首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lu H  Castro AE 《Avian diseases》2004,48(2):263-270
The H7N2 subtype of avian influenza virus (AIV) field isolate (H7N2/chicken/PA/3779-2/97), which caused the 1997-98 AIV outbreak in Pennsylvania, was evaluated for its infectivity, length of infection, and immune response in specific-pathogen-free (SPF) chickens. The composite findings of three clinical trials with various concentrations of virus indicated that this H7N2 subtype contained minimal pathogenicity for chickens. The concentration of the virus in the inoculum proved critical in the establishment of a productive infection in a chicken. Seven-day-old SPF chickens were not infected when inoculated with 10(0.7-2.0) mean embryo lethal dose (ELD50) of the H7N2 virus per bird. At this dose level, the immune response to this virus was not detected by the hemagglutination-inhibition (HI) test. Nonetheless, chickens at ages of 5 and 23 wk old tested were successfully infected when exposed to 10(4.7-5.7) ELD50 of H7N2 infectious doses per bird by various routes of administration and also by direct contact. Infected birds started shedding virus as early as 2 days postinoculation, and the period of virus shedding occurred mostly within 1 or 2 wk postinoculation (WPI). This H7N2 subtype of AIV induced a measurable immune response in all birds within 2 wk after virus exposure. Antibody titers were associated with AIV infectious doses and age of exposure of birds. Challenge of these infected birds with the same H7N2 virus at 5 and 10 WPI indicated the infective virus was recoverable from cloacal swabs at 3 days postchallenge and disappeared thereafter. In these challenged birds, the antibody levels as measured by the HI test spiked within 1-2 wk.  相似文献   

2.
The transmissibility of an H7N1 Low Pathogenic Avian Influenza (LPAI) virus isolated from a turkey flock during the large epidemic in Italy in 1999, was experimentally studied in chickens. Four group transmission experiments were performed. Infection and transmission were monitored by means of virus isolation on swab samples and antibody detection in serum samples. From the results of these groups, we estimated the mean infectious period at 7.7 (6.7-8.7) days, the transmission rate parameter at 0.49 (0.30-0.75) infections per infectious chicken per day and the basic reproduction ratio at 3.8 (1.3-6.3). These estimates can be used for the development of surveillance and control programmes of LPAI in poultry.  相似文献   

3.
Jones YL  Swayne DE 《Avian diseases》2004,48(1):119-128
Chickens were intranasally inoculated with Chilean H7N3 avian influenza (AI) viruses of low pathogenicity (LP) (H7N3/LP), high pathogenicity (HP) (H7N3/HP), and a laboratory derivative (02-AI-15-#9) (H7N3/14D) from the LPAI virus to determine pathobiologic effects. All chickens inoculated with H7N3/HP AI virus became infected and abruptly died 2 or 3 days postinoculation, but a few showed moderate depression before death. The H7N3/HP AI virus produced focal hemorrhages of the comb, petechial hemorrhage at the esophageal-proventricular junction and proventricular mucosa, edema and congestion of the lung, petechiation of the spleen, and generalized decrease in body fat. Histologically, severe necrosis, hemorrhage, and inflammation were primarily identified in lungs and the lymphoid tissues. All tissues sampled from the H7N3/HP AI group were positive for the AI viral antigen, predominantly in endothelium of blood vessels throughout most tissues and less frequently in histiocytes and cellular debris of lymphoid tissues. Even less consistently, cardiac myocytes, hepatocytes, Kupffer cells, glandular epithelial cells, microglial cells, and neurons became infected. These studies suggest the Chilean H7N3/LP AI virus was poorly infectious for chickens and may have been recently introduced from a nongalliform host. By contrast, the H7N3/HP AI virus was highly infectious and lethal for chickens. The H7N3/HP AI virus had a strong tropism for the cardiovascular system, principally vascular endothelium, which is similar to the viral tropism demonstrated previously with other H5 and H7 HPAI viruses. Interestingly, the H7N3/LP AI virus on intravenous inoculation replicated in cardiac myocytes, a feature of HPAI and not LPAI viruses, which further supports the theory that the H7N3/LP AI virus was in transition from LP to HP.  相似文献   

