遗传多样性的差异主要是由不同的标记方法揭示的标记位点等位基因变异数不同造成的。  相似文献   

10.
由于梨(Pyrus)本身的自交不亲和特性导致不同地区品种间基因存在较大差异。为鉴定品种资源的多样性,探索重要的遗传特性,本研究利用覆盖梨全基因组17个连锁群中的134个核心简单重复序列(simple sequence repeat,SSR)标记对45份西洋梨(Pyrus communis L.)品种资源进行遗传多样性和群体结构分析,对不同来源的SSR标记进行多态性分析。结果表明,来自梨基因组的SSR标记多态性更高,更适合梨的遗传多样性研究;所有SSR引物共检测到673个等位基因,每个SSR位点平均扩增5.02个;45份西洋梨品种的观测等位基因数(observed number of alleles,Na)、有效等位基因数(effective number of alleles,Ne)、观测杂合度(observed heterozygosity,Ho)、期望杂合度(expected heterozygosity,He)以及Shannon信息指数(Shannon’s information index,I)平均值分别为5.02、3.84、0.73、0.72和1.42;遗传相似系数和聚类分析结果表明,45份西洋梨具有较高的遗传多样性,且品种的演化趋势较均匀,欧洲和美洲的品种没有因地理位置不同而产生太大差异,而是不同来源地的品种相互交织在一起,更加体现了西洋梨之间广泛的基因交流;同时推测未知来源地的库介梨、费莱茵和地里拜瑞可能来源于西欧地区;群体结构分析表明,当K=2时,西洋梨分为Pop1和Pop2两大类群,利布林、波12、拉达那、地里拜瑞、红安久和孔德梨体现了较高的杂合性;不同品种的指纹图谱分析结果表明,至少需要两个以上的引物组合才能够将不同品种区分开。研究结果为全面评价西洋梨的遗传背景和特征、准确鉴定不同品种资源提供了科学依据和高效标记,为今后西洋梨种质资源的保护利用以及遗传育种提供基础资料。  相似文献   

11.
我国部分冬小麦新品种(系)SSR标记遗传差异的研究   总被引:31,自引:0,他引:31  
本研究利用53对SSR引物对全田1999-2000年北方冬麦区及黄淮冬麦区观察圃中选出的48个新品种(系)进行遗传差异研究,共检测出58个SSR位点上的367个等位变异,平均每个位点有6.33个等位变异,其中B组每个位点的等位变异最多,这表明B基因组化更快,分化更大。48个品种(系)在全基因组及A、B、D基因组聚类结果表明这些品种的相似系数聚类的范围较小,为0.75-0.98。全基因组聚类结果与品种的系谱来源及育成地区相吻合。研究结果表明我国冬小麦品种的种质基础相对较狭窄。加强不同来源种质的利用和特异亲本类型的培育对我国冬小麦遗传改良非常重要,利用5个多态性高的SSR标记就可以将这48个小麦新品种(系)区分开,每个品种(系)都有各自独特的指纹图谱。  相似文献   

12.
The aim of this study was to identify the group of highly polymorphic microsatellite markers for the identification of six pear cultivars (P. communis) and two individuals of wild pear (P. pyraster). From among 40 tested SSR markers, 19 were selected to profile genetic diversity in pear genotypes due to high polymorphisms. These markers showed high heterozygosity levels (0.5–1) and, on average, 6.4 alleles per marker were found. The set of microsatellite markers employed in this study demonstrated usefulness of microsatellite markers for the identification of pear genotypes. The examined wild forms were represented in this study by only two individuals of P. pyraster. It can be assumed that these forms were distinctly different from the cultivated pear cultivars.  相似文献   

13.
为了研究南瓜栽培品种的遗传多样性,本研究利用43个简单序列重复(SSR)分子标记,对35份南瓜育成品种及地方品种进行了分子标记分析,并调查了农艺性状。结果表明,43个SSR标记均能扩增出多态性条带,共检测到155个等位基因,平均每个标记能检测到3.6个等位基因,多态性信息含量(PIC)为0.130 8~0.775 4,平均值为0.487 2。利用非加权组平均法(UPGMA)进行聚类分析,结果表明35份材料可分为三大类,分别与中国南瓜、印度南瓜和美洲南瓜三个种吻合,且印度南瓜与美洲南瓜之间的亲缘关系较近。农艺性状调查结果表明,不同栽培种之间以及同一栽培种内的不同品种之间,都发现有农艺性状差别明显的情况。本研究为南瓜种质资源的保护、品种指纹图谱的建立及分子育种提供了理论依据。  相似文献   

