首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Aureobasidium isolated from Vitis vinifera (cv Chardonnay) grapevine tissues were characterised using morphological and molecular techniques. Species level identification of 29 isolates was accomplished by partial amplification and sequencing of the ITS region (ITS1–5.8S–ITS2) using universal primers ITS1 and ITS4. A comparison of nucleotide sequences using BLAST followed by phylogenetic analysis revealed that all isolates examined were Aureobasidium pullulans. Strain level discrimination of a total of 100 epiphytic Aureobasidium isolates including three reference strains was successfully carried out using two inter simple sequence repeat (ISSR) primers, (AAC)5 and (GTG)5 and the Intron Splice Junction R1 (ISJ-R1) primer in which 24, 24 and 15 scorable bands were produced for each primer, respectively. The high level of genetic variation recorded among the isolates further highlighted the high levels of strain diversity among A. pullulans residing on grapevines. Thirty-two epiphytic Aureobasidium isolates were examined for their ability to inhibit the growth of Greeneria uvicola, responsible for bitter rot of grapes. Using an in-vitro dual-culture antagonism assay, all isolates inhibited the growth of G. uvicola (Isolates DAR 77272 and DAR 77273) with inhibition ranging from 15 to 85%. Three Aureobasidium isolates were then examined for their ability to inhibit G. uvicola when co-inoculated onto detached berries, leaves and grape bunches growing on potted vines in a glass house. All isolates reduced the severity of bitter rot infection. The results indicate that A. pullulans has the potential to suppress bitter rot of grapes.  相似文献   

2.
The complex of Diaporthe (asexual morph) species occurring on soybean constitutes an important pathogenic group associated with diseases such as pod and stem blight, seed decay and stem canker. Stem canker, caused by Diaporthe aspalathi, has been reported as the most aggressive form of canker and its occurrence has limited soybean crop productivity in the southern United States. The main form of pathogen control is the use of stem canker resistant soybean varieties. In this study, strains of Diaporthe and Phomopsis were isolated from stem and seeds of soybean in different locations in South America during the years 1989–2014. Genomic DNA from 26 isolates were analyzed by PCR-restriction fragment length polymorphism (RFLP) and Amplified Fragment Length Polymorphism (AFLP) techniques, and sequencing of internal transcribed spacer (ITS) regions of ribosomal DNA. The molecular analysis of ITS sequences by alignment with those of ex-type strains deposited in GenBank and morphological characteristics allowed the identification of Phomopsis longicolla, D. phaseolorum var. sojae, D. caulivora and D. aspalathi. An analysis of the pathogenicity of 13 isolates of D. aspalathi inoculated in soybean genotypes carrying different resistance genes to stem canker (Rdm1, Rdm2, Rdm3, Rdm4, Rdm5 and Rdm?) enabled us to identify the occurrence of at least three races of D. aspalathi occurring in Brazil. Among the isolates identified as D. aspalathi, both molecular and phenotypic analyses showed clustering depending on the date of collection and pathogenicity, which revealed the existence of variability of the pathogen.  相似文献   

3.
Fusarium oxysporum f. sp. melongenae (Fomg), causal agent of Fusarium wilt of eggplant, is a serious pathogen in open fields and greenhouses. Inter-simple sequence repeat (ISSR) banding profiles, sequence analyses of inter-transcribed-spacer (ITS), translation elongation factor 1-alpha (TEF-1α), and actin (actA) DNA regions were employed in this study to determine genetic diversity and population structure of Fomg isolates obtained from Turkey. For ISSR study, (ACTG)5, (GACAC)3, (GACA)4, (GATA)4, HVH(TG)7 and (CA)8RG primers were selected from a set of 16. Discriminative ability of the primers revealed with various indices including polymorphic information content (PIC), and mean PIC value was calculated as 0.26. The ISSR data revealed 31 loci belonging to 202 Fomg isolates and 14 of them were found to be polymorphic. The isolates on neighbor joining ISSR tree were grouped into two major clusters which separated Fomg and outgroup isolates. Population structure was investigated based on bayesian modeling and results indicated five subpopulations (K = 5, ?K = 205.42). Mean genetic and geographical distances among sampling locations revealed only a weak and insignificant correlation (r = 0.583, P = 0.06). Phylogenetic analyses were carried out with ITS, TEF-1α and actA DNA regions with a selected subset of 30 Fomg, along with one non-host and one outgroup isolates. Since ITS region were not able to provide a meaningful separation, TEF-1α and actA sequences of each organism were concatenated individually to build a dendrogram. The clustering tree successfully separated the Fomg, non-host and outgroup isolates in which all Fomg were located on the same branch, forming a monophyletic group in the dendrogram.  相似文献   

