首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The community structure of methanogenic archaea is relatively stable,i.e.,it is sustained at a high abundance with minimal changes in composition,in paddy field soils irrespective of submergence and drainage.In contrast,the abundance in non-methanogenic oxic soils is much lower than that in paddy field soils.This study aimed to describe methanogenic archaeal community development following the long-term submergence of non-methanogenic oxic upland field soils in pot and field experiments.In the pot experiment,a soil sample obtained from an upland field was incubated under submerged conditions for 275 d.Soil samples periodically collected were subjected to culture-dependent most probable number(MPN)enumeration,polymerase chain reaction-denaturing gradient gel electrophoresis(PCR-DGGE)analysis of archaeal 16 S r RNA gene,and quantitative PCR analysis of the methyl-coenzyme M reductase alpha subunit gene(mcr A)of methanogenic archaea.The abundance of methanogenic archaea increased from 102 to 103 cells g-1 dry soil and 104 to 107 copies of mcr A gene g-1 dry soil after submergence.Although no methanogenic archaeon was detected prior to incubation by the DGGE analysis,members from Methanocellales,Methanosarcinaceae,and Methanosaetaceae proliferated in the soils,and the community structure was relatively stable once established.In the field experiment,the number of viable methanogenic archaea in a rice paddy field converted from meadow(reclaimed paddy field)was monitored by MPN enumeration over five annual cycles of field operations.Viability was also determined simultaneously in a paddy field where the plow layer soil from a farmer’s paddy field was dressed onto the meadow(dressed paddy field)and an upland crop field converted from the meadow(reclaimed upland field).The number of viable methanogenic archaea in the reclaimed paddy field was below the detection limit before the first cultivation of rice and in the reclaimed upland field.Then,the number gradually increased over five years and finally reached 103–104 cells g-1 dry soil,which was comparable to that in the dressed paddy field.These findings showed that the low abundance of autochthonous methanogenic archaea in the non-methanogenic oxic upland field soils steadily proliferated,and the community structure was developed following repeated and long-term submergence.These results suggest that habitats suitable for methanogenic archaea were established in soil following repeated and long-term submergence.  相似文献   

2.
The priming effect (PE) plays a critical role in the control of soil carbon (C) cycling and influences the alteration of soil organic C (SOC) decomposition by fresh C input.However,drivers of PE for the fast and slow SOC pools remain unclear because of the varying results from individual studies.Using meta-analysis in combination with boosted regression tree (BRT) analysis,we evaluated the relative contribution of multiple drivers of PE with substrate and their patterns across each driver gradient.The results showed that the variability of PE was larger for the fast SOC pool than for the slow SOC pool.Based on the BRT analysis,67%and 34%of the variation in PE were explained for the fast and slow SOC pools,respectively.There were seven determinants of PE for the fast SOC pool,with soil total nitrogen (N) content being the most important,followed by,in a descending order,substrate C:N ratio,soil moisture,soil clay content,soil pH,substrate addition rate,and SOC content.The directions of PE were negative when soil total N content and substrate C:N ratio were below 2 g kg~(-1)and 20,respectively,but the directions changed from negative to positive with increasing levels of this two factors.Soils with optimal water content (50%–70%of the water-holding capacity) or moderately low pH (5–6) were prone to producing a greater PE.For the slow SOC pool,soil p H and soil total N content substantially explained the variation in PE.The magnitude of PE was likely to decrease with increasing soil pH for the slow SOC pool.In addition,the magnitude of PE slightly fluctuated with soil N content for the slow SOC pool.Overall,this meta-analysis provided new insights into the distinctive PEs for different SOC pools and indicated knowledge gaps between PE and its regulating factors for the slow SOC pool.  相似文献   

