首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
水稻淡绿叶基因PGL11的鉴定与精细定位   总被引:1,自引:1,他引:0  
【目的】叶片是水稻进行光合作用的主要场所,叶片颜色的变化与水稻的生长发育直接相关。发掘水稻叶色突变体,是水稻功能基因组学研究的重要遗传基础。【方法】利用EMS诱变日本晴获得一个能稳定遗传的淡绿叶突变体,暂命名为pgl11(pale green leaf 11)。在不同生育期测定野生型与突变体的叶绿素含量。在苗期,取野生型与突变体叶片进行叶绿体结构的透射电镜观察。在分蘖期,测定野生型与突变体的光合参数并观察气孔结构。在成熟期,测定野生型和pgl11的主要农艺性状。以pgl11为母本,南京6号为父本构建相应的F2群体,采用图位克隆的方法,对该基因进行定位。【结果】从苗期开始,突变体pgl11的每一片新叶均表现为淡绿色,叶绿素含量显著降低,叶绿体发育异常。随着叶片的生长,叶色由淡绿逐渐转绿,至抽穗期时叶绿素含量亦无明显差异。pgl11还表现光合速率、气孔导度明显下降,胞间CO_2浓度上升。扫描电镜观察发现,突变体pgl11的气孔发育异常。与野生型相比,突变体的农艺性状如株高、剑叶宽、二次枝梗数、每穗粒数、粒长、粒宽、千粒重以及结实率等均显著降低。对叶绿素合成、光合作用以及质体发育相关基因的表达量测定表明,突变体pgl11中参与叶绿体转录和翻译相关基因的表达量显著升高,而叶绿素合成和光合作用相关基因的表达量显著下降。遗传分析表明,该突变表型受一对隐性核基因控制。通过图位克隆的方法将该基因定位于第1染色体上的C6和C8标记之间,物理距离约为110 kb。【结论】该定位区间内未见有叶色相关基因报道,推测PGL11基因可能是一个新的水稻叶色基因。  相似文献   

2.
【目的】叶色突变相关基因的鉴定与克隆为研究叶绿体发育、叶绿素合成和光合作用等分子机制提供理论基础。【方法】从常规粳稻镇糯19杂交后代中分离出一个低温移栽后叶色转成白条纹的自然变异突变体,命名为wltt (white stripe leaf after transplanting at low temperature)。成熟期测定野生型和wltt的主要农艺性状,分别在苗期、移栽后15 d和同时期直播条件下测定新生叶片的色素含量并观察叶绿体的超微结构;将wltt和野生型正反交进行遗传分析;用wltt与籼稻9311杂交产生的F_2作为定位群体进行基因定位;采用RT-qPCR分析叶绿体发育、叶绿素合成和光合作用相关基因在野生型和wltt中的表达水平。【结果】wltt突变体在苗期表现正常绿色,移栽15 d后心叶出现白条纹叶表型,至分蘖末期心叶叶色恢复;而不经移栽,突变体不会出现白条纹叶。人工模拟实验表明该表型是由低温条件下根损伤引起的。与野生型相比,wltt突变体移栽后的新生叶色素含量显著降低,光合速率下降;同时株高变矮,穗长、剑叶长和每穗粒数均显著降低。叶绿体的超微结构显示,突变体的叶肉细胞中,仅少数细胞含有正常的叶绿体,其余大部分叶肉细胞不含叶绿体。进一步研究发现,突变体中部分光合系统相关基因和叶绿体发育相关基因表达下调,叶绿素生物合成相关的14个基因表达也下调。遗传分析表明,该突变性状受一对隐性核基因控制。利用wltt突变体/9311的F_2群体,将该基因定位于水稻第2染色体着丝粒附近853kb区间内。目前,该区间内没有叶色相关基因的报道。【结论】WLTT是低温条件下移栽调控叶片转色的关键基因,在叶绿体发育过程中发挥重要作用。  相似文献   