4.
Two Fusarium strains, isolated from Asparagus in Italy and Musa in Vietnam respectively, proved to be members of an undescribed clade within the Fusarium solani species complex based on phylogenetic species recognition on ITS, partial RPB2 and EF-1α gene fragments. Macro- and micro-morphological investigations followed with physiological studies done on this new species: Fusarium ershadii sp. nov can be distinguished by its conidial morphology. Both isolates of Fusarium ershadii were shown to be pathogenic to the monocot Asparagus officinalis when inoculated on roots and induced hollow root symptoms within two weeks in Asparagus officinalis seedlings. In comparison mild disease symptoms were observed by the same strains on Musa acuminata seedlings.  相似文献   

5.
Fenugreek is an annual leguminous crop grown for hay and grains in Tunisia. It is also considered a valuable rotation crop with cereals. Sclerotinia rot was observed in production fields since 2010. The survey conducted in 2013 revealed that the incidence of diseased plants varied between 5 and 20%. The identification of isolates of Sclerotinia obtained from fenugreek plants with symptoms of stem rot was determined using morphological and molecular criteria. The size, shape and abundance of sclerotia in potato dextrose agar (PDA) cultures were used to classify isolates as S. sclerotiorum or S. trifoliorum. A comparison of colony diameter on PDA after 24, 48 and 72 h at 25 °C, showed that one isolate grew faster (36 mm/day) than the other 10 isolates (14.8 mm/day). There was a significant difference in sclerotial size between the fast and the slow growing isolates, but there was no significant difference in the number of sclerotia produced after 3 weeks on PDA. Two of the slow growing isolates exhibited ascospore dimorphism, whereas the fast growing isolate did not. PCR amplification with the primer pair ITS5/ITS4 produced a fragment of 560 base pairs from the fast growing isolate and 1000 base pairs from all of the slow growing isolates. The ITS sequences of the fast growing isolate had 100% homology with S. sclerotiorum, whereas those of the slow growing isolates had 100% homology with S. trifoliorum. Isolates of both species were pathogenic on fenugreek seedlings in the greenhouse assay and there was no significant difference in the percentage of dead plants two weeks after inoculation between the two species.  相似文献   

6.
Bacterial leaf/fruit spot and canker of stone fruits, caused by Xanthomonas arboricola pv. pruni, is a recurrent disease in Italy. A set of 23 strains has been isolated in peach and plum orchards in an intensively stone fruit cultivated area located in north-eastern Italy. They were all identified as X. arboricola pv. pruni by means of phytopathological and serological features: hypersensitive reaction on bean pods, pathogenicity test on immature peach or plum fruitlets, identification by immunofluorescence assay and conventional PCR. Phylogenetic analysis based on sequencing of the gyrB housekeeping gene of the isolates showed that they formed a unique clade, well characterised and separated from other xanthomonads. An insight into the genetic population features was attempted by rep-PCR analysis, using the ERIC, REP and BOX primers. The combined rep-PCR fingerprints showed a slight intra-pathovar variation within our isolates, which grouped in five close clusters. Copper resistance has been assessed in vitro for our whole X. arboricola pv. pruni collection, highlighting that two isolates show a level of resistance in vitro up to 200 ppm of copper. Nonetheless, the copLAB gene cluster, present in many other species of Xanthomonads, was not detected in any isolate, confirming the presence of a still unknown mechanism of copper detoxification in our Xanthomonads arboricola pv. pruni tolerant/resistant strains.  相似文献   

7.
Ditylenchus dipsaci is a species complex including diploid and polyploid individuals. The onion race of D. dipsaci is a sensu stricto group and has a wide range of host spectrum. Identification of the D. dipsaci onion race is difficult using morphological and morphometrical methods. Species specific primers are mostly used in molecular approaches for identification of D. dipsaci populations. Fifty one morphologically selected Ditylenchus spp. populations from onion production areas in Turkey were subjected to molecular identification using four D. dipsaci species specific primer sets (PF1-PR1, PF2-PR2, DdpS1-rDNA2, DitNF1- rDNA2, H05-H06) targeting 5.8S and 18S rDNA, ITS1 and flanking ITS regions. Thirty nine percent of the nematode samples were positive with four primers tested, while four of the nematode samples gave specific bands with H05-H06 primers. Ditylenchus dipsaci sensu stricto was identified with specific primer sets in Adana, Hatay, Tekirdag, Bursa, Aksaray, Karaman, Eskisehir and Ankara provinces in Mediterranean, Trace, Aegean and Central Regions in Turkey.  相似文献   