3.
Northern peatlands store nearly one-third of terrestrial carbon(C)stocks while covering only 3%of the global landmass;nevertheless,the drivers of C cycling in these often-waterlogged ecosystems are different from those that control C dynamics in upland forested soils.To explore how multiple abiotic and biotic characteristics of bogs interact to shape microbial activity in a northern,forested bog,we added a labile C tracer(13C-labeled starch)to in situ peat mesocosms and correlated heterotrophic respiration with natural variation in several microbial predictor variables,such as enzyme activity and microbial biomass,as well as with a suite of abiotic variables and proximity to vascular plants aboveground.We found that peat moisture content was positively correlated with respiration and microbial activity,even when moisture levels exceeded total saturation,suggesting that access to organic matter substrates in drier environments may be limiting for microbial activity.Proximity to black spruce trees decreased total and labile heterotrophic respiration.This negative relationship may reflect the influence of tree evapotranspiration and peat shading effects;i.e.,microbial activity may decline as peat dries and cools near trees.Here,we isolated the response of heterotrophic respiration to explore the variation in,and interactions among,multiple abiotic and biotic drivers that influence microbial activity.This approach allowed us to reveal the relative influence of individual drivers on C respiration in these globally important C sinks.  相似文献   

4.
Denitrification is one of the major processes causing nitrogen loss from arable soils.This study aimed to investigate the responses of nir S-type denitrifier communities to different chronic fertilization regimes across the black soil region of Northeast China.Soil samples were collected from sites located in the north(NB),middle(MB),and south(SB)of the black soil region of Northeast China,each with four chronic fertilization regimes:no fertilizer(No F),chemical fertilizer(CF),manure(M),and chemical fertilizer plus manure(CFM).Methods of quantitative polymerase chain reaction(q PCR)and Illumina Mi Seq sequencing were applied to assess the abundance and composition of denitrifier communities by targeting the nir S gene.The results showed that the M and CFM regimes significantly increased the abundances of nir S-type denitrifiers compared with No F at the three locations.The majority of nir S sequences were grouped as unclassified denitrifiers,and the different fertilizers induced little variation in the relative abundance of known nir S-type denitrifier taxa.Over 90%of the sequences were shared among the four fertilization regimes at each location,but none of the abundant operational taxonomic units(OTUs)were shared among the three locations.Principal coordinate analysis(PCo A)revealed that the communities of nir S-type denitrifier were separated into three groups that corresponded with their locations.Although similar fertilization regimes did not induce consistent changes in the nir S-type denitrifier communities,soil p H and NO-3-N content simultaneously and significantly influenced the structure of nir S-type denitrifier communities at the three locations.Our results highlight that geographical separation rather than chronic fertilization was the dominant factor determining the nir S-type denitrifier community structures,and similar chronic fertilization regimes did not induce consistent shifts of nir S-type denitrifier communities in the black soils.  相似文献   

5.
Humic substances acting as an electron shuttle and nitrogen transformation process influence remarkably the electron transfer in anaerobic reaction systems and thus may affect the reductive dechlorination of hexachlorobenzene(HCB). In order to develop an efficient agricultural strategy for the remediation of organochlorine-contaminated soils, a batch incubation experiment was conducted to study the effects of humic acid, urea, and their interaction on the reductive dechlorination of HCB in a Hydragric Acrisol with high iron oxide content. After 44 d of anaerobic incubation, the five treatments, sterile control,control, humic acid, urea, and humic acid + urea decreased HCB residues by 28.8%, 47.8%, 64.7%, 57.8%, and 71.3%, respectively. The amendment of humic acid or urea significantly decreased soil Eh values and accelerated Fe(Ⅲ) reduction to Fe(Ⅱ), thus promoting markedly reductive dechlorination of HCB. Humic acid had a larger dechlorination effect than urea. Since there was a synergistic interaction between humic acid and urea that accelerated HCB dechlorination, the treatment having both amendments together was the most efficient for HCB dechlorination. The results showed that the combination of NH4+-N supplied by a fertilizer and humic substance is a feasible strategy for the remediation of organochlorine-contaminated soils with abundant iron oxide.  相似文献   