4.
The continuing outbreaks of avian influenza A H5N1 virus infection in Asia and Africa have caused worldwide concern because of the high mortality rates in poultry, suggesting its potential to become a pandemic influenza virus in humans. The transmission route of the virus among either the same species or different species is not yet clear. Broilers and BABL/c mice were inoculated with the H5N1 strain of influenza A virus isolated from birds. The animals were inoculated with 0.1 mL 106.83 TCID50 of H5N1 virus oronasally, intraperitoneally and using eye drops. The viruses were examined by virological and pathological assays. In addition, to detect horizontal transmission, in each group, healthy chicks and mice were mixed with those infected. Viruses were detected in homogenates of the heart, liver, spleen, kidney and blood of the infected mice and chickens. Virus antigen was not detected in the spleen, kidney or gastrointestinal tract, but detected by Plaque Forming Unit (PFU) assay in the brain, liver and lung without degenerative change in these organs (in the group inoculated using eye drops. The detection results for mice inoculated using eye drops suggest that this virus might have a different tissue tropism from other influenza viruses mainly restricted to the respiratory tract in mice. All chicken samples tested positive for the virus, regardless of the method of inoculation. Avian influenza A H5N1 viruses are highly pathogenic to chickens, but its virulence in other animals is not yet known. To sum up, the results suggest that the virus replicates not only in different animal species but also through different routes of infection. In addition, the virus was detection not only in the respiratory tract but also in multiple extra‐respiratory tissues. This study demonstrates that H5N1 virus infection in mice can cause systemic disease and spread through potentially novel routes within and between mammalian hosts.  相似文献   

5.
Host range of A/Chicken/Pennsylvania/83 (H5N2) influenza virus   总被引:1,自引:0,他引:1  
The highly pathogenic A/Chicken/Penn./1370/83 (H5N2) avian influenza virus, which caused 80% mortality in chickens in Pennsylvania, produced only mild transient illness in experimentally infected pheasants, little or no clinical signs in ring-billed gulls and pigs, and no clinical signs in pekin ducks. Virus could be recovered from only the upper respiratory tract of gulls and pigs for 1-2 days. Infection in ducks resulted in intestinal replication of virus in only 1 out of 12 ducks. By contrast, pheasants shed virus in feces (10(4.7) EID50) for at least 15 days. These studies reinforce wildlife surveillance findings indicating that gulls and ducks are unlikely to have transmitted virus between chicken farms during the 1983 outbreak. Although experimental data suggest that wild gallinaceous birds such as pheasants are potentially capable of virus transmission, there has been no evidence of this from wildlife surveillance in Pennsylvania. Experimental infection of chickens with H5N2 virus isolated from wild ducks one year before the Pennsylvania outbreak or a gull virus (H5N1) isolated in the quarantine area in 1983 resulted in asymptomatic infections and virus replication occurring only in the upper respiratory tract. These studies suggest that if the first H5N2 virus infecting chickens in Pennsylvania originated from waterbirds, changes in host specificity and pathogenicity for chickens and other gallinaceous birds probably occurred during emergence of the Chicken/Penn./83 virus. It is recommended that attention be given in the future to the isolation of domestic poultry from contact with wild aquatic birds.  相似文献   

