首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
大数据背景下的智能化农业设施系统设计   总被引:2,自引:0,他引:2  
针对目前农业设施管理和环境监测能力不足、农业生产相关数据积累不够、农业生产智能化程度不高等问题,以农业温室大棚为对象,应用物联网技术,设计一个能够实时采集温室大棚的温度、湿度、土壤温湿度、光照等环境信息,并通过WIFI技术接入互联网云端控制平台或移动客户端进行数据通信,实现环境数据的实时采集、显示、存储和共享,并对采集到的数据进行分析与判断、自动调控喷灌电机和加热设备的智能化温室大棚系统。实验表明,系统具有安装简单、界面友好、实用性强、易扩展等特点,Android客户端及微信公众号实现系统的远程移动管理,良好的数据接口有助于大数据采集与分析,能够适应智能农业的大数据应用需求。  相似文献   

2.
为实现温室环境信息高效监测,开发了物联网测控管理系统的通用平台,主要包括基于Android的智能网关以及基于Google Web Toolkit的远程Web服务器,并制定了系统的数据同步通信协议。根据数据采集单元配置信息和预先设定的界面显示风格,智能网关和Web服务器的应用程序能够自适应地生成温室环境监测界面,动态地解析监测传感器数据并实现数据库存储,以Http post网络传输机制实现数据采集单元配置信息、监测传感器数值等数据在二者间的同步。试验结果表明温室物联网系统在实际应用中具有较高的稳定性,有效地避免了由于传感器和数据采集单元节点变更导致Web服务器和智能网关应用程序的二次开发。  相似文献   

3.
植物工厂作为设施园艺发展的最高阶段,以其科技含量高、资源利用率高、高产优质等特点成为都市农业、垂直农业及太空农业等领域的研究热点。针对当前环境监测技术公网接入复杂、体积大及网络化管理程度低的问题,构建智能Wi Fi传感器,尝试采用商业云服务平台实现植物工厂内温度、湿度、光照强度及CO2浓度的采集并通过无线网络与云服务平台交互等功能,利用手机APP及PC端访问云平台两种方式完成植物工厂的远程监控。实验表明:本系统稳定性好、可靠性高,利用很少的网络带宽即可实时准确地将数据传输到云端。通过云平台的接入提高了数据服务的稳定性,无需重复构建云平台,提高了开发速度并降低应用成本,很好地满足了植物工厂环境监测的需求。  相似文献   

4.
温度采集是测量系统中重要的指标之一,针对当前温度采集系统存在的传输距离短、实时性差、成本高等特点,笔者设计了一种基于FPGA的智能温度采集系统。该智能温度采集系统分为数据采集前端和后台数据处理两部分。数据采集前端采用FPGA作为中央处理器,通过Wi Fi模块将数据发送到OneNet平台上,实现数据的远程查看,还可以通过以太网收发电路将温度信号发送到后台数据处理端,实现温度采集电路的数据传输。后台数据采集端包括服务器和数据分析处理软件,可接收主机传输过来的温度信息,实现前端温度信息的远程监控。另外,可以通过在服务器上进行必要的参数远程设置,实现温度智能检测的目的。  相似文献   

5.
为避免极端环境对作物生长造成损伤,提出一种基于温室小气候模型的环境监测预警技术。通过无线传感器网络实时获取温室环境数据,建立温室小气候模型,将模型预测结果与预警指标库中作物受灾指标对比,及时预测温室异常环境。该技术以LabVIEW为开发平台,实现温室环境自动监测、数据管理、温室小气候模拟、异常环境预警和远程发布等功能。结果表明,该技术能够有效对温室小气候环境进行实时监测预警,可靠性高,具有较好的实用价值。  相似文献   