6.
Excess nitrogen(N) fertiliser use in agriculture is associated with water pollution and greenhouse gas emissions.While practices and programs to reduce N fertiliser application continue to be developed,inefficient fertiliser use persists.Practices that reduce mineral N fertiliser application are needed in a sustainable agricultural ecosystem to control leaching and gaseous losses for environmental management.This study evaluated whether fully or partially replacing mineral N fertiliser with zoo compost(Perth Zoo) could be a good mitigation strategy to reduce mineral N fertiliser application without affecting wheat yield and nutrition.To achieve this,a glasshouse experiment was conducted to assess the complementary effect of zoo compost and mineral N fertiliser on wheat yield and nutrition in a sandy soil of southwestern Australia.Additionally,a chlorophyll meter was used to determine whether there was a correlation between chlorophyll content and soil mineral N content,grain N uptake,and grain protein content at the tillering(42 d after sowing(DAS)) and heading(63 DAS) growth stages.The standard practice for N application for this soil type in this area,100 kg ha-1,was used with a soil bulk density of 1.3 g cm-3 to calculate the amount of mineral N(urea,46% N) and Perth Zoo compost(ZC)(0.69% N) for each treatment.Treatments comprised a control(no nutrients added,T1),mineral N only(100 kg N ha-1,T2),ZC only(100 kg N ha-1,T7),and combinations of mineral N and ZC at different rates(mineral N at 100 kg N ha-1+ ZC at 25 kg N ha-1(T3),mineral N at 75 kg N ha-1+ ZC at 25 kg N ha-1(T4),mineral N at 75 kg N ha-1+ ZC at 50 kg N ha-1(T5),and mineral N at 50 kg N ha-1+ ZC at 50 kg N ha-1(T6)).The T6 treatment significantly increased grain yield(by 26%) relative to the T2 treatment.However,the T7 treatment did not affect grain yield when compared to the T2 treatment.All treatments with mineral N and ZC in combination significantly improved the 1 000-grain weight compared to the T2 treatment.Chlorophyll content was better correlated with soil mineral N content(r = 0.61),grain N uptake(r = 0.62),and grain protein content(r = 0.80) at heading(63 DAS) than at tillering(42 DAS).While ZC alone could not serve as an alternative to mineral N fertiliser,its complementary use could reduce the mineral N fertiliser requirement by up to 50% for wheat without compromising grain yield,which needs to be verified in the field.Chlorophyll content could be used to predict soil mineral N at the heading stage,and further studies are warranted to verify its accuracy in the field.Overall,the application of ZC as part of integrated nutrient management improved crop yield with reduced N fertiliser application.  相似文献   

7.
Functional redundancy in soil microbial communities seems to contradict the notion that individual species have distinct metabolic niches in multi-species communities.All soil microbiota have the metabolic capacity for"basic"functions(e.g.,respiration and nitrogen and phosphorus cycling),but only a few soil microbiota participate in"rare"functions(e.g.,methanogenesis and mineralization of recalcitrant organic pollutants).The objective of this perspective paper is to use the phylogenetic niche conservatism theory as an explanation for the functional redundancy of soil microbiota.Phylogenetic niche conservatism is defined as the tendency for lineages to retain ancestral functional characteristics through evolutionary time-scales.The present-day soil microbiota is the result of a community assembly process that started when prokaryotes first appeared on Earth.For billions of years,microbiota have retained a highly conserved set of core genes that control the essential redox and biogeochemical reactions for life on Earth.These genes are passed from microbe to microbe,which contributes to functional redundancy in soil microbiota at the planetary scale.The assembly of microbial communities during soil formation is consistent with phylogenetic niche conservatism.Within a specific soil,the heterogeneous matrix provides an infinite number of sets of diverse environmental conditions,i.e.,niches that lead to the divergence of microbial species.The phylogenetic niche conservatism theory predicts that two or more microbial species diverging from the same clade will have an overlap in their niches,implying that they are functionally redundant in some of their metabolic processes.The endogenous genetic factors that constrain the adaptation of individuals and,thus,populations to changing environmental conditions constitute the core process of phylogenetic niche conservatism.Furthermore,the degree of functional redundancy in a particular soil is proportional to the complexity of the considered function.We conclude with a conceptual model that identifies six patterns of functional redundancy in soil microbial communities,consistent with the phylogenetic niche conservatism theory.  相似文献   