6.
Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype have caused several rounds of outbreaks in Thailand. In this study, we used 3 HPAI viruses isolated in Thailand in January 2004 from chicken, quail, and duck for genetic and pathogenetic studies. Sequence analysis of the entire genomes of these isolates revealed that they were genetically similar to each other. Chickens, quails, domestic ducks, and cross-bred ducks were inoculated with these isolates to evaluate their pathogenicity to different host species. A/chicken/Yamaguchi/7/04 (H5N1), an HPAI virus isolated in Japan, was also used in the chicken and quail studies for comparison. All four isolates were shown to be highly pathogenic to chickens and quails, with 100% mortality by 10(6) EID50 inoculants of the viruses. They caused sudden death in chickens and quails within 2-4 days after inoculation. The mean death times (MDT) of quails infected with the Thai isolates were shorter than those of chickens infected with the same isolates. Mortality against domestic and cross-bred ducks ranged from 50 to 75% by intranasal inoculation with the 10(6) EID50 viruses. Neurological symptoms were observed in most of the inoculated domestic ducks and appeared less severe in the cross-bred ducks. The MDTs of the ducks infected with the Thai isolates were 4.8-6 days post-inoculation. Most of the surviving ducks infected with the Thai isolates had sero-converted until 14 dpi. Our study illustrated the pathobiology of the Thai isolates against different poultry species and would provide useful information for improving control strategies against HPAI.  相似文献   

7.
At the end of May 2005, a low-pathogenicity avian influenza (LPAI) virus of subtype H5N2 was isolated for the first time from chickens in Japan. Through active and epidemiological surveillance, 5.78 million chickens on 41 farms were found to be affected and 16 H5N2 viruses were isolated. Antigenic analysis revealed antigenic similarity of these isolates. Phylogenetic analysis showed that they originated from a common ancestor and clustered with the H5N2 strains prevalent in Central America that have been circulating since 1994. Experimental infection of chickens with the index isolate (A/chicken/Ibaraki/1/05) demonstrated that this virus replicated efficiently in the respiratory tract without clinical signs, and dust-borne and/or droplet-borne transmission was considered as a possible mode of transmission. These results suggested that the H5N2 LPAI viruses isolated in Japan were highly adapted to chickens.  相似文献   

8.
ABSTRACT: Vaccination of chickens has become routine practice in Asian countries in which H5N1 highly pathogenic avian influenza (HPAI) is endemically present. This mainly applies to layer and breeder flocks, but broilers are usually left unvaccinated. Here we investigate whether vaccination is able to reduce HPAI H5N1 virus transmission among broiler chickens. Four sets of experiments were carried out, each consisting of 22 replicate trials containing a pair of birds. Experiments 1-3 were carried out with four-week-old birds that were unvaccinated, and vaccinated at day 1 or at day 10 of age. Experiment 4 was carried out with unvaccinated day-old broiler chicks. One chicken in each trial was inoculated with H5N1 HPAI virus. One chicken in each trial was inoculated with virus. The course of the infection chain was monitored by serological analysis, and by virus isolation performed on tracheal and cloacal swabs. The analyses were based on a stochastic SEIR model using a Bayesian inferential framework. When inoculation was carried out at the 28th day of life, transmission was efficient in unvaccinated birds, and in birds vaccinated at first or tenth day of life. In these experiments estimates of the latent period (~1.0 day), infectious period (~3.3 days), and transmission rate parameter (~1.4 per day) were similar, as were estimates of the reproduction number (~4) and generation interval (~1.4 day). Transmission was significantly less efficient in unvaccinated chickens when inoculation was carried out on the first day of life. These results show that vaccination of broiler chickens does not reduce transmission, and suggest that this may be due to the interference of maternal immunity.  相似文献   