6.
基于无线传输的温室环境智能监测与报警系统   总被引:1,自引:0,他引:1  
设计了一种基于ZigBee和GPRS无线传输的温室环境智能监测和报警系统,有效地解决了温室环境监测过程中布线困难、报警方式单一、成本高、不能稳定运行等缺点。以微型处理器和ZigBee通讯节点作为采集节点,以ZigBee和GSM/GPRS通讯模块作为汇聚和远程数据传输的网关节点,采用树状的组网方式完成短距离的数据汇聚,通过GPRS完成远程数据传输;在服务器上配置了数据库和网页远程服务,用户通过用户终端远程访问温室作物实时监测数据。本文实现了节点和服务器的双向数据通讯,使服务器可以远程配置单个采集节点的报警上下阈值和采集时间周期;完成了温室环境的智能报警;加入了系统可靠运行机制,使系统可以连续、稳定地运行。经试验验证,系统可以满足温室作物生长环境的智能监测和报警需求。  相似文献   

7.
郭文浩 《农业工程》2022,12(8):30-35
构建基于云计算技术的农业信息化管理平台,可以提高农业信息化管理水平,解决农业资源管理中的资源分配不均衡、共享程度低等问题。该管理平台由基础设施层、数据层、应用服务层、管理层和用户访问层构成。基础设施层通过主机服务器和虚拟机构建网络农业资源数据中心。数据层利用云计算技术集中管理基础设施层农业数据,并将其存储于数据库中。应用服务层的农业信息化管理端通过云计算技术实现数据库农业资源调度,并通过离散Kalman滤波算法实时更新处理农业数据。管理层通过农业权限、质量、安全等信息的管理全面协调平台管理的各个阶段,并可通过用户访问层为用户提供访问界面。测试结果表明:该平台数据采集、融合效果好,资源分配均匀合理,而且不同任务数量下均具备较好的负载均衡度,可实现较好的农业信息化管理。   相似文献   

8.
为了实现拖拉机作业环境监测的高精度定位和大数据实时存储,提出了一种基于ZigBee和云服务平台的拖拉机作业环境监测系统,并对系统的总体框架结构、系统运行流程、定位原理和数据存储方法进行了详细设计,有效提高了拖拉机作业环境监测平台的监测效率。设计了基于云存储的拖拉机环境监测视频数据采集系统的4层结构框架,并对4层结构的软件应用进行了拓扑设计,最后对环境信息监测系统进行了实验验证。实验结果表明:对于复杂的拖拉机作业环境,环境监测系统可以返回高清的图像信息。对返回的温度数据信息进行了误差统计,结果表明:环境监测信息精度较高,满足了拖拉机作业环境监测系统实时性和准确性设计需求。  相似文献   

9.
在"互联网+农业"的背景下,为有效的对温室内植物生长环境进行监测与管理,实现"一个中心、一个平台"的管理模式。通过物联网、移动互联网、云计算等信息技术与传统农业生产相结合,搭建农业智能化、标准化生产服务平台。本系统硬件微处理器模块采用MSP430,无线射频模块采用CC1101对数据进行传输与接收,采用多传感器自适应融合算法对环境数据进行处理,通过阿里云(ECS)技术将中间件部署在云端作为信号传输中介。系统能够实时监测环境信息、温室画面,并且能够依赖网络从云服务器下发指令远程控制温室内机构,达到适宜作物生长的环境。该系统稳定可靠,数据传输误差小于8%,保证数据不丢失。  相似文献   

10.
简述了一种结合Internet网络和嵌入式技术的远程温室监控系统。系统采用移动终端作为监控端,通过全球移动通信系统GPRS控制温室内的喷灌设备、通风设备和照明设备;移动终端可以通过Internet网络登录Cortex-A8信息处理器上构建的Web服务器BOA和网络视频服务器MJPG-streamer,实现实时视频监测温室现场。信息采集模块构建无线传感器网络,采集温室内的温度、湿度、光照强度、CO2浓度等参数信息,并将数据发送到Cortex-A8信息处理器,最终以HTML网页的形式显示在Android手机端。实验表明,系统真正实现了多温室远程移动监控,解决了传统温室监控系统受办公地点限制、需要人工现场操作及不够智能化的问题。  相似文献   

