首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The effect of adrenocorticotropin hormone (ACTH) on plasma cortisol and on gonadotropin releasing hormone (GnRH)-induced release of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone was determined in nine Holstein bulls and 12 Holstein steers. Treatments consisted of animals receiving either GnRH (200 micrograms, Group G), ACTH (.45 IU/kg BW, Group A) or a combination of ACTH followed 2 h later by GnRH (Group AG). Group G steers and bulls had elevated plasma LH and FSH within .5 h after GnRH injection and plasma testosterone was increased by 1 h after GnRH injection in bulls. In Group A, plasma cortisol was elevated by .5 h after ACTH injection in both steers and bulls, but plasma LH and FSH were unaffected. In Group A bulls, testosterone was reduced after ACTH injection. In Group AG, ACTH caused an immediate increase in plasma cortisol in both steers and bulls, but did not affect the increase in either plasma LH or FSH in response to GnRH in steers. In Group AG bulls, ACTH did not prevent an increase in either plasma LH, FSH or testosterone in response to GnRH compared with basal concentrations. However, magnitude of systemic FSH response was reduced compared with response in Group G bulls, but plasma LH and testosterone were not reduced. The results indicate that ACTH caused an increase in plasma cortisol, but did not adversely affect LH or FSH response to GnRH in steers and bulls. Further, while testosterone was decreased after ACTH alone, neither ACTH nor resulting increased plasma cortisol resulted in decreased testosterone production in the bull after GnRH stimulation.  相似文献   

2.
To clarify endocrine responses to psychological stressors in cattle, the effects of isolation from familiar peers on plasma prolactin (PRL) and cortisol (CORT) concentrations, and the effect of 3,4‐dihydroxy‐L‐phenylalanine (L‐DOPA), a precursor of dopamine (DA), on stress‐induced PRL secretion were determined in Holstein steers. First, the potency of peripheral L‐DOPA administration on attenuation of central DA levels was confirmed. Cerebrospinal fluid (CSF) collected from a chronic cannula in the third ventricle and plasma were sampled 1 h before and 3 h after intravenous injection of L‐DOPA (100 mg/head). DA concentrations in CSF increased just after L‐DOPA injection with subsequent decrease in PRL secretion. Injection of L‐DOPA increased CORT secretion. Second, one experimental steer was isolated in its stall by removing its peers for 2 h with or without‐ pre‐injection of L‐DOPA. The concentration of PRL was elevated by isolation treatment, whereas the effect of isolation on CORT concentration could not be detected. The increase in PRL concentration after isolation was abolished by pre‐injection of L‐DOPA. These results suggest that PRL responds to isolation and that DA neurons in the central nervous system may regulate stress‐induced PRL secretion in steers.  相似文献   

3.
Effects of social isolation or restraint, applied outside the home pen, on adrenocortical and nociceptive responses were examined in 28 loose-housed dairy cows. Treatments lasted 15 min and consisted of social isolation in novel surroundings or restraint by the head in a test pen. A control treatment was applied in the test pen as well. Each cow was exposed to all treatments in a balanced order, with 3 to 4 d between treatments. Compared with the control treatment, social isolation in novel surroundings led to increased plasma concentration of cortisol (P < 0.001) as well as to indications of hypoalgesia [posttreatment lack of decrease in latency to respond toward nociceptive laser stimulation, a tendency for decreased frequency of kicking in the pauses between laser stimulations (P = 0.06), and an increased proportion of leg moving (least possible active response) after treatment (P = 0.04)]. Indications of hypoalgesia were also observed after restraint (reduced kicking in response to laser stimulation, P = 0.04); however, the indications were to a lesser extent than after social isolation, and restraint treatment did not lead to increased plasma concentration of cortisol. For control and restraint treatment, an initial increase (P < 0.02) in plasma concentration of cortisol was found, suggesting effects of pretreatment factors such as handling. No correlations between adrenocortical and nociceptive responses toward social isolation were found. The results confirm earlier reports stating that nociceptive changes induced by environmental challenges can be shown in dairy cows, even when they are kept in groups and removed from the home pen during the study of stress responses. However, testing outside the home pen seemed to affect the nociceptive and adrenocortical responses, thereby suggesting that care should be taken to avoid effects of pretreatment situational factors.  相似文献   