8.
Long-term nitrogen(N)fertilization imposes strong selection on nitrifying communities in agricultural soil,but how a progressively changing niche affects potentially active nitrifiers in the field remains poorly understood.Using a 44-year grassland fertilization experiment,we investigated community shifts of active nitrifiers by DNA-based stable isotope probing(SIP)of field soils that received no fertilization(CK),high levels of organic cattle manure(HC),and chemical N fertilization(CF).Incubation of DNA-SIP microcosms showed significant nitrification activities in CF and HC soils,whereas no activity occurred in CK soils.The 44 years of inorganic N fertilization selected only 13C-ammonia-oxidizing bacteria(AOB),whereas cattle slurry applications created a niche in which both ammonia-oxidizing archaea(AOA)and AOB could be actively13C-labeled.Phylogenetic analysis indicated that Nitrosospira sp.62-like AOB dominated inorganically fertilized CF soils,while Nitrosospira sp.41-like AOB were abundant in organically fertilized HC soils.The 13C-AOA in HC soils were affiliated with the 29i4 lineage.The 13C-nitrite-oxidizing bacteria(NOB)were dominated by both Nitrospira-and Nitrobacter-like communities in CF soils,and the latter was overwhelmingly abundant in HC soils.The 13C-labeled nitrifying communities in SIP microcosms of CF and HC soils were largely similar to those predominant under field conditions.These results provide direct evidence for a strong selection of distinctly active nitrifiers after 44 years of different fertilization regimes in the field.Our findings imply that niche differentiation of nitrifying communities could be assessed as a net result of microbial adaption over 44 years to inorganic and organic N fertilization in the field,where distinct nitrifiers have been shaped by intensified anthropogenic N input.  相似文献   

9.
In rice-wheat rotation systems, changes in soil phosphorus(P) pools and microorganisms in rice-growing seasons have been studied;however, further investigations are required to test whether these indexes exhibit different responses in wheat-growing seasons. Additionally, such studies need to include potential variations in soil carbon(C) structure and microbial community composition. In this study, a long-term rice-wheat rotation P-input reduction experiment was conducted to observe the variations in soil P pools and C composition in the 7th wheat season and to investigate the responses of soil enzyme activity and microbial communities. Four P fertilization treatments were included in the experiment, i.e., P application for rice season only(PR), for wheat season only(PW), and for both rice and wheat seasons(PR+W) and no P application in either season(Pzero). Compared with PR+W treatment, Pzero treatment significantly decreased(P < 0.05) labile and stable P pools. Different P fertilization regimes altered soil microbial community composition and enzyme activity, whereas C composition did not vary. However, PW treatment resulted in relatively more O-alkyl-C than PR treatment and the highest number of microorganisms. Besides, the higher ratios of fungi/bacteria and Gram-positive bactetia/Gram-negative bactetia were related to labile C pools, particularly O-alkyl-C, as opposed to recalcitrant C. Our results clarified the status of soil P pools, C chemistry, and the response of microorganisms under dry-farming conditions in the P input-reduced rice-wheat rotation system.  相似文献   

10.
Since the advent of sequencing technologies,the determination of microbial diversity to predict microbial functions,which are the major determinants of soil functions,has become a major topic of interest,as evidenced by the 900 publications dealing with soil metagenome published up to 2017.However,the detection of a gene in soil does not mean that the relative function is expressed,and the presence of a particular taxon does not mean that the relative functions determined in pure culture also occur in the studied soil.Another critical step is to link microbial community composition or function to the product analyzed to determine flux rates.Indeed,flux rates might not only be highly dynamic,but several metabolites can depend on different reactions,which makes the link to one process of interest difficult or even impossible.This review also discusses biases caused by sampling,storage of samples,DNA extraction and purification,sequencing(amplicon-vs.metagenome sequencing),and bioinformatic data analysis.Insights and the limits of predicting microbial interactions by network inference methods are critically discussed,and finally,future directions for a better understanding of soil functions by using measurements of microbial diversity are presented.  相似文献   