9.
H7N9 virus infection is a global concern, given that it can cause severe infection and mortality in humans. However, the understanding of H7N9 epidemiology, animal reservoir species and zoonotic risk remains limited. This work evaluates the pathogenicity, transmissibility and local innate immune response of three avian species harbouring different respiratory distribution of α2,6 and α2,3 SA receptors. Muscovy ducks, European quails and SPF chickens were intranasally inoculated with 105 embryo infectious dose (EID)50 of the human H7N9 (A/Anhui/1/2013) influenza isolate. None of the avian species showed clinical signs or macroscopic lesions, and only mild microscopic lesions were observed in the upper respiratory tract of quail and chickens. Quail presented more severe histopathologic lesions and avian influenza virus (AIV) positivity by immunohistochemistry (IHC), which correlated with higher IL‐6 responses. In contrast, Muscovy ducks were resistant to disease and presented higher IFNα and TLR7 response. In all species, viral shedding was higher in the respiratory than in the digestive tract. Higher viral shedding was observed in quail, followed by chicken and ducks, which presented similar viral titres. Efficient transmission was observed in all contact quail and half of the Muscovy ducks, while no transmission was observed between chicken. All avian species showed viral shedding in drinking water throughout infection.  相似文献   

10.
为建立H5N1亚型禽流感病毒感染海兰白鸡模型,本研究选取1株鹅源H5N1高致病性禽流感病毒A/goose/guangdong/1/96(H5N1)(简称GD1/96),测定其对4周龄海兰白鸡的半数致死量.感染模型试验中,将30只4周龄海兰白鸡随机分成3组,每组10只,5只直接感染,5只同居,试验组设置一个重复,将病毒液稀释至104.5EID50,滴鼻、点眼各0.1 mL,对照组接种PBS,感染后24 h放入同居鸡;感染后连续观察14 d,记录死亡时间,每天采集咽喉拭子和泄殖腔拭子;感染组和同居组第3、5 天各剖解3只鸡,采集气管、肺脏、脑、脾脏、肾脏和十二指肠,进行病毒分离;qRT-PCR法分析感染组和同居组第3、5 天鸡肺组织中IFN-α和TNF-α的相对表达量.结果显示,GD1/96株的鸡胚半数感染量(EID50)为10-8.167/0.1 mL,对4周龄海兰白鸡的半数致死量为104.5 EID50.感染模型试验结果显示,以104.5EID50的攻毒剂量感染海兰白鸡,感染组鸡在感染后8 d全部死亡;在感染和同居3 d后,各组鸡的咽喉拭子和泄殖腔拭子均可检测到病毒;感染和同居后第3、5 天,各组鸡的6种组织中均可分离到高滴度的病毒;IFN-α和TNF-α在感染组和同居组的鸡肺脏组织中的表达量均显著增加(P <0.05).本试验建立了海兰白鸡的H5N1亚型禽流感病毒感染模型,为H5N1亚型禽流感病毒的致病机理及表达抗流感基因转基因鸡的研究奠定了基础.  相似文献   

11.
Genetic changes in avian influenza viruses influence their infectivity, virulence and transmission. Recently we identified a novel genotype of H9N2 viruses in widespread circulation in poultry in Pakistan that contained polymerases (PB2, PB1 and PA) and non-structural (NS) gene segments identical to highly pathogenic H7N3 viruses. Here, we investigated the potential of these viruses to cause disease and assessed the transmission capability of the virus within and between poultry and wild terrestrial avian species. Groups of broilers, layers, jungle fowl, quail, sparrows or crows were infected with a representative strain (A/chicken/UDL-01/08) of this H9N2 virus and then mixed with naïve birds of the same breed or species, or different species to examine transmission. With the exception of crows, all directly inoculated and contact birds showed clinical signs, varying in severity with quail showing the most pronounced clinical signs. Virus shedding was detected in all infected birds, with quail showing the greatest levels of virus secretion, but only very low levels of virus were found in directly infected crow samples. Efficient virus intra-species transmission was observed within each group with the exception of crows in which no evidence of transmission was seen. Interspecies transmission was examined between chickens and sparrows and vice versa and efficient transmission was seen in either direction. These results highlight the ease of spread of this group of H9N2 viruses between domesticated poultry and sparrows and show that sparrows need to be considered as a high risk species for transmitting H9N2 viruses between premises.  相似文献   