4.
An experiment using 40 Angus or Brahman X Angus preconditioned feeder calves was conducted to evaluate the influence of shipping on cellular immune reactivity. Steers were allotted on the basis of weight and breed to a control or shipped group. Shipped steers were trucked 700 km to a feedlot; control steers remained at the ranch of origin. Total and differential leukocyte counts, phytohemagglutinin skin-test responses, lymphocyte blastogenic responses, monocyte phagocytic function, packed cell volumes and concentrations of plasma cortisol were determined before, immediately after and 1 wk after shipment. At unloading, total leukocytes were increased (P less than .05) in shipped Angus steers. Shipped steers also had higher (P less than .01) numbers of neutrophils. Skin-test responses to phytohemagglutinin were higher (P less than .05) in Angus than in Brahman X Angus steers, but shipping did not influence the reaction. Lymphocyte blastogenic responses were lower (P less than .05) in shipped steers; however, cortisol levels in plasma were not elevated (P greater than .10) in shipped calves. Monocyte phagocytosis and packed cell volume were not influenced by shipping. These data suggest that shipped steers have suppressed lymphocyte blastogenic responses.  相似文献   

5.
Gastric-derived peptide hormone ghrelin is known for its potent growth hormone (GH) stimulatory effects. The acyl-modification on N-terminal Ser(3) residue is reported to be important to stimulate the ghrelin receptor, GH secretagogue-receptor type1a (GHS-R1a). However, major portion of circulating ghrelin lacks in acylation, and some biological properties of des-acyl ghrelin have been reported in monogastric animals. In the present study, the responsiveness of plasma hormones and metabolites to ghrelin in steers was characterized, and role for des-acyl ghrelin in these changes was investigated. The repeated intravenous administrations of bovine ghrelin (1.0 microg/kg BW) every 2h for 8h to Holstein steers significantly increased the plasma acylated ghrelin, total ghrelin, GH, insulin and NEFA levels. The GH responses in peak values and area under the curves (AUCs) were attenuated by repeated injections of ghrelin, however, the responses of plasma total ghrelin were similar. Plasma insulin AUC decreased after fourth injection of ghrelin while plasma NEFA AUCs gradually increased by repeated injections of ghrelin. Pretreatment of des-acyl ghrelin (10.0 microg/kg BW) 5 min prior to the single injection of ghrelin (1.0 microg/kg BW) did not affect the ghrelin-induced hormonal changes. Moreover, the responses of plasma GH to bovine and porcine ghrelin, which differ in C-terminal amino acid residues, were similar in calves. These data show that (1) GH release was attenuated by repeated administration of ghrelin, (2) ghrelin regulates glucose and fatty acid metabolism probably via different pathway, and (3) des-acyl ghrelin is unlikely the antagonist for ghrelin to induce endocrine effects in Holstein steers.  相似文献   