11.
外包土工布暗管排盐条件下水盐运移规律   总被引:10,自引:7,他引:3  
为揭示外包土工布暗管埋设在非饱和带时淋洗后水分和盐分的运移规律,该文设计了模拟暗管排水的室内试验,研究2种土壤初始状态下(非饱和状态和田持状态),排水初期暗管与地下水位的相对位置及其排水排盐情况,从开始淋洗至暗管停止排水全过程中地下水埋深及含盐量变化规律、暗管的排水排盐效果及土壤剖面的水盐动态运移规律。结果表明:在暗管周围包裹土工布的情况下,土壤初始状态无论是非饱和还是田持,当暗管开始排水时地下水均已完全淹没暗管,此时的排盐量最大,流量呈先增大后减小的变化趋势,且地下水位先升高后降低,地下水含盐量随着淋洗水量的增加由累积转变为脱盐。对比淋洗非饱和土壤(试验1)和淋洗田持土壤(试验2)的试验结果,试验2中暗管的排水、排盐效果优于试验1,在试验1中淋洗非饱和土壤时,土壤脱盐率在垂直方向上随土壤深度的增加逐渐降低,0~20 cm土层的脱盐率(>85%)最大,降至无盐水平,暗管周围土壤脱盐率相对较小(<60%),仍处于中度盐渍化水平;水平方向上,0~20 cm土层的脱盐率差异不大,20~40 cm土层中距暗管越远其脱盐率越小。试验2在试验1基础上进行,淋洗田持土壤时,0~20 cm土层盐分不再变化,30~40 cm土层的脱盐率增大(>60%)。此外,试验1中淋洗脱盐效果大于暗管排盐效果,暗管主要排出暗管以上土壤盐分;试验2中暗管排盐效果增强,暗管不仅排出暗管周围土壤盐分,而且排出暗管以下土层及地下水中盐分,随着淋洗水量的增加,土壤由脱盐型转变为排盐型。研究结果表明外包土工布暗管的应用效果受地下水与暗管相对位置的影响,合理提高淋洗水量可以增强暗管排水排盐效果及土壤脱盐效果,有效改善土壤盐渍化。研究结果可为西北内陆干旱地区不同地下水埋深条件下暗管排盐技术的推广和应用提供理论支撑和科学指导。  相似文献   

12.
Abstract

Experiments were carried out to investigate 10 winter triticale cultivars for 1) genetic variability of patterns of resistance to pre-harvest sprouting, and 2) the simultaneity of seed maturation in spikes by determining the developmental stage and by measuring the rate of germination before and after physiological maturity. The cultivars used were Dagro, Fidelio, Lamberto, Lasko, Lupus, Modus, Prego, Tewo, Ulrika and Vision, and were compared by measuring the post-harvest grain falling number and by germination tests on harvested spikes during the grain filling period. Winter rye Vambo and winter wheat Kosack were used as controls. The moisture content of kernels at physiological maturity (PM) was affected by climatic conditions (r=0.38; p<0.05). Germination rate of kernels in spike before PM was influenced by cultivar only up to 17%; mostly it was affected by climatic conditions (coefficient of determination, 54%). Kernel germination rate after PM was dependent on cultivar up to 37%, but was dependent on precipitation amounts in August (coefficient of determination, 60%). The most resistant cultivar to germination during post-physiological maturity period was Modus, followed by Dagro and Prego. Kernels’ germination rate after PM was found to be an appropriate measure for selection of promising triticale cultivars for the climatic conditions, which are specific for the locations studied. The desiccation rate after PM affected significantly the duration of the period from PM up to harvest time (r=?0.50; p<0.01).  相似文献   

