首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 153 毫秒
1.
【目的】斑马叶突变体作为水稻叶色突变体的重要种质资源,是研究植物光合作用机制和高光效育种的理想材料,对于解析光合作用机理和提高水稻产量具有重要意义。【方法】用甲基磺酸乙酯(EMS)诱变粳稻品种春江06建立突变体库,从突变体库中筛选到1份苗期为斑马叶的突变体,该突变体被命名为zl7(zebra leaf7)。在常规大田种植条件下分别比较突变体与野生型在苗期、抽穗期和成熟期叶色表型和产量性状差异,通过透射电镜实验分析叶片叶绿体发育情况,利用图位克隆方法克隆候选基因,利用荧光定量PCR方法分析参与叶绿素合成和叶绿体发育相关基因的表达水平。【结果】从苗期开始,突变体zl7表现出典型的斑马叶,叶绿素含量降低,直到抽穗期,斑马叶表型消失,叶片逐渐复绿,叶绿素含量无明显差异。光合速率测定和电镜观察结果显示,突变体zl7的光合速率、气孔导度下降,叶绿体发育异常。与野生型相比,突变体的株高、分蘖、穗长、一次枝梗、二次枝梗和每穗粒数均显著降低,而粒长、粒宽和千粒重均略有增加。荧光定量PCR结果表明突变体中参与叶绿素降解相关基因的表达量显著升高,而参与叶绿素合成和叶绿体发育相关基因的表达量显著降低。遗传分析...  相似文献   

2.
【目的】叶色突变相关基因的鉴定与克隆为研究叶绿体发育、叶绿素合成和光合作用等分子机制提供理论基础。【方法】从常规粳稻镇糯19杂交后代中分离出一个低温移栽后叶色转成白条纹的自然变异突变体,命名为wltt (white stripe leaf after transplanting at low temperature)。成熟期测定野生型和wltt的主要农艺性状,分别在苗期、移栽后15 d和同时期直播条件下测定新生叶片的色素含量并观察叶绿体的超微结构;将wltt和野生型正反交进行遗传分析;用wltt与籼稻9311杂交产生的F_2作为定位群体进行基因定位;采用RT-qPCR分析叶绿体发育、叶绿素合成和光合作用相关基因在野生型和wltt中的表达水平。【结果】wltt突变体在苗期表现正常绿色,移栽15 d后心叶出现白条纹叶表型,至分蘖末期心叶叶色恢复;而不经移栽,突变体不会出现白条纹叶。人工模拟实验表明该表型是由低温条件下根损伤引起的。与野生型相比,wltt突变体移栽后的新生叶色素含量显著降低,光合速率下降;同时株高变矮,穗长、剑叶长和每穗粒数均显著降低。叶绿体的超微结构显示,突变体的叶肉细胞中,仅少数细胞含有正常的叶绿体,其余大部分叶肉细胞不含叶绿体。进一步研究发现,突变体中部分光合系统相关基因和叶绿体发育相关基因表达下调,叶绿素生物合成相关的14个基因表达也下调。遗传分析表明,该突变性状受一对隐性核基因控制。利用wltt突变体/9311的F_2群体,将该基因定位于水稻第2染色体着丝粒附近853kb区间内。目前,该区间内没有叶色相关基因的报道。【结论】WLTT是低温条件下移栽调控叶片转色的关键基因,在叶绿体发育过程中发挥重要作用。  相似文献   

3.
【目的】叶色突变相关基因鉴定和克隆有助于研究光合作用,补充并完善叶绿体发育机理和色素合成代谢途径,为开展水稻的高光效育种提供理论依据。【方法】从粳稻品种Dongjin的组培后代中分离出一个白条纹突变体st13,成熟期测定野生型和st13的主要农艺性状,苗期测定色素含量并观察叶绿体的超微结构;将st13和Dongjin进行正反交,观察F_1植株表型,并对F_2表型分离进行卡方检验,对st13进行遗传分析;利用st13×南京11(籼稻品种)的F_2和F_(2:3)群体,对st13突变基因定位;采用qPCR分析叶绿体发育和叶绿素合成相关基因在st13与野生型相对表达量。【结果】与野生型Dongjin相比,该突变体的株高、单株有效穗数、穗长、结实率和千粒重等主要农艺性状显著下降。苗期的色素含量降低,分蘖期无差异。突变体的叶绿体中既有含丰富的类囊体膜结构的正常叶绿体,也存在无类囊体结构的叶绿体。遗传分析和基因定位结果表明,st13的突变表型受1对隐性核基因控制,突变基因位于第3条染色体长臂InDel(Insertion-Deletion)标记I3-21和I3-22之间。进一步在这两个标记之间设计了6对InDel标记,最终将基因定位在94kb区间内,此区间共有8个候选基因。【结论】这8个候选基因中,有5个假定的蛋白,其他三个都是有功能注释的蛋白,而这三个蛋白在水稻中均未见报道,因此,st13突变是由一个新的叶色基因突变引起的;同时st13中叶绿体发育、叶绿素合成和光合系统相关基因的表达也发生了显著改变,推测ST13可能是调控叶绿体发育的关键基因。  相似文献   