6.
Effects of thyroid-stimulating hormone (TSH) and thyrotropin-releasing hormone (TRH) on plasma concentrations of thyroid hormones, and effects of ACTH and dexamethasone on plasma concentrations of cortisol, were studied in adult male ferrets. Thirteen ferrets were randomly assigned to test or control groups of eight and five animals, respectively. Combined (test + control groups) mean basal plasma thyroxine (T4) values were different between the TRH (1.81 +/- 0.41 micrograms/dl, mean +/- SD) and TSH (2.69 +/- 0.87 micrograms/dl) experiments, which were performed 2 months apart. Plasma T4 values significantly (P less than 0.05) increased as early as 2 hours (3.37 +/- 1.10 micrograms/dl) and remained high until 6 hours (3.45 +/- 0.86 micrograms/dl) after IV injection of 1 IU of TSH/ferret. In contrast, IV injection of 500 micrograms of TRH/ferret did not induce a significant increase until 6 hours (2.75 +/- 0.79) after injection, and induced side effects of hyperventilation, salivation, vomiting, and sedation. There was no significant increase in triiodothyronine (T3) values following TSH or TRH administration. Combined mean basal plasma cortisol values were not significantly different between ACTH stimulation (1.29 +/- 0.84 micrograms/dl) and dexamethasone suppression test (0.74 +/- 0.56 micrograms/dl) experiments. Intravenous injection of 0.5 IU of ACTH/ferret induced a significant increase in plasma cortisol concentrations by 30 minutes (5.26 +/- 1.21 micrograms/dl), which persisted until 60 minutes (5.17 +/- 1.99 micrograms/dl) after injection. Plasma cortisol values significantly decreased as early as 1 hour (0.41 +/- 0.13 micrograms/dl), and had further decreased by 5 hours (0.26 +/- 0.15 micrograms/dl) following IV injection of 0.2 mg of dexamethasone/ferret.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
In a previous study, it was found that there are sex differences in goats with respect to the levels of cortisol secretion induced by transportation stress. We also found that treatment of castrated male goats with dihydrotestosterone (DHT) suppressed the increase in plasma cortisol concentration following transportation, but did not suppress the secretion of adrenocorticotropic hormone (ACTH). This suggests that androgen might block ACTH ‐ induced cortisol secretion. In order to examine this hypothesis, the effects of androgen on ACTH‐induced cortisol secretion in goats were investigated. First, castrated male goats were treated with testosterone (T), DHT or cholesterol (cho) for 21–25 days. Cho was used as a control for T and DHT treatment. Then, plasma cortisol concentrations were compared among the hormonal treatments after ACTH injection. Subsequently, the distribution of androgen receptors in the caprine adrenal gland was investigated. There were no differences in the basal cortisol concentrations among the hormonal treatments. However, plasma cortisol concentrations after ACTH injection were significantly lower in T ‐ and DHT ‐ treated goats than in cho ‐ treated goats. Androgen receptors were present in 60% of the cells in the zonae fasciculata and reticularis of the adrenal cortex, the regions that secrete glucocorticoids. These results suggest that androgen may act directly on the adrenal cortex to suppress cortisol secretion induced by ACTH.  相似文献   

8.
It has previously been demonstrated that naloxone and morphine modify the adrenocortical and pituitary responses of sheep to stress. Since CRH acts within the brain to co-ordinate the stress response, the present experiment was conducted to determine whether morphine has similar effects in sheep given oCRH centrally. Plasma concentrations of cortisol, prolactin and growth hormone were measured in blood samples collected at 10 min intervals from sheep (N = 5) over a 3-hr period. Intravenous injections of saline vehicle or morphine sulphate (0.4 mg/kg) were given after 40 min and intracerebroventricular injections of oCRH (0, 5 or 20 micrograms) were administered after 60 min. Sustained, dose-related, increases in cortisol were induced by oCRH and, in agreement with findings in stressed sheep, these responses were reduced by pretreatment with morphine. Prolactin levels appeared to increase after morphine but oCRH, on its own, did not increase prolactin secretion in this study. There was no change in growth hormone concentrations after oCRH whereas morphine transiently stimulated release.  相似文献   

9.
Two neuropeptides, neuropeptide B (NPB) and prolactin-releasing peptide (PrRP), have been suggested to play important roles in control of the hypothalamic-pituitary-adrenal (HPA) axis in rodents. The aim of the present study was to clarify the central actions of NPB or PrRP in sheep. Ovariectomized ewes were surgically implanted with a cannula directed to the lateral ventricle. They received intracerebroventricular (icv) administration of 400 mul of artificial cerebrospinal fluid, NPB (0.05, 0.5 or 5 nmol), PrRP (0.5, 5 or 50 nmol) or corticotropin-releasing hormone (CRH, 0.5 or 5 nmol) through the cannula, and blood samples were taken 30 and 0 min prior to and 15, 30, 60 and 90 min after the injection. Cortisol concentrations in plasma were determined by enzyme immunoassay. Administration of 0.5 nmol NPB resulted in a significant increase in the cortisol concentration compared with the vehicle control, whereas the cortisol concentration after lower or higher doses of NPB did not differ from the control value. Thus, an icv injection of NPB produced a bell-shaped dose-response of cortisol concentration. Administration of PrRP had no significant effect on the cortisol concentrations at any dose examined. Icv injection of CRH dose-dependently increased plasma cortisol concentrations. These results demonstrate that central NPB stimulates cortisol secretion, suggesting that this neuropeptide plays some roles in control of the HPA axis in sheep. On the other hand, unlike its role in rodents, PrRP is unlikely to be involved in control of the HPA axis in this species.  相似文献   