11.
针对当前蓝莓园灌溉效率低、劳动强度大、管理粗放等问题,设计基于LoRa无线远距离通信和SVM-Markov组合模型的蓝莓园精准灌溉系统。该系统通过LoRa无线数据采集系统采集蓝莓园空气温湿度、土壤湿度、光照度、风速等环境参数,通过LoRa网关和物联网网关将数据包上传到云服务器,灌溉预测系统根据采集到的环境参数,实现灌溉量预测与灌溉决策,并将决策结果反馈到灌溉执行模块。为提高预测精度,引入SVM-Markov灌溉量预测算法。以句容市天王镇蓝莓园为试验对象,预测结果表明:SVM-Markov模型的平均绝对误差为0.188 7 mm/d,均方根误差为0.239 4 mm/d,相比于SVM模型,SVM-Markov的预测精度更高、数据拟合效果更好。该系统能够实现蓝莓园环境的实时监测与精准灌溉,为其它果园精准灌溉的实现提供一定的参考。  相似文献   

12.
为解决目前温室群测控难、智能化程度低的问题,基于改进PSO算法提出一种多温室物联网群控终端变量协调控制方法。通过构建基于大数据的多温室分层分布式物联网群控集成系统,有效融合大数据技术、物联网技术、传感器技术以及智能控制技术,采用单个温室的多参数多变量协调控制方法,实现单温室智能化协调控制;通过加设总控制器,根据记录下的多温室作物生长环境参数变换情况,优化区间内浮点数的取值范围,当取值范围优化结果提升值比1%小,则停止寻优,将此时的最优参数输出,完成多温室群控终端变量协调控制。试验结果表明,稳定时设定的目标温度值的平均值为25.6℃,误差值为1.4℃,相对湿度平均值为47.60%RH,误差值为2.4%RH,光照强度和二氧化碳浓度也基本可以维持在一个较小的范围内波动,可在较短时间内将各项环境参数调控至温室预设目标环境参数值,提高多温室物联网群控终端变量智能化控制程度。  相似文献   

13.
针对传统果蔬农业大棚环境数据感知不强、现场维护工作量大、无线覆盖区域受限、生产管理效率低、成本高的问题,提出一套基于模糊PID控制的NB-IoT果蔬农业物联网系统设计。以STM32L475VET6超低功耗芯片为主控芯片,通过NB-IoT和ZigBee双协议融合组网技术和环形缓冲队列算法组建广域无线网络,设计现场监测终端与远程云监控平台,将局域终端节点采集的环境因子信息接入云服务器进行统计与分析。系统根据采集到的数据自动调控反馈控制设备,达到低功耗模式下的广域覆盖监测并智能反馈调控果蔬大棚环境因子的目的,实现感知层、网络层到平台层和应用层一套完整的果蔬大棚物联网系统设计。将模糊PID控制算法应用于温棚环境调节的仿真测试表明,〖JP3〗系统平均丢包率为0.088%,空气温湿度、土壤温湿度、二氧化碳浓度等环境因子参数平均相对误差保持在0.5%以内,NB-IoT休眠功耗小于9 μA,能实现智能反馈控制并保证系统多节点部署、多参数检测、低功耗工作、广覆盖通信的条件,使系统具有更高的复杂环境适应性和稳定性。  相似文献   

14.
基于物联网的浮标水质监测系统与溶解氧浓度预测模型   总被引:2,自引:0,他引:2  
为促进近海养殖业信息化发展,更好地实现对近海养殖环境的监控,设计了基于浮标平台的环境监测系统。利用STM32L475微控制器定时采集光照、温度、pH值、溶解氧浓度等信息,通过物联网技术将数据传输至云监测平台,实现了多区域环境信息远程监测和多终端访问。提出了改进遗传算法BP神经网络的溶解氧浓度预测模型,实现对近海养殖环境的预测;根据所采集的数据,利用改进遗传算法对初始权重和阈值进行优化得到最优参数,在此基础上构建BP神经网络溶解氧浓度预测模型。通过试验验证了该系统海洋环境信息采集的准确性与可靠性,以及溶解氧浓度预测模型的有效性;与传统遗传算法BP神经网络预测模型相比,平均误差由0.0778mg/L降至0.0178mg/L,能够满足近海养殖的实际需求。  相似文献   