4.
【目的】叶片是水稻进行光合作用最重要的器官。叶色突变体是研究光合作用、叶绿素合成代谢和叶绿体发育的重要材料。【方法】利用60Co辐射诱变中籼恢复系自选1号,获得黄叶早衰突变体osyes1。幼苗期对突变体和野生型进行外源H2O2处理。抽穗期对突变体和野生型叶片进行超氧化物歧化酶活性、过氧化氢酶活性、活性氧含量、丙二醛含量、可溶性蛋白含量、叶绿素含量、净光合速率测定以及透射电镜观察。成熟期考查突变体和野生型的主要农艺性状。以osyes1/02428的F2群体中的隐性单株为作图群体,利用图位克隆方法定位OsYES1基因。【结果】osyes1的突变性状始于3~4叶期,水稻抽穗后,所有叶片均表现为黄叶衰老症状,致使突变体株高、穗长、每穗粒数及结实率极显著低于野生型对照。与野生型对照相比,突变体幼苗对外源H2O2更敏感。生理分析表明,孕穗期野生型倒3叶的叶绿素含量、过氧化物酶和过氧化氢酶活性极显著低于倒2叶和剑叶,而突变体的含量则极显著低于野生型且依次极显著降低;与野生型相比,突变体剑叶、倒2叶和倒3叶的丙二醛、H2O2和O2-含量极显著增加,而可溶性蛋白含量则相反。遗传分析表明,osyes1受一对隐性核基因控制,利用图位克隆技术将OsYES1基因定位于第7染色体短臂的RM21353与RM21384之间,物理距离为708 kb。【结论】由于osyes1叶片过早黄化衰老导致与产量相关的重要农艺性状显著下降。OsYES1基因定位在第7染色体两个SSR标记(RM21353和RM21384)之间的708 kb的物理区间内。  相似文献   

5.
【目的】本研究旨在鉴定和克隆水稻温敏转绿新基因,揭示其参与叶绿体发生发育和光合作用的分子机制,为高光效育种提供理论支撑。【方法】利用辐射诱变的方法,从粳稻品种日本晴中筛选获得叶片黄化突变体osv15,并对其表型、农艺性状和遗传方式进行详细分析。构建了突变体与Kasalath的F2群体,利用多态性分子标记对目的基因进行定位和测序分析。【结果】osv15幼苗期在22℃低温下叶片黄化,叶绿素含量仅为野生型的10%,光化学效率下降,叶绿体结构异常;随着温度的升高,osv15的叶色由黄转绿,30℃时叶绿素含量恢复到野生型的68%,光化学效率和叶绿体发育与野生型相近。在自然环境下,osv15突变体从苗期至成熟期均表现为叶片黄化,且株高、分蘖数和产量等农艺性状与野生型相比差异显著。遗传分析表明osv15突变体的表型由一对隐性核基因控制。将OsV15基因定位到第6染色体多态性标记S4和S5之间84 kb的区间内,定位区间测序发现突变体中编码分子伴侣蛋白的基因Cpn60β1(LOC_Os06g02380)发生单碱基缺失。【结论】osv15是一个新的水稻温敏转绿突变体,Cpn60β1可能为突变基因。  相似文献   