8.
The reniform nematodes of the genus Rotylenchulus are semi-endoparasites of numerous herbaceous and woody plant roots and distributed in regions with Mediterranean, subtropical and tropical climates. In this study, we provide morphological and molecular characterisation of three out of 11 valid species of the genus Rotylenchulus: R. macrodoratus, R. macrosoma, and R. reniformis from Greece (Crete), Italy and Spain. The overall prevalence of reniform nematodes in wild and cultivated olives in Greece, Italy, and Spain was 11.5%, 19.0% and 0.6%, respectively. In Greece, R. macrodoratus and R. macrosoma were detected in cultivated olive with a prevalence of 8.2% and 6.2%, respectively, but none of them were found in wild olive. This is the first report of R. macrosoma in Greece. Only one reniform nematode species was detected in olive from Italy and Spain, viz. R. macrodoratus and R. macrosoma, respectively. The parasitism of R. macrosoma on hazelnut in northern Spain was also confirmed for the first time. This study demonstrates that R. macrodoratus and R. macrosoma have two distinct rRNA gene types in their genomes, specifically the two types of D2-D3 for R. macrosoma and R. macrodoratus, the two types of ITS for R. macrodoratus and the testing of the ITS variability in other R. macrosoma populations in different countries. Rotylenchulus macrosoma from Greece and Spain showed differences in nucleotide sequences in the ITS region and D2-D3 of 28S rRNA gene.  相似文献   

9.
10.
Bradyrhizobium sp., a slow-growing nitrogen-fixing symbiotic bacterium of legumes and common root endophyte of other plants, is closely related to Candidatus Liberibacter asiaticus (Las), the uncultured putative pathogen associated with citrus huanglongbing (HLB). In attempts to isolate Las on a low-nutrient medium that had been used for the isolation of several uncultured bacteria of the alpha subclass of proteobacteria, slow-growing Bradyrhizobium spp. were isolated and identified by sequencing of 16S rDNA. The individual isolates tested weakly positive (Ct = 31.2–36.0) with the USDA primers commonly used in qPCR assays for Las in foliar tissues. Direct DNA extracts from roots of HLB symptomatic trees that contained sequences of Bradyrhizobium sp. had Ct values ranging from 31.2 to 36.5; sequences of Las were not present in those samples. Potential cross-reaction between DNA of members of the Rhizobiales and sequences amplified by the Las primers were tested in silico with the Primer-BLAST tool in NCBI. Similar to Las, Bradyrhizobium generated predicted 16S rDNA amplicon sizes of 78–79 bp with the qPCR primers and of 1167-1172 bp with the conventional PCR primers. Bradyrhizobium sequences of 16S rDNA had 1–7 mismatches and only 1 mismatch at the 3′ end of qPCR and conventional PCR primers confirming potential cross-reactivity. As Bradyrhizobium is usually not found in foliage, the USDA qPCR primers can be safely used to check leaves for the presence of Las, but a threshold value of 31.0 is recommended for Las detection in roots. Other primers should be tested for potential cross-reaction with members of the Rhizobiales.  相似文献   

11.
The aim of this study was to identify the Colletotrichum species associated with anthracnose symptoms in coffee (Coffea arabica L.) plantations in northern Puebla, Mexico. In 2013, five surveys were conducted in different production areas and at different altitudes. Symptomatic leaves, shoots, and ripe and unripe fruits of the coffee variety Red Caturra were collected. Isolates were obtained and the Colletotrichum species were identified morphologically and characterized by multilocus sequence analyses of the ACT, CAL, GAPDH, and TUB2 genes and the rDNA region. Additionally, pathogenicity tests were conducted using six isolates. We identified C. gigasporum, C. gloeosporioides, C. karstii (two isolates), C. siamense, and C. theobromicola. This is the first report of these five species infecting leaves of coffee. The symptoms caused by these species were characterized, but the species causing Coffee Berry Disease was not found. This is the first report of a complex of species affecting coffee plants in the same geographical area in Mexico, and suggests that other complexes of species may be important pathogens in coffee-producing areas elsewhere.  相似文献   