14.
Brassica oleracea L. includes various types of important vegetables that show extremely diverse phenotypes. To elucidate the genetic diversity and relationships among commercial cultivars derived by different companies throughout the world, we characterized the diversity and genetic structure of 91 commercial B. oleracea cultivars belonging to six varietal groups, including cabbage, broccoli, cauliflower, kohlrabi, kale and kai-lan. We used 69 polymorphic microsatellite markers showing a total of 359 alleles with an average number of 5.20 alleles per locus. Polymorphism information content (PIC) values ranged from 0.06 to 0.73, with an average of 0.40. Among the six varietal groups, kohlrabi cultivars exhibited the highest heterozygosity level, whereas kale cultivars showed the lowest. Based on genetic similarity values, an UPGMA clustering dendrogram and a two-dimensional scale diagram (PCoA) were generated to analyze genetic diversity. The cultivars were clearly separated into six different clusters with a tendency to cluster into varietal groups. Model-based structure analysis revealed six genetic groups, in which cabbage cultivars were divided into two subgroups that were differentiated by their head shape, whereas cauliflower and kai-lan cultivars clustered together into a single group. Furthermore, we identified 18 SSR markers showing 27 unique alleles specific to only one cultivar that can be used to discriminate 22 cultivars from the others. Our phylogenetic and population structure analysis presents new insights into the genetic structure and relationships among 91 B. oleracea cultivars and provides valuable information for breeding of B. oleracea species. In addition, we demonstrate the utility of SSR markers as a powerful tool for discriminating between the cultivars. The SSR markers described herein will also be helpful for Distinctness, Uniformity and Stability (DUS) test of new cultivars.  相似文献   

15.
In the present study, analyses of SSR molecular markers were performed to investigate the genetic diversity of 133 tuber mustard cultivars. Eighty-one pairs of SSR primers from a total of 600 in Brassica produced stable amplified bands. In addition, 810 bands were detected among the cultivars, and 724 of those were polymorphic (89.38 %). The average number of bands per locus was 10.0 with a range from 5 to 16. Shannon’s information index for each SSR locus varied from 0.52 to 3.72, with an average of 2.74. The coefficients of genetic similarity in the SSR marker patterns among the 133 cultivars ranged from 0.77 to 0.91, with an average of 0.85. The cluster analysis showed that the cultivars could be classified into six clusters when the genetic similarity was 0.83, with 90.23 % of the cultivars included in Clusters 5 and 6. Principal component analysis was carried based on the SSR data. The results showed that the first three principal components could explain the genetic variation with 85.47, 0.67, and 0.61 %, and the 133 cultivars could be divided into six clusters according to the nearest phylogenetic relationship. It was indicated that the similarity was high and the genetic diversity was narrow among the 133 mustard tuber cultivars. 360 individuals from 24 cultivars were analyzed to reveal the genetic structure and genetic diversity within cultivars. A total of 925 alleles were detected in the 24 cultivars. Estimates of the mean number of alleles ‘A’, the effective allelic number ‘Ae’, the observed heterozygosity ‘Ho’, and expected heterozygosity ‘He’ were 6.0, 3.6, 0.64, and 0.37, respectively. An obvious genetic deviation from Hardy–Weinberg expectation was observed both among and within cultivars and a considerable genetic variation was revealed within rather than among cultivars. It is necessary to broaden the genetic basis of the breeding germplasm in tuber mustard. Based on their geographical distributions, the tuber mustard cultivars in this study can be divided into up-Yangtze river, mid-Yangtze river, and down-Yangtze river groups. Genetic diversity was highest in mid-Yangtze river group, followed by up-Yangtze river group, and then down-Yangtze river group. It was presumed that the origin center or genetic diversity center of tuber mustard was mid-Yangtze river, and the crop was transmitted along the Yangtze river in both directions.  相似文献   

16.
109 Pyrus accessions including 92 local Chinese accessions of P. bretschneideri were identified genetically using nine microsatellite loci developed from apple and pear. The nine SSR loci revealed 129 alleles in 109 pear accessions and 114 alleles in 92 Chinese white pears. Among the 92 local Chinese accessions of P. bretschneideri, 70 could be differentiated successfully except for 10 sets of synonymous or mutants. For the 92 accessions, the number of putative alleles per locus ranged from seven to 18, with an average of 12.67; the average values of observed heterozygosity and Shannon’s Information index were 0.60 and 1.85, respectively. A phenogram based on the SSR (simple sequence repeat) genotypes was obtained. The 109 accessions clustered into 11 groups based on geographical origin. The European pears and the Asian pears did not form independent two groups, but three P. communis cultivars grouped together independently. The Japanese P. pyrifolia cultivars mingled together with the Chinese P. bretschneideri cultivars, but four P. ussuriensis cultivars except for one (Jianbali) grouped together independently. The results indicated that the relationship of P. bretschneideri cultivars and P. pyrifolia cultivars was much closer than others.  相似文献   