10.
We investigate the associations between growth hormone (GH) gene polymorphism and behavioral and physiological responses to stressors and learning ability in Japanese Black cattle. Flight distance test was conducted in the first experiment. Steers with haplotype C of GH gene polymorphism avoided human approaches at a significantly greater distance than ones without haplotype C (C: 1.9 ± 0.9, non‐C: 1.0 ± 0.2 m, P < 0.05). An open‐field test was conducted in the second experiment. Behavioral responses did not differ significantly between steers with and without haplotype C. Increases of heart rates to dropping of iron pipes was significantly higher in steers with haplotype C (C:161.7 ± 21.8, non‐C:130.7 ± 31.3%, P < 0.05). Despite basal serum concentrations not being different between steers with and without haplotype C, serum cortisol in blood sampling immediately after severe confinement in a race tended to be higher in steers with haplotype C (P = 0.1). The maze test was conducted as the third experiment. There was no difference in performance in the maze test between steers with and without haplotype C. It is concluded that genetic polymorphism of GH may affect stress responses through GH concentration in steers.  相似文献   

11.
We evaluated the effect of maternal obesity before and throughout gestation on offspring hypothalamic-pituitary-adrenal axis function. Multiparous Rambouillet by Columbia crossbred ewes were fed either 100% of National Research Council (NRC) recommendations (control, C) or 150% of NRC recommendations (obese, OB) from 60 d before mating until lambing. Ten lambs born to OB ewes (five males and five females), and eight lambs born to C ewes (three male and five female) were studied. From delivery to weaning lambs were maintained with their mothers, who were all fed 100% NRC recommendations. After weaning, all lambs were group housed and fed the same diet to meet NRC requirements. At 19 mo of age lambs were placed in individual pens and fed a pelletized diet to meet maintenance requirements. Jugular vein catheters were placed and 2 d later lambs received an intravenous (i.v.) adrenocorticotropic hormone (ACTH) challenge followed by an i.v. corticotropin-releasing hormone (CRH)/arginine vasopressin (AVP) challenge 1 d later. Thirty d later offspring were again catheterized and placed into metabolism crates for 2 d before receiving an isolation stress test. ACTH and cortisol responses to the isolation stress test and CRH/AVP challenge and cortisol responses to ACTH challenge were determined. Cortisol was quantified via radioimmunoassay and ACTH was quantified using an Immulite 1000; both were analyzed using repeated measures using the MIXED procedure of SAS. Offspring from OB ewes had elevated basal plasma ACTH and cortisol compared with C offspring before all three challenges (P < 0.05). Offspring from OB mothers tended (P = 0.06) to have a greater ACTH response after an i.v. CRH/AVP injection than offspring from C mothers (12,340 ± 1,430 vs 8,170 ± 1,570 area under the curve, respectively). Cortisol response to the CRH/AVP and ACTH challenges was not influenced by maternal nutrition (P = 0.46) and averaged 4.77 ± 0.2 μg/dL and 1.94 ± 0.01 μg/dL, respectively. The ACTH response following the isolation stress test was also similar (P = 0.82) for OB and C offspring (147 ± 20 pg/mL), and cortisol response during the isolation stress test was similar between C and OB offspring (P = 0.64, 5.25 ± 0.3 μg/dL). These findings suggest that maternal obesity before and during gestation does not affect stress responses by the offspring, but has an impact on hypothalamic-pituitary-adrenal sensitivity. The lack of differences in cortisol release under the influence of difference concentrations of ACTH during the CRH/AVP challenge could indicate adrenal dysfunction in OB offspring.  相似文献   

12.
In the present study, we report the effect of medetomidine followed by atipamezole on plasma glucose, cortisol and noradrenaline in calves, cows and sheep. Eight calves, eight lactating dairy cows and eight adult female sheep were included in a crossover trial. The animals were injected i.v. with medetomidine (40 microg/kg), followed 60 min later by atipamezole i.v. (200 microg/kg) or saline. The wash-out period between experiments was 1 or 2 weeks. In every animal, medetomidine induced a marked hyperglycaemia, which was reversed by atipamezole. Cortisol levels increased significantly in cows and sheep, reaching levels 4-8-fold higher than the baseline levels 25-45 min after injection of medetomidine. Atipamezole did not affect the cortisol levels, except in sheep where an increase was observed. Plasma levels of noradrenaline decreased in cows and sheep after medetomidine injection, reflecting the inhibition of sympathetic activity by the drug. After injection of the antagonist, there was a large increase in noradrenaline levels. In conclusion, a high dose of medetomidine does not seem to reduce the overall endocrine stress response in cattle and sheep, which has previously been reported in other species.  相似文献   