3.
 从粳稻品种Asominori组培后代中获得一个稳定遗传的黄绿相间叶色突变体(zebra leaf 2, zl2)。该突变体在苗期表现为黄绿相间的斑马状,分蘖后期斑马叶性状逐渐减弱,到抽穗期叶片逐渐变为淡黄色。与野生型相比,zl2 在3叶期、分蘖盛期、抽穗期及成熟期叶片的叶绿素、类胡萝卜素含量显著降低,成熟后其结实率、千粒重、株高也显著下降。电镜观察结果显示,苗期zl2叶片黄色部分叶肉细胞中叶绿体显微结构发生了明显的异常,而绿色部分与野生型基本一致。遗传分析结果表明,zl2突变性状受一对隐性核基因控制。从zl2与籼稻品种南京11衍生的F2群体中挑选1607株表现为突变性状的分离单株,最终将该突变基因定位于第11染色体约164.3 kb的区域内。基因预测表明该区域内存在13个ORFs,其中ORF12编码一个类胡萝卜素异构酶,序列分析表明突变体中的该基因第10个内含子与第11外显子的交界处碱基A突变为T,导致cDNA发生错误剪切,缺失4个碱基,产生移码突变,并于第395个氨基酸处提前终止。RT PCR分析表明,相对野生型在突变体中ZL2的表达量显著下降,同时叶色相关基因PORA、RbcL、RbcS、 Cab1、Cab2、 psaA、psbA、OsDVR表达量也显著下降,而HEMA1、YGL1、V1、V2、SPP、OsPPR的表达量显著上升。结果表明ZL2在水稻叶绿素合成及叶绿体发育中起着重要作用。  相似文献   

4.
【目的】叶色突变相关基因鉴定和克隆有助于研究光合作用,补充并完善叶绿体发育机理和色素合成代谢途径,为开展水稻的高光效育种提供理论依据。【方法】从粳稻品种Dongjin的组培后代中分离出一个白条纹突变体st13,成熟期测定野生型和st13的主要农艺性状,苗期测定色素含量并观察叶绿体的超微结构;将st13和Dongjin进行正反交,观察F_1植株表型,并对F_2表型分离进行卡方检验,对st13进行遗传分析;利用st13×南京11(籼稻品种)的F_2和F_(2:3)群体,对st13突变基因定位;采用qPCR分析叶绿体发育和叶绿素合成相关基因在st13与野生型相对表达量。【结果】与野生型Dongjin相比,该突变体的株高、单株有效穗数、穗长、结实率和千粒重等主要农艺性状显著下降。苗期的色素含量降低,分蘖期无差异。突变体的叶绿体中既有含丰富的类囊体膜结构的正常叶绿体,也存在无类囊体结构的叶绿体。遗传分析和基因定位结果表明,st13的突变表型受1对隐性核基因控制,突变基因位于第3条染色体长臂InDel(Insertion-Deletion)标记I3-21和I3-22之间。进一步在这两个标记之间设计了6对InDel标记,最终将基因定位在94kb区间内,此区间共有8个候选基因。【结论】这8个候选基因中,有5个假定的蛋白,其他三个都是有功能注释的蛋白,而这三个蛋白在水稻中均未见报道,因此,st13突变是由一个新的叶色基因突变引起的;同时st13中叶绿体发育、叶绿素合成和光合系统相关基因的表达也发生了显著改变,推测ST13可能是调控叶绿体发育的关键基因。  相似文献   

5.
【目的】对叶绿体发育相关基因进行克隆和功能分析,为解析叶绿体功能奠定分子基础。【方法】用甲基磺酸乙酯(EMS)处理籼稻9311获得一个条纹叶和白穗突变体slwp,通过色素分析和农艺性状观察分析该突变体的表型,通过图位克隆方法分离该基因,进一步利用定量PCR分析相关基因的表达情况。【结果】突变体slwp从2叶期开始至抽穗期表现出条纹叶表型,抽穗后幼穗白化,光合色素含量明显低于野生型;株高降低、抽穗延迟、产量降低等表型。该突变性状为单隐性核基因控制,该基因定位于水稻第6染色体短臂C6-4和N14标记之间0.91 Mb区间内。基因组测序表明核糖核苷二磷酸还原酶小亚基基因(RNRS1)编码区第776位点发生单碱基替换,导致甘氨酸突变为天冬氨酸;该基因与已报导的水稻基因St1GwsSt-wp为等位基因。通过对这4个等位基因的突变位点和表型进行分析,总结了该基因不同位点突变对植株表型的影响以及籼粳之间的差异。表达分析显示与叶绿素合成有关的基因受到不同程度调控,叶绿体发育第一和第二阶段基因上调表达,光合作用相关基因均下调表达。【结论】本研究分析了SLWP(RNRS1)基因不同位点的变异对水稻表型的影响,相关结果加深了对RNRS1基因功能的认识,有助于阐明叶绿体发育的分子机制。  相似文献   