15.
棚室蔬菜产业在黑龙江省农业转方式、调结构和供给侧改革中占有重要的战略地位。黑龙江省棚室蔬菜生产规模近年来发展较快,技术支撑需求也与日俱增。本研究针对黑龙江省棚室蔬菜发展规模与技术服务支撑能力不匹配的现状,提出了基于云服务的棚室蔬菜智能终端系统及关键技术的实现方法。本研究以专家服务为主、数据挖掘技术为辅,以物联网设备为感知手段、以智能手机为用户终端,利用云服务对知识、资源、物联网数据的整合配置能力,提供蔬菜专家及棚室蔬菜用户对信息获取、存储、分析和决策的高效解决方案。本研究的部分内容已在黑龙江省农业科研部门、企业、蔬菜合作社、农户等不同用户群体中实验应用,能够为专家提供棚室蔬菜生产环境的远程问诊手段,适用于各类棚室蔬菜应用场景。本研究还提出了对大规模应用场景下的技术解决方案建议,可在全国的棚室蔬菜生产中推广应用,实现更广泛高效的专家技术服务支撑。  相似文献   

16.
实时监测鱼菜共生系统中的关键环境信息对整个系统的水质调控具有重要意义。设计一种基于GPRS的多参数环境信息监测系统,系统可对水产养殖区与蔬菜栽培区中共11项环境参数进行远程监测,并将数据上传至云端服务器,再通过PC端以及移动端实现实时监测、历史数据查询、远程调控等功能,联合多种环境信息对氨氮的组成以及水质状况进行分析,同时将获取的环境数据通过多元线性回归的方法建立离子氨浓度预测模型。试验结果表明,设计的系统运行平稳,数据采集成功率约为99.53%;建立的离子氨多元线性回归方程决定系数R2为0.817,预测结果平均绝对百分比误差MAPE为4.68%,可以有效预测养殖环境的离子氨浓度,实现预警。  相似文献   

17.
金娟 《农业工程》2022,12(5):20-24
结合农业物联网技术在北京市日光温室智能控制的推广工作,介绍与椰糠基质栽培高品质番茄生产相结合的日光温室环境智能集成控制技术体系,包括软件集成和硬件配置,并提出了农业物联网技术推广中存在的问题和建议,希望为日光温室环境控制系统的应用推广提供参考模式。   相似文献   

18.
基于物联网和云架构的渠灌闸门智能控制系统   总被引:1,自引:0,他引:1  
为了实现农田明渠灌溉的精准化控制,设计了一种基于物联网和云架构的渠灌闸门远程智能控制系统,系统由一体化旋转式闸门、本地控制软件、远程终端访问系统和云端中间件组成。闸门采用旋转式阀芯结构设计,降低闸门启闭时的驱动能耗;基于ARM开发了嵌入式控制系统,实现水闸运行的本地控制和状态数据采集;集成了无线通讯模块和光伏电源系统,解决传统水闸野外安装布线繁琐和供电困难问题;通过在阿里云服务器建立数据中心,部署中间件,实现水闸远程数据传送与控制指令传达;建立了基于水位、流量双反馈的闸门开度云控模型,实现水闸群智能运行;根据旋转式闸门启闭阶段角速度变化规律,提出了水闸运行异常报警方法;开发了B/S版和APP版的远程终端访问系统,实现了灌区数据大屏、闸群远程控制和智能调度,适用于农田灌溉中小型渠道输水、配水的精准化控制。  相似文献   

19.
沈艺敏 《农机化研究》2022,44(6):209-213
为有效提升我国温室种植环境监控系统工作的智能化与精准化水平,以农业物联网为应用平台,针对监控系统进行设计研究。以温室种植的功能需求为切入点,采用物联网各层级分别构思、整体融合的方法,建立基于物联网的参数监测数学模型,并从软件设计与硬件配置两大维度构建完整的监控系统。试验结果表明:监控系统的网络数据丢包率可控制在0.70%以下,温室空气温度、相对湿度、种植土壤湿度等关键参数的系统监测值与实地测得值误差不大,可控制2.50%以下,系统监测稳定性可提高至90.00%以上,满足监测功能需求,监控效率得到显著改善,有利于进一步指导温室种植与设施农业装备的深度优化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号