13.
The stress axis in teleost fish attempts to maintain internal homeostasis in the face of allostatic loading. However, stress axis induction has been associated with a higher predation rate in fish. To date, the physiological and behavioral factors associated with this outcome are poorly understood. The purpose of the present study was to investigate the impact of experimental cortisol elevation on anti‐predator behavior and physiological responses to predator presence. We hypothesized that semi‐chronic cortisol elevation would increase susceptibility to predation by increasing stress‐induced risk‐taking behaviors. To test this hypothesis, schoolmaster snapper were given cocoa butter implants without cortisol (sham) or with cortisol (50 mg/kg body weight) and tethered to cover. Fish were exposed to either a lemon shark or control conditions for 15‐min. Space use and activity were recorded throughout and fish were terminally sampled for blood. Cortisol implantation, relative to shams, resulted in higher blood glucose and plasma cortisol concentrations with a lower plasma lactate concentration. Shark exposure, relative to controls, elicited higher blood glucose and lactate concentrations but had no effect on plasma cortisol concentration. No interactions were detected between shark exposure and cortisol treatment for any physiological trait. Behavioral metrics, including shelter use and activity, were unaffected by either cortisol implantation or shark exposure. Physiological responses to cortisol implantation likely resulted from enhanced gluconeogenic activity, whereas alterations under predator exposure may have been the product of catecholamine mobilization. Further work should address context‐specific influences of stress in mediating behavioral responses to predation.  相似文献   

14.
Associations between temperament, stress physiology, and productivity were studied in yearling Brahman steers (n = 81). Steers differed in calpain system gene marker status; 41 were implanted with a hormonal growth promotant at feedlot entry. Temperament was assessed with repeated measurements of flight speed (FS) and crush score (CS) during 6 mo of backgrounding at pasture and 117 d of grain finishing. Adrenal responsiveness was assessed with ACTH challenge, with plasma samples collected immediately before and 60 min after challenge. Steers with higher FS and CS had higher prechallenge plasma cortisol, glucose, lactate, and nonesterified fatty acid concentrations. The ACTH-induced cortisol response was unrelated to FS or CS, but glucose remained higher after challenge in flightier steers. The hormonal growth promotant reduced adrenal responsiveness; tenderness genotype had no effect. When temperament assessments and cortisol concentrations before and after challenge were combined in a principal components analysis, four vectors accounting for 38%, 25%, 18%, and 9% of the variation were identified. The first vector had significant loadings on temperament and prechallenge cortisol; increasing scores were associated with increased plasma glucose, lactate, and nonesterified fatty acid and with reductions in BW and feedlot growth rates, carcass fatness, and muscle pH. The second vector loaded only on ACTH-induced cortisol response; increased scores related to increased residual feed intake, number of daily feed sessions, and meat marbling score. The third and fourth vectors had different loadings on FS and CS and appeared to identify different aspects of temperament measured by FS or CS. Fewer associations were found between the third or fourth vectors and productivity traits, possibly because of lower variance accounted for by these vectors. In conclusion, temperament was related to prechallenge cortisol but not to ACTH-induced cortisol response. Principal components analysis separated these traits into separate components, which in turn had different relations with productivity traits. The largest component of temperament was described similarly by FS and CS, but there were smaller components that these described differently. There were some temperament-related differences in the metabolic status of the steers which were not related to the variation in cortisol, suggesting involvement of the sympatho-adrenal-medullary axis in these temperament-related effects.  相似文献   