6.
【目的】叶片是水稻理想株型的重要内容,叶片适度卷曲可以提高光合效率。对卷叶相关基因进行遗传分析和初步定位,为下一步的基因克隆与功能分析提供研究基础。【方法】利用EMS诱变雄性不育保持系宜香1B获得一份稳定遗传的叶片向内卷曲突变体,暂命名为rl(t)。在成熟期,测定野生型和rl(t)的主要农艺性状;在分蘖期,取野生型和rl(t)叶片用FAA固定液固定进行石蜡切片,同时,用野生型和rl(t)剑叶测定叶绿素含量;在抽穗期,利用Li-6400便携式光合仪测定10株抽穗期的野生型和rl(t)的光合参数;将rl(t)与野生型及日本晴杂交,观察F_1植株表型,对F_2表型分离进行χ~2测验,对突变体进行遗传分析。以rl(t)/日本晴的F_2群体为材料,利用BSA法进行定位。【结果】与野生型相比,突变体叶片向内卷曲明显,叶片更加直立,叶色变深,其他主要农艺性状均有不同程度降低。光合特性分析表明,突变体比野生型具有更高的光合色素含量,但光合效率没有明显差异。叶片组织切片观察表明,突变体中泡状细胞变小可能是导致叶片卷曲的主要原因。遗传分析表明,该突变体受一对隐性核基因控制,利用突变体与日本晴的F_2群体进行基因定位,最终将该基因定位在第7染色体长臂InDel标记Ind3和Ind4间610 kb的物理区间。【结论】rl(t)叶片内卷是由于近轴面泡状细胞面积减小。RL(t)定位区间内未见卷叶相关基因报道,推测RL(t)可能是一对新基因。  相似文献   

7.
【目的】通过对水稻转绿和穗顶端退化等突变体的研究,可以鉴定更多与叶绿体发育和穗发育相关的基因。【方法】在常规种植条件下比较突变体vpa1(virescent and panicle abortion 1)表型及主要农艺性状差异,利用分离群体分析和图位克隆法进行相关基因定位。【结果】突变体vpa1表现苗期白化,并逐渐转绿恢复成正常叶色,抽穗后可明显观查到穗顶端退化表型。vpa1的主要农艺性状除了结实率以外,株高、穗长、每穗实粒数等均较野生型显著下降。遗传分析表明白化转绿和穗顶端退化表型受独立的两个隐性基因控制。控制白化转绿叶性状的Osv16定位于第3染色体RM3441和RM3029之间约125kb物理区间内,区间内未见白化转绿性状相关基因的报道。控制穗顶端退化性状的Ospaa10定位于第1染色体RM11157和RM5972之间,区间内物理距离约190kb,区间内未见穗顶端退化相关基因的报道。【结论】Osv16和Ospaa10两个基因的突变导致vpa1的叶色和穗型同时出现变异,为白化转绿基因Osv16和穗顶端退化基因Ospaa10的克隆和功能研究打下了基础。  相似文献   

8.
【目的】对叶绿体发育相关基因进行克隆和功能分析,为解析叶绿体功能奠定分子基础。【方法】用甲基磺酸乙酯(EMS)处理籼稻9311获得一个条纹叶和白穗突变体slwp,通过色素分析和农艺性状观察分析该突变体的表型,通过图位克隆方法分离该基因,进一步利用定量PCR分析相关基因的表达情况。【结果】突变体slwp从2叶期开始至抽穗期表现出条纹叶表型,抽穗后幼穗白化,光合色素含量明显低于野生型;株高降低、抽穗延迟、产量降低等表型。该突变性状为单隐性核基因控制,该基因定位于水稻第6染色体短臂C6-4和N14标记之间0.91 Mb区间内。基因组测序表明核糖核苷二磷酸还原酶小亚基基因(RNRS1)编码区第776位点发生单碱基替换,导致甘氨酸突变为天冬氨酸;该基因与已报导的水稻基因St1GwsSt-wp为等位基因。通过对这4个等位基因的突变位点和表型进行分析,总结了该基因不同位点突变对植株表型的影响以及籼粳之间的差异。表达分析显示与叶绿素合成有关的基因受到不同程度调控,叶绿体发育第一和第二阶段基因上调表达,光合作用相关基因均下调表达。【结论】本研究分析了SLWP(RNRS1)基因不同位点的变异对水稻表型的影响,相关结果加深了对RNRS1基因功能的认识,有助于阐明叶绿体发育的分子机制。  相似文献   

9.
在水稻品种南粳41中发现了一个黄绿叶自然突变体,经过多代连续自交形成了稳定的突变系,命名为ygl11(t),ygl11(t)整个生育期叶片都表现为黄绿色。对苗期、分蘖盛期、齐穗期突变体和野生型的叶绿素含量进行测定,ygl11(t)的叶绿素含量是野生型的45.7%~74.7%,叶绿素a含量是野生型的55.2%~87.5%,叶绿素b含量是野生型的12.5%~25.3%,ygl11(t)的类胡萝卜素的含量是野生型的62.3%~97.0%。ygl11(t)在分蘖盛期的净光合速率显著高于野生型,花后10d,ygl11(t)的净光合速率比野生型略低。对突变体叶片中叶绿体的超微结构进行观察,发现突变体叶绿体内的类囊体基粒片层数目减少且严重扭曲变形。遗传分析表明,ygl11(t)叶色性状受1对隐性核基因控制。利用SSR分子标记将YGL11(t)初步定位在水稻第10染色体的长臂上,进一步利用新开发的InDel和CAPS标记将YGL11(t)定位在58.1kb的物理距离内。对该区段内存在的开放阅读框进行序列分析,发现突变体ygl11(t)中编码叶绿素a氧化酶(chlorophyll a oxygenase 1)基因(OsCAO 1)的第9个外显子存在2个碱基缺失,从而导致提前出现终止密码子,初步分析OsCAO1即为YGL11(t)的候选基因。  相似文献   