13.
采用Li-6400光合作用系统测定北方多沙粗沙区不同光强条件下常见树种水分利用效率和蒸腾效率结果表明,6个树种水分利用效率依次为刺槐>山楂>杨树>柳树>榆树>核桃,2种灌木沙柳水分利用效率高于柠条,但其蒸腾速率却小于柠条,在半旱区水分竞争力强于柠条。  相似文献   

14.
晋北半干旱区免耕对玉米光合和蒸腾特性的影响   总被引:7,自引:0,他引:7  
采用田间小区试验,对覆盖免耕、留茬免耕和传统翻耕三种耕作方式下玉米不同生育期土壤温度、土壤含水量以及玉米蒸腾速率和净光合速率进行观测。结果表明:与翻耕相比,免耕可降低0-20cm土层的土壤温度;覆盖免耕玉米地土壤温度的降低幅度较大,而留茬免耕地则较小;免耕对土壤温度的降低作用随着玉米的生长发育而减弱。免耕能够提高土壤含水量,尤其是0-60cm土层。免耕与翻耕相比,在玉米苗期,叶片的蒸腾和光合速率降低,其中覆盖免耕玉米日平均蒸腾与光合速率比翻耕分别降低了8.5%和9.7%,差异显著;留茬免耕略有降低,但差异不显著。在拔节前期,免耕与翻耕田玉米的蒸腾和光合速率无显著差异;在拔节后期、抽穗期和灌浆期,覆盖免耕玉米蒸腾和光合速率均比翻耕显著提高;留茬免耕在灌浆期玉米的蒸腾与光合速率均比翻耕显著提高,其它时期与翻耕差异不显著。  相似文献   

15.
水稻胚性愈伤诱导及其遗传转化的几个技术参数研究   总被引:3,自引:2,他引:1  
以日本晴成熟种子及幼嫩种子为材料诱导形成胚性愈伤组织,经农杆菌介导将水稻隐花色素基因的4个RNAi和2个反义RNA表达载体分别转化日本晴愈伤组织,再经抗性筛选和分化培养诱导形成植株,经分子检测筛选出阳性转基因苗。对胚性愈伤诱导率、抗性愈伤率、分化出苗率及转化率进行统计分析。结果表明,成熟种子、新鲜成熟种子及幼嫩种子愈伤诱导率均大于81%,平均为86.67%,其中以新鲜成熟种子愈伤诱导率最高,达96.89%;抗性愈伤率成熟胚为22.21%~40.71%,平均为28.49%,幼胚为36.79%~43.21%,平均为40%,幼胚的抗性愈伤率高于成熟胚;分化出苗率成熟胚为59.29%~80.43%,平均为71.59%,幼胚为63.16%~72.73%,平均67.95%,幼胚与成熟胚差异不明显;转化率(Gus检测阳性率)成熟胚为43.07%~81.08%,平均61.59%,幼胚为58.33%~76.67%,平均67.50%,幼胚转化率稍高于成熟胚。  相似文献   

16.
考虑三偏差因素的滴灌系统流量总偏差率   总被引:2,自引:5,他引:2  
中国微灌行业规范规定滴灌系统设计中的流量偏差率,只考虑水力偏差一个因素,导致设计偏离实际。随着生产发展与技术进步,为提高设计精度,有必要研究考虑再计入滴头制造偏差及滴头高程偏差的影响。鉴于已有文献[4]在推导过程中有诸多问题,结论不可信,再次研究了考虑三偏差因素的流量总偏差率。该文在已有高差流量偏差率的基础上,定义了滴头的制造流量偏差率、导出了3个流量偏差率最不利组合——流量总偏差率计算式,并提出了流量总偏差率允许值的建议。  相似文献   