15.
Changes in ACTH challenge test characteristics in dairy cows changing their physiological status at different lactational stages and different feeding levels were not investigated in terms of repeatability yet. In 23 multiparous Holstein cows (10 cows fed a sole fresh herbage diet without concentrate, 13 cows fed with concentrate), three ACTH challenge tests were performed: once during pregnancy shortly prior to drying off ( T1 ), and in week 3 ( T2 ) and 8 ( T3 ) after parturition. Test characteristics were correlated to performance and metabolic parameters: DMI, BW, energy balance (EB), plasma concentrations of free fatty acids (NEFA) and beta‐hydroxybutyrate (BHB). Basal plasma cortisol concentrations were higher at T1 compared with T2 and T3 (p < .05). The adrenal cortex sensitivity (expressed as total AUC (AUCt) of cortisol response after ACTH application) was lowest at T2 compared with T1 and T3 (p < .05). Ranking of the individual animals’ responses was not repeatable between time points of the ACTH tests. Enhancing the energy deficiency during early lactation by omission of concentrate did not affect baseline cortisol concentrations in plasma, but decreased peak height at T2 (p < .05). Baseline plasma cortisol concentrations were positively correlated with cortisol peak values after ACTH application, previous lactation performance, milk yield and BW (p < .05). The AUCt was positively correlated with baseline cortisol concentrations, EB and DMI. Cortisol release after ACTH injection was lower in animals with high plasma concentrations of NEFA, BHB and with higher contents of fat and free fatty acids in milk (p < .05). Cortisol peak height after ACTH administration was higher in cows with a more positive EB, higher DMI and lower plasma concentrations of NEFA and BHB. In summary, cortisol responses to ACTH challenges in this study were not repeatable in dairy cows changing their physiological status.  相似文献   

16.
This study investigated the effects of an intracerebroventricular (ICV) injection of corticotropin releasing hormone (CRH) on physiological and behavioural responses in goats. In Experiment 1, saline (control) or saline plus 25 microg of ovine CRH was injected into the third ventricle of castrated male goats. CRH increased plasma cortisol (Cor) levels markedly within 15 min, but had little effect on plasma glucose (Glu). Compared with saline injected goats, CRH decreased the total duration of lying behaviour but increased its frequency, and suppressed rumination and self-grooming. In Experiment 2, the effects of an intravenous (IV) injection of human adrenocorticotropic hormone (ACTH) (1-24) (0.1mg) were examined and an IV injection of saline was used as control. ACTH increased plasma Cor levels markedly, but did not change any behaviour compared with controls. It was concluded that CRH mediated the response of the hypothalamus-pituitary-adrenal (HPA) axis and behaviour following stress in goats, although the CRH-induced behavioural changes were independent of the HPA axis and seemed to be the result of direct action within the central nervous system.  相似文献   

17.
OBJECTIVE: To compare the effects of surgical and latex banding methods of castration in 14- and 9-month-old bulls. DESIGN: Two randomised, controlled experiments. PROCEDURE: In Experiment 1, following administration of local anaesthetic, 14-month-old bulls were castrated by either surgical or banding methods, or left entire. Behavioural, plasma cortisol, plasma haptoglobin and bodyweight responses were recorded. A group of steers from the same mob was used as an additional comparison for bodyweight data. In Experiment 2, following administration of local anaesthetic, 9-month-old bulls were castrated by either surgical or banding methods and cortisol, haptoglobin and bodyweight responses were recorded. Entire bulls from the same group were used as an additional comparison for bodyweight data. RESULTS: In Experiment 1, surgical castrates exhibited more leg stamping and tail swishing than banded or entire animals in the hours after castration. Surgical castrates in both experiments also showed an increase in plasma haptoglobin, which resolved after 4 days. Plasma cortisol was generally not affected by castration. Surgical castrates grew more slowly than entire bulls, but faster than banded animals, in the 56 days after treatment. In Experiment 1, after 56 days, the bodyweights of surgical and banded castrates were not different from the bodyweights of the steers. Fourteen-month-old banded cattle developed persistent wounds above the latex band which remained for several weeks after scrotal dehiscence, but this did not occur in the 9-month-old animals. CONCLUSION: The banding procedure produced fewer acute effects, but a greater suppression of growth than surgical castration and induced prolonged wound formation in the older age group, suggesting that this procedure may not be as suitable for yearling cattle.  相似文献   