17.
Iwateyamanashi (Pyrus ussuriensis var. aromatica) is one of the Pyrus species which grows wild in Japan. The number of Iwateyamanashi trees has been decreasing, so conservation and evaluation is urgently needed. Over 500 accessions of Pyrus species collected from Iwate in northern Tohoku region are maintained at Kobe University as an Iwateyamanashi germplasm collection. In order to investigate the genetic diversity, five SSR (simple sequence repeat) markers, developed from Japanese and European pear were examined for 86 Pyrus individuals including 58 accessions from Iwate. These SSR loci could discriminate between all the Iwate accessions except for 10 that bear seedless fruit, as well as determine the genetic diversity in Iwateyamanashi germplasms. High levels of variation were detected in 41 alleles and the mean observed heterozygosity across 5 loci was 0.50 for the Iwate accessions. Seedless accessions sharing identical SSR genotype with the local pear variety “Iwatetanenashi” were supposed to have been propagated vegetatively via grafting. In an UPGMA phenogram, Japanese pear varieties (P. pyrifolia) were clustered into two groups with some Iwate accessions including seedless ones. Another 38 Iwate accessions were not clustered clearly, and there was no clear relationship between these accessions and geographical distribution or morphological characters. Allele frequency revealed that the Iwate accessions were genetically more divergent than the Japanese pear varieties. Most Japanese pears possessed a 219 bp deletion at a spacer region between the accD and psaI genes in the chloroplast DNA (cpDNA), but other Pyrus species and two Iwateyamanashi trees did not. In the Iwate accessions, 79.3% had a deletion type cpDNA and others had a standard type cpDNA without deletion. These results are indicative of the wide range of genetic diversity in the Iwate accessions which include Japanese pear varieties. A combination of SSR and cpDNA analyses revealed high heterogeneity in Iwateyamanashi and coexistence of Iwateyamanashi and hybrid progeny with P. pyrifolia. These could be reasons for the wide range of continuous morphological variation described previously.  相似文献   

18.
Simple sequence repeat (SSR) markers were used to assess genetic diversity and relationship of Pyrus L. cultivars native mainly to East Asia. A total of 168 putative alleles were generated from six primer-pairs (BGA35, KU10, BGT23b, NH004a, NH011b and NH015a). All the SSR markers showed a high level of genetic polymorphism with a mean of 28 putative alleles per locus and the heterozygosity of 0.63. The Dice’s similarity coefficient between cultivars ranged from 0.02 to 0.98 and Occidental pears generally had low affinities to Asian pears. Ten major groups were generated from all the accessions by UPGMA clusters analysis. Chinese sand pears consisted of four groups with Chinese white pears and Japanese pears, of which Chinese sand pears occurred in all four groups, presenting a large genetic diversity, Chinese white pears were included in three groups, and Japanese pears only fell into one group. In the dendrogram, Chinese sand pears and Chinese white pears did not form discrete group, even subgroups. Some Japanese pear cultivars had high affinities to Chinese sand pear cultivars. These findings supports the authors’ previous viewpoints of Chinese white pears as a variety or an ecotype of Chinese sand pears (P. pyrifolia var. sinensis (Lindley) Y. Teng et K. Tanabe) and the progenitor of Japanese pears coming from China. Cultivars of P. ussuriensis Maxim. were clustered together with one clone of P. hondoensis Nakai et Kikuchi, a relative species of P. ussuriensis. Cultivars of P. communis L. and other Occidental species formed three independent groups and were distant from most Asian pears, except for P. betulaefolia Bge.  相似文献   

19.
利用SSR分析小豆种质遗传多样性   总被引:3,自引:1,他引:2  
摘要:小豆是一类重要的食用豆,本研究利用45对SSR引物对小豆基因组DNA进行了SSR标记的筛选鉴定,共筛选出多态性良好、扩增效果稳定的SSR引物18对。利用筛选出的18个SSR标记,分析了来自我国栽培小豆优异种质53份和日本引进种质27份,旨在阐明其遗传多样性特点,为育种利用提供理论依据。结果表明,在所有参试的80份小豆种质中共鉴定出等位变异92个,平均每个位点为5.1个;其中53份国内小豆和27份日本小豆的等位变异数分别为89个和74个,平均每个位点分别为4.9个和4.1个。所有供试小豆平均每个位点的多态信息含量(PIC)为0.64,变化范围为0.23~0.83,其中国内小豆的平均PIC值为0.63,变化范围为0.23~0.86;日本小豆平均PIC值为0.61,变化范围为0.20~0.81。国内栽培小豆和日本小豆在等位变异数、多态信息含量(PIC)、遗传相似性系数均存在差异,UPGMA聚类分析将参试的80份小豆明显分为五大类,聚类结果与小豆种质地理起源呈现出一定的相关性。试验表明,在小豆遗传育种中,可以通过种质资源相互利用来拓宽育成品种的遗传基础,同时这些SSR标记对于小豆资源DNA指纹图谱构建、遗传作图、基因型鉴定及分子标记辅助育种具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号