6.
【目的】叶片是水稻进行光合作用最重要的器官。叶色突变体是研究光合作用、叶绿素合成代谢和叶绿体发育的重要材料。【方法】利用60Co辐射诱变中籼恢复系自选1号,获得黄叶早衰突变体osyes1。幼苗期对突变体和野生型进行外源H2O2处理。抽穗期对突变体和野生型叶片进行超氧化物歧化酶活性、过氧化氢酶活性、活性氧含量、丙二醛含量、可溶性蛋白含量、叶绿素含量、净光合速率测定以及透射电镜观察。成熟期考查突变体和野生型的主要农艺性状。以osyes1/02428的F2群体中的隐性单株为作图群体,利用图位克隆方法定位OsYES1基因。【结果】osyes1的突变性状始于3~4叶期,水稻抽穗后,所有叶片均表现为黄叶衰老症状,致使突变体株高、穗长、每穗粒数及结实率极显著低于野生型对照。与野生型对照相比,突变体幼苗对外源H2O2更敏感。生理分析表明,孕穗期野生型倒3叶的叶绿素含量、过氧化物酶和过氧化氢酶活性极显著低于倒2叶和剑叶,而突变体的含量则极显著低于野生型且依次极显著降低;与野生型相比,突变体剑叶、倒2叶和倒3叶的丙二醛、H2O2和O2-含量极显著增加,而可溶性蛋白含量则相反。遗传分析表明,osyes1受一对隐性核基因控制,利用图位克隆技术将OsYES1基因定位于第7染色体短臂的RM21353与RM21384之间,物理距离为708 kb。【结论】由于osyes1叶片过早黄化衰老导致与产量相关的重要农艺性状显著下降。OsYES1基因定位在第7染色体两个SSR标记(RM21353和RM21384)之间的708 kb的物理区间内。  相似文献   

7.
【目的】本研究旨在鉴定和克隆水稻温敏转绿新基因,揭示其参与叶绿体发生发育和光合作用的分子机制,为高光效育种提供理论支撑。【方法】利用辐射诱变的方法,从粳稻品种日本晴中筛选获得叶片黄化突变体osv15,并对其表型、农艺性状和遗传方式进行详细分析。构建了突变体与Kasalath的F2群体,利用多态性分子标记对目的基因进行定位和测序分析。【结果】osv15幼苗期在22℃低温下叶片黄化,叶绿素含量仅为野生型的10%,光化学效率下降,叶绿体结构异常;随着温度的升高,osv15的叶色由黄转绿,30℃时叶绿素含量恢复到野生型的68%,光化学效率和叶绿体发育与野生型相近。在自然环境下,osv15突变体从苗期至成熟期均表现为叶片黄化,且株高、分蘖数和产量等农艺性状与野生型相比差异显著。遗传分析表明osv15突变体的表型由一对隐性核基因控制。将OsV15基因定位到第6染色体多态性标记S4和S5之间84 kb的区间内,定位区间测序发现突变体中编码分子伴侣蛋白的基因Cpn60β1(LOC_Os06g02380)发生单碱基缺失。【结论】osv15是一个新的水稻温敏转绿突变体,Cpn60β1可能为突变基因。  相似文献   