17.
在地处沙漠绿洲的甜瓜种植区,研究不同水、 氮输入量对土壤氮素平衡和运移的影响,为当地甜瓜生产的水肥管理提供科学依据。通过2009、 2010连续两年田间裂区试验,研究了不同灌水量(1500、 2100、 2700、 3300 m3/hm2,以W1500、 W2100、 W2700和W3300表示)和施氮量(N 0、 120、 240、 360 kg/hm2,以N0、 N120、 N240和N360表示)对土壤硝态氮分布、 累积和甜瓜的水、 氮吸收以及产量的影响。结果表明,甜瓜收获后各处理土壤硝态氮含量在040 cm土层最高, 0200 cm土层呈现先减少后增加再减少的变化趋势,且施氮量越大,硝态氮在80120 cm土层大量累积的趋势越明显。土壤硝态氮累积量随施氮量的增加而增加,随灌水量的增加而减少,灌水量超过2700 m3/hm2 时,仅有不到53%的硝态氮留存在0100 cm土层。甜瓜产量和果实氮素吸收量随灌水量和施氮量的增加而提高,但在W3300N360处理略有下降。氮素回收率随施氮量的增加持续降低,氮收获指数以处理W2700N240最大,水分利用效率以W1500N240处理最大。W2700N240处理能够兼顾甜瓜产量,平衡氮素吸收运移与土壤中硝态氮的留存空间3个方面,是绿洲灌区甜瓜种植的高产高效的水氮输入模式。  相似文献   

18.
L195柴油机用雾化器喷水节油研究   总被引:1,自引:0,他引:1  
在L195柴油机进气管适当位置,安装一个特制的不锈钢雾化器,用它喷出一定量的雾化软水,参与气缸内燃烧,可提高柴油机的性能。根据柴油机的工况,可以控制所需的较佳喷水量。  相似文献   

19.
生物质成型颗粒燃料燃烧特性的试验研究   总被引:3,自引:13,他引:3  
该文利用热重分析仪对玉米秸秆、木屑、混合木屑三种生物质成型颗粒燃料进行了理论分析,分段比较了三种颗粒燃料的燃烧特点及各段表观活化能和频率因子的热化学动力学参数,分析了成型处理工序对生物质燃烧特性的影响。结合颗粒燃料在燃烧炉中的实际燃烧特点,明确了影响颗粒燃料燃烧适应性的主导因素是挥发分的析出和燃烧速率,由此为改良低质颗粒燃料、提高燃烧炉适应性提出了指导性建议。  相似文献   

20.
温度和水分对华中地区菜地土壤氮素矿化的影响   总被引:8,自引:1,他引:7  
为研究华中地区菜地土壤的矿化特征和矿化规律,拟定菜地土壤合理的氮肥施用量,本文以华中地区两种典型菜地土壤——黄棕壤和潮土为研究对象,利用室内连续培养试验研究了温度、水分对菜地土壤矿化的影响。结果表明,黄棕壤的矿化速率和氨化速率均随着温度的升高而升高;硝化速率在15%和25%含水量下随温度的升高而升高,而在35%含水量下随温度的升高而降低。潮土矿化速率在15%含水量时随温度的升高而升高,而在25%和35%含水量下随温度的升高先增加后减小;硝化速率在15%和35%含水量时随温度的升高而增加,25%含水量时随温度的升高先增加后降低;氨化作用随温度的升高而降低。黄棕壤的矿化量在含水量为25%、温度35℃时高达34.9 mg.kg 1;潮土的矿化量在含水量为25%、温度为25℃时最高,为63.9mg.kg 1。不同温度下潮土矿化量均大于黄棕壤。黄棕壤的氨化速率随含水量的增加而增加,硝化速率随含水量的增加而降低,矿化速率则在含水量25%时最大。潮土的氨化、硝化和矿化作用随水分变化不明显。本研究还发现,25%的含水量是黄棕壤微生物活性的水分临界点,潮土的水分临界点不明显。通过对土壤氮素的矿化速率与水分含量和温度之间的函数关系模拟发现,黄棕壤模拟效果好于潮土。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号