12.
Typically highly pathogenic avian influenza (HPAI) viruses spread very rapidly among chickens within sheds. However, the spread was slower than expected for the initial 10 days of the index farm in Japan during 2004. This slow spread, as well as the lack of gross lesions, clinical signs, or high mortality, hindered the field veterinarian from reporting a suspected HPAI outbreak to the veterinary office. To understand the field conditions for the slow virus spread, we examined contact and airborne transmission of the H5N1 virus to chickens in a negative-pressure isolator using various numbers of infected chickens and separate compartments. We found that the contact transmission did occur inefficiently when one or two chickens were infected, whereas the transmission was efficient when four chickens were infected. Airborne transmission of the HPAI virus was also dependent on the number of infected chickens and was less efficient than contact transmission. These data together with field observations suggested that number of infected chickens, chicken house types, and amount of environmental contamination might affect the virus transmission efficiency to chickens.  相似文献   

13.
M Brugh 《Avian diseases》1992,36(4):968-974
Avian influenza (AI) virus A/chicken/Alabama/7395/75 (H4N8), a putatively non-pathogenic virus associated with a self-limiting outbreak of severe disease in commercial layers, was selectively passed in chickens or in cell cultures and then in chickens to determine whether virus with increased pathogenicity would emerge. When 20 derivatives of the parental virus were each inoculated intranasally and intratracheally in leghorn hens, mortality rates ranged from zero (0/24) to 25% (6/24); mortality was 4% (1/24) for hens inoculated with the parental virus. Many virus reisolates (51/144) from hens that died exhibited high pathogenicity, killing at least six of eight intravenously inoculated 4-week-old chickens. Most derivatives examined produced plaques in trypsin-free cell cultures more efficiently than the parental virus, but the highest plaquing efficiencies observed (10%) were lower than would be expected (100%) for highly pathogenic subtype H5 or H7 AI viruses. These results confirm that the Alabama H4N8 virus can acquire increased pathogenicity upon passage in chickens and suggest that it may have acted alone in producing the severe disease observed in laying chickens in Alabama.  相似文献   

14.
Despite continuing research efforts, knowledge of the transmission of the highly pathogenic avian influenza (HPAI) virus still has considerable gaps, which complicates epidemic control. The goal of this research was to develop a model to back-calculate the day HPAI virus is introduced into a flock, based on within-flock mortality data. The back-calculation method was based on a stochastic SEIR (susceptible (S) - latently infected (E) - infectious (I) - removed (= dead; R)) epidemic model. The latent and infectious period were assumed to be gamma distributed. Parameter values were based on experimental H7N7 within-flock transmission data. The model was used to estimate the day of virus introduction based on a defined within-flock mortality threshold (detection rule for determining AI). Our results indicate that approximately two weeks can elapse before a noticeable increase in mortality is observed after a single introduction into a flock. For example, it takes twelve (minimum 11 - maximum 15) days before AI is detected if the detection rule is fifty dead chickens on two consecutive days in a 10 000 chicken flock (current Dutch monitoring rule for notification). The results were robust for flock size and detection rule, but sensitive to the length of the latent and infectious periods. Furthermore, assuming multiple introductions on one day will result in a shorter estimated period between infection and detection. The implications of the model outcomes for detecting and tracing outbreaks of H7N7 HPAI virus are discussed.  相似文献   

15.
为研究鹅源H5N1亚型禽流感病毒(AIV)人工感染雏鸡免疫器官细胞凋亡的动态变化,本研究将50只1日龄SPF雏鸡随机分为两组。试验组雏鸡于7日龄,分别经鼻、眼、口同时感染105TCID50的鹅源H5N1亚型AIV,分别于感染后3d、4d、5d、7d和14d迫杀,采取胸腺、法氏囊和脾脏,应用TUNEL染色法和透射电镜技术观察其细胞凋亡的动态变化情况。结果显示,试验组雏鸡的胸腺和脾脏凋亡细胞数量在感染后3d~7d极显著高于对照组(p<0.01);法氏囊凋亡细胞数量在感染后3d~4d比对照组明显增加(p<0.05或p<0.01)。组织器官超微结构检测可见凋亡细胞核染色质固缩并凝结成块,聚集在核膜周围,呈新月状或环状;细胞质浓缩。表明鹅源H5N1AIV能够诱导感染雏鸡免疫器官发生细胞凋亡。  相似文献   