8.
【目的】通过对水稻转绿和穗顶端退化等突变体的研究,可以鉴定更多与叶绿体发育和穗发育相关的基因。【方法】在常规种植条件下比较突变体vpa1(virescent and panicle abortion 1)表型及主要农艺性状差异,利用分离群体分析和图位克隆法进行相关基因定位。【结果】突变体vpa1表现苗期白化,并逐渐转绿恢复成正常叶色,抽穗后可明显观查到穗顶端退化表型。vpa1的主要农艺性状除了结实率以外,株高、穗长、每穗实粒数等均较野生型显著下降。遗传分析表明白化转绿和穗顶端退化表型受独立的两个隐性基因控制。控制白化转绿叶性状的Osv16定位于第3染色体RM3441和RM3029之间约125kb物理区间内,区间内未见白化转绿性状相关基因的报道。控制穗顶端退化性状的Ospaa10定位于第1染色体RM11157和RM5972之间,区间内物理距离约190kb,区间内未见穗顶端退化相关基因的报道。【结论】Osv16和Ospaa10两个基因的突变导致vpa1的叶色和穗型同时出现变异,为白化转绿基因Osv16和穗顶端退化基因Ospaa10的克隆和功能研究打下了基础。  相似文献   

9.
目的 叶色突变体是研究水稻光合作用,叶绿素生物合成和遗传发育调控机理的重要材料。发掘水稻叶色突变体,是水稻功能基因组学研究的重要遗传基础。方法 在昌恢121中发现了一份白条纹叶及抽穗期白穗突变体,经过连续多代自交能稳定遗传,暂命名为wlp6(white striped leaf and white panicle 6)。在南昌分早、中和晚3季播种wlp6与野生型种子,考查了中稻与晚稻的部分农艺性状;测定3叶期、分蘖期、抽穗期叶片及颖壳的叶绿素含量;通过电镜观察抽穗期叶肉细胞发育情况。在光照培养箱中进行温光敏感实验;将wlp6与昌恢121及02428正反交,观察F1植株表型,对F2分离群体进行卡方测验,分析突变体遗传规律;以wlp6/02428衍生的F2群体为材料,利用BSA法进行基因定位。结果 wlp6自第1片叶到成熟,叶片均呈白条纹,抽穗期颖壳及枝梗失绿,高温天气穗转绿。突变体株高、有效穗数和每穗粒数在早稻季和中稻季均显著低于野生型,晚稻季wlp6的结实率和千粒重也显著低降低。叶绿素含量测定表明,wlp6叶片叶绿素含量在不同生育期及不同季均显著低于野生型,早稻和晚稻季种植的wlp6颖壳叶绿素含量也比野生型低。电镜观察抽穗期的叶肉细胞发现,wlp6叶绿体数目减少,体积变小,没有分化出明显的片层结构。温光敏感实验表明,突变体对光照强弱钝感,叶色受温度和日照长短影响,随着温度升高和日照时间变长突变体叶绿素含量有上升趋势。遗传分析表明,该性状受隐性核基因控制,利用wlp6/02428得到的616个F2单株将WLP6定位于第6染色体短臂InDel标记R-7与R-8间,物理距离137 kb,此区间预测了21个候选基因。经候选基因分析及测序发现,其中LOC_Os06g14620编码一个核糖核酸还原酶小亚基,编码区第142和158位碱基由T替换为C,第288位插入了碱基A,碱基的插入导致翻译提前终止,因此推测LOC_Os06g14620WLP6的候选基因。结论 LOC_Os06g14620是已经克隆的白条纹叶基因St1的候选基因,推测WLP6St1等位,但突变位点不同,且表型也有差异。  相似文献   

10.
【目的】对水稻类病斑突变体的研究有助于解析其与植物生长和防御反应的关系。【方法】本研究在粳稻品系FI135胚培养过程中获得了1个类病斑突变体lmm7(lesion mimic mutant 7)。通过对其进行系统的表型鉴定、农艺性状考查、超微结构观察、生理学特性分析,阐明LMM7基因对植物生长的调控。通过病原菌抗性鉴定,明确lmm7对植物防御反应的影响。利用9311B与突变体lmm7杂交所得F2群体对该突变体进行了遗传分析和基因精细定位。【结果】该突变体苗期表型正常,分蘖初期,植株基部叶片从叶尖开始不断出现褐色斑点,并向整株扩散,且斑点数目随植株生长不断增加。与野生型相比,突变体的株高、穗长、有效穗数、每穗粒数、结实率及剑叶长宽都显著降低,但籽粒性状和抽穗期没有显著性差异。遮光处理表明,突变体lmm7的表型受到光照诱导,抽穗期突变体lmm7叶肉细胞严重失绿,光合色素含量显著降低。组织化学分析表明,突变体病斑处的H2O2含量显著升高。透射电镜观察结果表明,突变体lmm7叶肉细胞的叶绿体数目减少,叶绿体类囊体片层结构严重受损,细胞器肿胀解体,并出现大量嗜锇小体,同时病斑内部和周围区域积累了大量的ROS。抗性鉴定结果显示突变体lmm7稻瘟病抗性水平显著高于野生型。遗传分析表明lmm7的突变表型受单个隐性基因控制。利用图位克隆的方法,目的基因被定位于水稻第7染色体短臂两InDel标记7B35和7B43之间,区间范围约260 kb。测序结果表明该区间内候选基因LOC_Os07g0203700第2891位碱基T发生了单碱基缺失,导致后续移码突变及翻译提前终止。【结论】lmm7spl5互为等位基因,其突变抑制了植株的生长,同时增强了对稻瘟病的抗性。  相似文献   