10.
以水稻白化转绿型叶色突变体及其野生型亲本为材料,研究突变体转绿过程中叶片相关生理特性及其叶绿体发育超微结构变化.研究结果表明:突变体随着叶色转绿,叶片叶绿素、可溶性蛋白含量增加、超氧化物歧化酶(SOD)活性降低,突变体叶色在完全转绿后,SOD活性电泳中出现了清晰的Fe-SOD谱带;突变体在2叶1心期,叶肉细胞内都是囊状空泡,没有叶绿体,而野生型亲本叶肉细胞内已具有大量叶绿体存在;突变体6叶1心期,叶肉内可以观察到叶绿体的存在,但叶绿体形态不规则或畸形;野生型亲本叶绿体可以直接由前质体正常发育而来,而突变体的叶绿体发育经历了“前质体-白色体-叶绿体”的过程,其叶绿体发育明显滞后.  相似文献   

11.
水稻着丝粒附近一个淡绿叶突变相关基因的定位分析   总被引:6,自引:0,他引:6  
在T DNA插入水稻突变体库中,发现了一个以日本晴为遗传背景的温度钝感型淡绿叶突变体pgl2(pale green leaf 2 )。遗传学分析表明该突变性状由1对单隐性核基因控制。利用突变体与籼稻品种龙特甫杂交,构建F2群体对突变基因进行精细定位。初步定位结果显示目的基因与第8染色体上SSR标记RM331连锁,在该标记附近发展了14对INDEL标记,将突变基因进一步定位于着丝粒上2.37 Mb的区间,并对该区间候选基因进行了分析。突变体叶绿素的总量与对照相仿,但是叶绿素a/b比值趋于1,明显低于对照。推测突变基因可能与叶绿素a、b间的转化有关。还就着丝粒中基因定位的引物设计方法进行了讨论。  相似文献   

12.
A thermo-insensitive pale green leaf mutant (pgl2) was isolated from T-DNA inserted transgenic lines of rice (Oryza sativa L. subsp. japonica cv. Nipponbare). Genetic analysis indicated that the phenotype was caused by a recessive mutation in a single nuclear-encoded gene. To map the PGL2 gene, an F2 population was constructed by crossing the mutant with Longtefu (Oryza sativa L. subsp. indica). The PGL2 locus was roughly linked to SSR marker RM331 on chromosome 8. To finely map the gene, 14 new InDel markers were developed around the marker, and PGL2 was further mapped to a 2.37 Mb centromeric region. Analysis on chlorophyll contents of leaves showed that there was no obvious difference between the mutant and the wild type in total chlorophyll (Chl) content, while the ratio of Chl a / Chl b in the mutant was only about 1, which was distinctly lower than that in the wild type, suggesting that the PGL2 gene was related to the conversion between Chl a and Chl b. Moreover, the method of primer design around the centromeric region was discussed, which would provide insight into fine mapping of the functional genes in plant centromeres.  相似文献   