18.
试验选用体重(12.6±0.7)kg的健康莱芜猪、鲁莱和大约克夏仔猪各12头,每个品种随机分对照组和试验组,每组6头。试验组腹膜注射200μg/kg体重的脂多糖(LPS),对照组注射等量生理盐水。于注射前、后采血,测定血浆中白介素-1β(IL-1β)、皮质醇和生长激素(GH)含量。结果表明:用LPS刺激后2、4h和7h每个品种的试验组与对照组相比,血浆中IL-1β和皮质醇含量均显著提高(P0.05),GH含量均降低,且LPS刺激后2h的GH水平显著降低(P0.05)。3个品种猪相比,莱芜猪在LPS刺激后2h时IL-1β、皮质醇的升高幅度和GH降低幅度均最小,与大约克夏猪相比差异均显著(P0.05)。结果显示,用LPS进行免疫应激,不同品种猪抗应激能力不同,莱芜猪相对于引进品种、地方品种有较强的抗免疫应激能力。  相似文献   

19.
Bovine plasma was assayed to determine whether ergotamine, an ergopeptide isolated from endophytic tall fescue, affected cortisol, triiodothyronine, insulin, and glucagon concentrations. In Exp. 1, four heifers received an i.v. bolus injection of ergotamine tartrate (19 microg/kg BW) or saline vehicle in a simple crossover design 2 d after induced luteolysis. Oxytocin (100 USP units) was i.v. administered 4 h after ergotamine or saline. Treatment x time affected (P < .01) respiration rates and plasma concentrations of cortisol, triiodothyronine, insulin, and glucagon. Respiration rates were elevated (P < .01) 2 to 7 h after ergotamine, but they were unchanged after saline. Plasma cortisol concentrations were increased (P < .01) 1 to 3 h after ergotamine but not after saline. Plasma triiodothyronine was elevated 2 h after ergotamine, but it was unchanged in response to saline. Insulin decreased (P < .01) and glucagon increased (P < .01) during the 1st h after ergotamine, but not in response to saline. A second increase (P < .01) of glucagon was observed 3 h after ergotamine. In Exp. 2, six cows were treated with an i.v. bolus injection of ergotamine (20 microg/kg BW) or saline in a simple crossover design 10 d after receiving a s.c. ear implant containing norgestomet. Oxytocin (100 USP units) was i.v. administered 4 h after ergotamine or saline. Treatment x time affected (P < .001) respiration rates, cortisol, insulin, and glucagon and tended to influence (P = .12) triiodothyronine concentrations. Respiration rates were elevated (P < .01) 1 to 7 h after ergotamine but were unaltered by saline. Plasma cortisol was elevated (P < .01) 1 to 5 h after ergotamine, but not in response to saline. Plasma triiodothyronine was elevated (P < .01) 1 to 2 h after ergotamine, but not after saline. Insulin was decreased (P < .01) and glucagon increased (P < .01) within 1 h after ergotamine treatment, but they were not altered by saline. A second increase (P < .01) of glucagon occurred by 4 h after ergotamine. In Exp. 1 and 2, glucagon increased (P < .01) 1 h after oxytocin in saline and ergotamine cows. Results indicate that ergotamine can alter plasma concentrations of hormones that mediate nutrient metabolism and thermoregulation in cattle.  相似文献   

20.
This study examined the effects of road transportation on metabolic and immunological responses in dairy heifers. Twenty Holstein heifers in early pregnancy were divided into non‐transported (NT; n = 7) and transported (T; n = 13) groups. Blood was collected before transportation (BT), immediately after transportation for 100 km (T1) and 200 km (T2), and 24 h after transportation (AT). The T heifers had higher (P < 0.05) blood cortisol and non‐esterified fatty acid concentrations after T1 and T2 than did NT heifers. By contrast, the T heifers had lower (P < 0.05) serum triglyceride concentrations after T1 and T2 than had the NT heifers. The serum cortisol and triglyceride concentrations returned (P > 0.05) to the BT concentrations at 24 h AT in the T heifers. The granulocyte‐to‐lymphocyte ratio and the percentage of monocytes were higher (P < 0.05) after T2 in the T heifers than in the NT heifers, suggesting that transportation stress increased the numbers of innate immune cells. T heifers had higher (P < 0.01) plasma haptoglobin concentrations than NT heifers 24 h AT. In conclusion, transportation increased cortisol secretion and was correlated with increased metabolic responses and up‐regulation of peripheral innate immune cells in dairy heifers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号