11.
【目的】叶片是水稻理想株型的重要内容,叶片适度卷曲可以提高光合效率。对卷叶相关基因进行遗传分析和初步定位,为下一步的基因克隆与功能分析提供研究基础。【方法】利用EMS诱变雄性不育保持系宜香1B获得一份稳定遗传的叶片向内卷曲突变体,暂命名为rl(t)。在成熟期,测定野生型和rl(t)的主要农艺性状;在分蘖期,取野生型和rl(t)叶片用FAA固定液固定进行石蜡切片,同时,用野生型和rl(t)剑叶测定叶绿素含量;在抽穗期,利用Li-6400便携式光合仪测定10株抽穗期的野生型和rl(t)的光合参数;将rl(t)与野生型及日本晴杂交,观察F_1植株表型,对F_2表型分离进行χ~2测验,对突变体进行遗传分析。以rl(t)/日本晴的F_2群体为材料,利用BSA法进行定位。【结果】与野生型相比,突变体叶片向内卷曲明显,叶片更加直立,叶色变深,其他主要农艺性状均有不同程度降低。光合特性分析表明,突变体比野生型具有更高的光合色素含量,但光合效率没有明显差异。叶片组织切片观察表明,突变体中泡状细胞变小可能是导致叶片卷曲的主要原因。遗传分析表明,该突变体受一对隐性核基因控制,利用突变体与日本晴的F_2群体进行基因定位,最终将该基因定位在第7染色体长臂InDel标记Ind3和Ind4间610 kb的物理区间。【结论】rl(t)叶片内卷是由于近轴面泡状细胞面积减小。RL(t)定位区间内未见卷叶相关基因报道,推测RL(t)可能是一对新基因。  相似文献   

12.
【目的】水稻粒形是影响水稻产量和决定稻米外观品质的主要性状之一。筛选和鉴定新的粒形突变材料,可为研究水稻籽粒发育的调控机制奠定基础。【方法】粳稻品种中花11经1%的EMS处理,在诱变群体中获得一份窄粒突变体gw4(grain width on chromosome 4);分析粒形和其他主要农艺性状,在扫描电镜下观察颖壳细胞变化;利用突变体与籼稻品种台中本地1号配组的F2分离群体,选择隐性个体完成基因的精细定位;开展生物信息和测序分析,确定定位区间的候选基因;采用RT-PCR分析该基因在根、茎、叶、鞘、穗等组织中的表达模式及其他粒形相关基因的表达水平。【结果】与野生型相比,除了表现窄粒外,gw4的粒长、千粒重、每穗粒数、一次枝梗数和二次枝梗数等显著下降;扫描电镜发现gw4的颖壳内外表皮细胞均小于野生型;遗传分析表明该窄粒表型受一对单隐性核基因控制;通过开发的新标记最终将该基因定位在第4染色体BS6与EX49两个标记之间约31.74 kb的范围内;测序结果发现在LOC_Os04g01590基因编码区发生了一个由G至A的单碱基突变,导致原来编码的甘氨酸变成了天冬氨酸;qRT-PCR结果表明,LOC_Os04g01590主要在幼穗中表达,且在突变体中表达显著下降。【结论】GW4主要调控水稻粒宽的发育,预测LOC_Os04g01590为其候选基因。这为进一步丰富粒形的遗传调控网络打下了基础。  相似文献   