16.
To better understand the transmission route of H9N2 avian influenza virus (AIV), two duplicate trials were conducted to observe the process of aerosol infection and direct contact in specific pathogen free chickens. Fifteen chickens (G1) were inoculated with H9N2 AIV and housed together with another 15 chickens (G2) in the same positive-negative-pressure isolator (A). Fifteen chickens (G3) were bred in another isolator (B) which was connected with A so that air could flow unidirectionally from A to B. Air, oropharyngeal and cloacal swabs, and blood samples were collected for the detection of aerosolized virus, virus shedding, and seroconversion. AIV aerosols were initially detected at day 2-3 post inoculation (dpi), reaching peak concentrations at 7 dpi. Virus shedding was detected in all chickens of G2, but only in a part in G3 (T1: 87%, T2: 80%). Antibodies were initially detected at 4-5 dpi, peaking at 14-21 dpi. The results showed that H9N2 AIV could be transmitted by both aerosol exposure and direct contact.  相似文献   

17.
本研究分析了免疫鸡群H5N1和H9N2亚型禽流感病毒混合感染中H9N2亚型分离毒株A/chicken/Yuyao/01/2010(H9N2)的基因组特征。氨基酸序列分析显示,HA蛋白裂解位点为PSRSSR/GL,具有低致病性禽流感病毒特征,HA受体结合位点出现了人流感病毒结合位点226L,D基因出现了S31N的突变。遗传分析表明,A/chicken/Yuyao/01/2010病毒的HA基因、NA基因和NS基因在进化上属于CK/BJ/94-Like谱系,D基因和PB2基因属于G1-Like谱系,NP基因、PA基因和PB1基因属于Ck/SH/F/98-Like谱系。结果表明,从H5N1和H9N2亚型混合感染鸡体内分离的H9N2亚型禽流感病毒是一株来源于CK/BJ/94-Like谱系、G1-Like谱系和Ck/SH/F/98-Like谱系的重组病毒。  相似文献   

18.
19.
20.
An avian influenza (AI) outbreak occurred in meat-type chickens in central Pennsylvania from December 2001 to January 2002. Two broiler breeder flocks were initially infected almost simultaneously in early December. Avian influenza virus (AIV), H7N2 subtype, was isolated from the two premises in our laboratory. The H7N2 isolates were characterized as a low pathogenic strain at the National Veterinary Services Laboratories based on molecular sequencing of the virus hemagglutinin cleavage site and virus challenge studies in specific-pathogen-free leghorn chickens. However, clinical observations and pathologic findings indicated that this H7N2 virus appeared to be significantly pathogenic in meat-type chickens under field conditions. Follow-up investigation indicated that this H7N2 virus spread rapidly within each flock. Within 7 days of the recognized start of the outbreak, over 90% seroconversion was observed in the birds by the hemagglutination inhibition test. A diagnosis of AI was made within 24 hr of bird submission during this outbreak using a combination of virus detection by a same-day dot-enzyme-linked immunosorbent assay and virus isolation in embryonating chicken eggs. Follow-up investigation revealed that heavy virus shedding (90%-100% of birds shedding AIV) occurred between 4 and 7 days after disease onset, and a few birds (15%) continued to shed virus at 13 days post-disease onset, as detected by virus isolation on tracheal and cloacal swabs. AIV was not detected in or on eggs laid by the breeders during the testing phase of the outbreak. The two flocks were depopulated at 14 days after disease onset, and AIV was not detected on the two premises 23 days after depopulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号