13.
【Objective】Leaf is a main photosynthetic organ and its color mutants of rice are ideal materials for the study of photosynthesis, chlorophyll biosynthesis and metabolism, and chloroplast development in plants. 【Method】The mutant osyes1 (Oryza sativa yellow-leaf and early senescence 1) was obtained through 60Co γ-radiation treatment of indica cultivar Zixuan 1. The seedlings of osyes1 and its wild type were treated with exogenous H2O2. The SOD and CAT activities, ROS level, MDA content, soluble protein contents, chlorophyll contents, the net photosynthetic rate and chloroplast ultrastructure were analyzed for osyes1 and its wild type leaves at heading stage. The main agronomic traits of osyes1 and its wild type plants were analyzed under field conditions at maturation stage in Hangzhou. The recessive individuals in F2 population derived from osyes1/02428 were used to locate the gene by the map cloning method.【Results】The yellow-leaf and early-senescence symptoms started at 3- or 4-leaf stage, and gradually spread to all of the leaves after heading. Due to the early-senescence of the leaves of the mutant osyes1, its major agronomic traits including plant height, panicle length, grain number per panicle and the seed setting rate were markedly reduced. Moreover, the mutant osyes1 exhibited hyper-sensitivity to exogenous H2O2. The physiological analysis indicated that the contents of chlorophyll and the activities POD and CAT in the third-top leaf was significantly lower than those in the flag leaf and the second-top leaf in wild-type (WT) plants, but all of them in the mutant plants were significantly lower than those in its WT. Compared with the WT plants, the contents of MDA, H2O2 and O2− followed a steady increasing trend in the flag, second-top and third-top leaves of the mutant, while their soluble protein levels were progressively dropping. Genetic analysis confirmed that osyes1 was controlled by a single recessive nuclear gene, which was mapped to a region of 708 kb flanked by two SSR markers (RM21353 and RM21384) on the short arm of chromosome 7. 【Conclusion】In this work, the main agricultural traits were significantly reduced in osyes1 for the yellow leaf and early senescence. OsYES1 was located in a 708 kb range between RM21353 and RM21384 by map-based cloning strategy.  相似文献   

14.
目的 叶色突变体是研究水稻光合作用,叶绿素生物合成和遗传发育调控机理的重要材料。发掘水稻叶色突变体,是水稻功能基因组学研究的重要遗传基础。方法 在昌恢121中发现了一份白条纹叶及抽穗期白穗突变体,经过连续多代自交能稳定遗传,暂命名为wlp6(white striped leaf and white panicle 6)。在南昌分早、中和晚3季播种wlp6与野生型种子,考查了中稻与晚稻的部分农艺性状;测定3叶期、分蘖期、抽穗期叶片及颖壳的叶绿素含量;通过电镜观察抽穗期叶肉细胞发育情况。在光照培养箱中进行温光敏感实验;将wlp6与昌恢121及02428正反交,观察F1植株表型,对F2分离群体进行卡方测验,分析突变体遗传规律;以wlp6/02428衍生的F2群体为材料,利用BSA法进行基因定位。结果 wlp6自第1片叶到成熟,叶片均呈白条纹,抽穗期颖壳及枝梗失绿,高温天气穗转绿。突变体株高、有效穗数和每穗粒数在早稻季和中稻季均显著低于野生型,晚稻季wlp6的结实率和千粒重也显著低降低。叶绿素含量测定表明,wlp6叶片叶绿素含量在不同生育期及不同季均显著低于野生型,早稻和晚稻季种植的wlp6颖壳叶绿素含量也比野生型低。电镜观察抽穗期的叶肉细胞发现,wlp6叶绿体数目减少,体积变小,没有分化出明显的片层结构。温光敏感实验表明,突变体对光照强弱钝感,叶色受温度和日照长短影响,随着温度升高和日照时间变长突变体叶绿素含量有上升趋势。遗传分析表明,该性状受隐性核基因控制,利用wlp6/02428得到的616个F2单株将WLP6定位于第6染色体短臂InDel标记R-7与R-8间,物理距离137 kb,此区间预测了21个候选基因。经候选基因分析及测序发现,其中LOC_Os06g14620编码一个核糖核酸还原酶小亚基,编码区第142和158位碱基由T替换为C,第288位插入了碱基A,碱基的插入导致翻译提前终止,因此推测LOC_Os06g14620WLP6的候选基因。结论 LOC_Os06g14620是已经克隆的白条纹叶基因St1的候选基因,推测WLP6St1等位,但突变位点不同,且表型也有差异。  相似文献   

15.
EMS诱导籼稻品种IR64获得淡绿叶突变体HM133。与野生型IR64相比,HM133播种后的第6周和第15周的光合色素含量以及抽穗期的净光合速率显著降低,气孔导度则明显上升;此外,突变体株高、每穗实粒数和结实率等农艺性状也较野生型显著下降。叶绿体超微结构分析表明,分蘖期HM133类囊体基粒片层形状不规则,堆叠凌乱、排列疏松。遗传分析表明HM133淡绿叶性状受单隐性核基因控制。通过分子标记将该基因定位于第3染色体长臂RM143和RM3684之间。该区间内包含编码镁螯合酶D亚基的基因OsCHLD。序列分析表明HM133中该基因第10外显子上有一个从G突变为A的单碱基变异,导致编码的氨基酸由精氨酸变成谷氨酸,推测OsCHLD基因即为控制HM133淡绿叶表型的候选基因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号