13.
在粳稻品种Dongjin大田种植过程中,发现一个黄绿叶自然突变体,命名为djyg。该突变体在苗期表现明显的黄绿叶表型,抽穗以后,叶色逐渐恢复正常。叶绿素含量测定结果表明,在苗期、分蘖盛期及抽穗期叶绿素b的含量分别下降53%、62%、36%。电镜结果表明,分蘖期突变体中基粒、类囊体垛堆凌乱、排列疏松,类囊体基质较为稀薄。qRT-PCR结果证实,PORACab1RPsbA的表达量在突变体中均较野生型明显下调。遗传分析结果表明,黄绿叶突变体djyg由一对隐性主效核基因控制,图位克隆确定该候选基因为编码叶绿素合成酶基因YGL1的一个新等位基因。该突变体未影响植株的主要农艺性状,可作为一个理想的表型标记应用于杂交稻育种工作中。  相似文献   

14.
叶色突变体是研究叶绿素代谢、叶绿体发育和光合作用的重要材料。本研究从大麦鄂啤2号(野生型)7Li离子突变体库中筛选获得一份大麦阶段性低温诱导白化突变体(SLTW),该突变体受低温诱导后,于五叶期叶片开始出现白化现象,温度升高后于拔节期逐步恢复为绿色。与野生型相比,该突变体叶片中叶绿素a、叶绿素b和类胡萝卜素含量均显著下降。SLTW突变体与野生型的转录组比较分析表明,差异表达基因显著富集到类胡萝卜素合成、四吡咯结合、血红素结合、铁结合、氧化还原过程、光合作用等通路上。叶绿素合成基因(ID号为HORVU.MOREX.r2.2HG0174230)和类胡萝卜素代谢基因(ID号为HORVU.MOREX.r2.5HG0354290)在SLTW突变体与野生型中的表达量均差异显著,且均检测到SNP突变,推测这些基因可能与大麦阶段性白化有关。编码光合作用-天线蛋白、细胞色素P450、跨膜转运(ABC转运)蛋白及转录因子也可能是调控大麦阶段性白化的潜在候选基因。  相似文献   

15.
以水稻白化转绿型叶色突变体及其野生型亲本为材料,研究突变体转绿过程中叶片相关生理特性及其叶绿体发育超微结构变化.研究结果表明:突变体随着叶色转绿,叶片叶绿素、可溶性蛋白含量增加、超氧化物歧化酶(SOD)活性降低,突变体叶色在完全转绿后,SOD活性电泳中出现了清晰的Fe-SOD谱带;突变体在2叶1心期,叶肉细胞内都是囊状空泡,没有叶绿体,而野生型亲本叶肉细胞内已具有大量叶绿体存在;突变体6叶1心期,叶肉内可以观察到叶绿体的存在,但叶绿体形态不规则或畸形;野生型亲本叶绿体可以直接由前质体正常发育而来,而突变体的叶绿体发育经历了“前质体-白色体-叶绿体”的过程,其叶绿体发育明显滞后.  相似文献   

16.
从粳稻品种Asominori的组培后代中发现了一个温度敏感的叶绿素缺乏突变体。低温(23℃)条件下该突变体幼苗3叶期前表现为白化表型随后致死,但在正常温度条件下与野生型无明显差异(30℃)。与野生型相比,该突变体幼苗低温条件下叶绿素含量明显下降,叶绿体结构发育异常。遗传分析结果表明,该突变体受一对隐性核基因控制,定名为cde2(chlorophyll deficient 2)基因。从cde2与籼稻品种培矮64衍生的F2群体中挑选1064株表现为突变表型的单株进行基因定位,将该基因初步定位于水稻第1染色体的着丝粒附近,随后利用已有的SSR标记和自行开发的Indel标记,进一步将该基因定位在标记RM11041和Indel1之间,物理距离为365.6kb。此外,对该突变体叶绿素合成、光合作用以及质体转录/翻译系统相关基因的表达量测定表明,CDE2突变后增加了与叶绿素合成和质体转录/翻译相关基因的表达,但降低了光合作用相关基因的表达。结果表明,CDE2在水稻叶绿素合成以及叶绿体的发育过程中起着重要的作用。  相似文献   

17.
 所用水稻叶色突变体为自然突变,并命名为白淮稻7号,其叶色表型为绿 白 绿,且突变表型只有在移栽等因素引起的机械损伤信号胁迫下才会产生。研究结果表明,叶色转白前,突变体生长态势、叶色、叶绿素a含量和叶绿体超显微结构与野生型差异不大;叶色转白后,突变体总叶绿素、叶绿素a、叶绿素b和类胡萝卜素含量都显著低于野生型和叶色转白前,而叶绿体中的类囊体逐渐降解,基粒片层减少、基粒数量明显减少,且在成熟后突变体叶色黄化、植株变矮小。遗传分析表明,突变性状由1对隐性核基因控制。以该突变体与江西1587的F2群体为定位群体,将突变基因定位于水稻第11染色体分子标记L59.2 7和L64.8 11之间大约740.5 kb的区间内。认为该突变基因是一个新的水稻叶色突变基因,暂命名为GWGL。  相似文献   

18.
 在水稻遗传转化过程中发现一个不含外源基因的条斑和颖花异常的双突变体,暂命名为st fon。该突变体除茎、叶、穗出现白条斑外,花器数目增多,颖花开裂。其极端表型为同一颖花中长出几朵小花或小花中枝梗伸长为花序。利用透射电镜对苗期叶片白色组织细胞超微结构进行观察,发现质体结构异常,不能发育成正常叶绿体所具有的片层和类囊体,叶绿体的发育阻断在质体发育早期。利用扫描电镜和石蜡切片对花器官形态发生过程进行观察,发现花分生组织生长具有无序和无限性。对扭曲的叶片石蜡切片观察,发现维管束鞘细胞过度生长,或一些泡状细胞增大。将突变体与4个叶色正常的材料进行杂交和回交,遗传分析表明突变性状呈细胞质遗传。  相似文献   

19.
【目的】蜡质是植物表面的一种重要保护物质,筛选和鉴定水稻蜡质相关突变体有助于解析水稻蜡质形成的遗传机制。【方法】利用EMS诱变籼稻品种湘早籼6号,从突变体库中筛选出一个蜡质稀少的突变体wax1,考查突变体的形态特征和农艺性状,利用突变体与02428杂交的F2群体定位目标基因,并通过荧光定量PCR分析相关基因的表达情况。【结果】与野生型相比,wax1突变体具有叶片短小皱褶、叶表面蜡质晶体减少、穗长变短等形态特征;在农艺性状方面,突变体的株高、每穗总粒数和千粒重显著降低,但有效穗数显著高于野生型;遗传分析表明,wax1的突变表型受一对隐性核基因控制,将WAX1基因定位在第10染色体上SSR标记RM5806与InDel标记P1之间,物理距离约为49.8 kb;定位区间内的测序结果表明,突变体中β-酮脂酰-CoA合酶的编码基因发生单碱基突变,导致催化活性中心的一个氨基酸发生改变。WAX1基因的突变显著提高了同源异型盒基因OSH6的表达,同时引起部分IAA基因的差异表达。【结论】WAX1基因突变引起叶表面蜡质晶体的减少,同时通过影响茎尖分生组织和生长素的信号转导引起植株生长发育等多方面的异常。  相似文献   

20.
【目的】通过对水稻雄性不育突变体的研究,可以鉴定更多与育性或花粉发育相关的基因,有助于解析水稻雄性生殖发育的整个调控网络。【方法】常规种植条件下,突变体ms7 (male sterile 7)与对照种植于浙江富阳和海南陵水,比较它们的育性及主要农艺性状差异,利用混池关联分析和图位克隆方法进行目标基因定位。【结果】整个生育期,突变体ms7生长速率与野生型一致,成熟期的株高、分蘖数、叶数、叶大小、穗长和每穗颖花数等性状与野生型相比也没有显著差异,但ms7结实率为0,表现为完全雄性不育,花药瘦小且颜色发白,半薄切片显示绒毡层降解推迟,花粉镜检呈染败。遗传分析表明花粉败育受单个隐性基因控制,定位于第7染色体上BSA11与YD7045之间1.17 Mb的范围内。【结论】本研究为水稻雄性不育基因ms7的克隆和功能研究打下了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号