12.
Infection by Pyrenophora teres f. teres (Ptt) or P. teres f. maculata (Ptm), the causal agents of the net and spot forms of net blotch of barley, respectively, can result in significant yield losses. The genetic structure of a collection of 128 Ptt and 92 Ptm isolates from the western Canadian provinces of Alberta (55 Ptt, 27 Ptm), Saskatchewan (58 Ptt, 46 Ptm) and Manitoba (15 Ptt, 19 Ptm) were analyzed by simple sequence repeat (SSR) marker analysis. Thirteen SSR loci were examined and found to be polymorphic within both Ptt and Ptm populations. In total, 110 distinct alleles were identified, with 19 of these shared between Ptt and Ptm, 75 specific to Ptt, and 16 specific to Ptm. Genotypic diversity was relatively high, with a clonal fraction of approximately 10 % within Ptt and Ptm populations. Significant genetic differentiation (PhiPT = 0.230, P = 0.001) was found among all populations; 77 % of genetic variation occurred within populations and 23 % between populations. Lower, but still significant genetic differentiation (PhiPT = 0.038, P = 0.001) was detected in Ptt, with 96 % of genetic variation occurring within populations. No significant genetic differentiation (PhiPT = 0.010, P = 0.177) was observed among Ptm populations. Isolates clustered in two distinct groups conforming to Ptt or Ptm, with no intermediate cluster. The high number of haplotypes observed, combined with an equal mating type ratio for both forms of the fungus, suggests that P. teres goes through regular cycles of sexual recombination in western Canada.  相似文献   

13.
Hibiscus syriacus, as a national flower of Korea, is most popularly used for ornamental purposes and includes numerous cultivars, and it is widely planted in temperate zones that feature hot summers. We investigated Choanephora flower rot on H. syriacus from 2012 to 2014 in Korea and Japan and confirmed Choanephora infection in several localities in both countries. Here, our objectives were to identify the main causal agent of Choanephora flower rot on H. syriacus and describe its morphological and molecular characteristics. We identified 44 out of 50 isolates as Choanephora cucurbitarum and the remainder as C. infundibulifera based on morphological characterization and phylogenetic analysis. The sequences of the internal transcribed spacer region (ITS) of ribosomal DNA and the D1/D2 region of the large subunit (LSU) rDNA of examined isolates were compared with sequences obtained from GenBank, and the analysis of the results revealed 100 % identity with the corresponding sequences of C. cucurbitarum and C. infundibulifera strains. Classification of the Choanephora species performed here according to the key described by Kirk (1984) corresponded with the results of the phylogenetic analysis of this study. Through intraspecific and interspecific mating tests, the characteristics of zygospore were described in details. Pathogenicity tests using both species showed the same symptoms, causing blossom blight and soft rot on the flowers, which were identical to those observed in the field. All identified causal agents of Choanephora rot were indeed Choanephora species, where C. cucurbitarum was identified in the majority, while the others were in the minority of examined samples.  相似文献   

14.
Potato virus Y (PVY) is the type-species of the genus Potyvirus, family Potyviridae, being reported as a major tomato (Solanum lycopersicum L.) pathogen in several regions of the world. Pepper yellow mosaic virus (PepYMV) was originally described as a resistance-breaking Potato virus Y (PVY) isolate on Capsicum annuum L. cultivars, and afterwards it was also reported infecting tomatoes in Brazil. In the present work, a search for sources of resistance to both PepYMV and PVY was conducted in a collection of 119 accessions belonging to seven Solanum (section Lycopersicon) species. This germplasm was initially evaluated to PepYMV reaction by mechanical inoculation followed by symptom observations and ELISA. Potential PepYMV resistance sources were identified for the first time in S. habrochaites, S. peruvianum, S. corneliomuelleri, S. chilense, S. pimpinellifolium, and one accession derived from an interspecific cross (S. lycopersicum x S. peruvianum). A sub-group of 24 accessions with negative serology for PepYMV was also challenged with a PVY isolate, followed by serological and molecular detection with universal primers. Solanum habrochaites ‘L.03683’ and ‘L.03684’ were the only accessions found with stable resistance to both viruses. These results confirm S. habrochaites as the most important source of multiple resistance factor(s) to distinct Potyvirus species.  相似文献   

15.
Tomato leaves showing severe leaf spot symptoms have been observed and sampled in the central west and southwest Taiwan during 2015 and 2016. The symptoms were similar to those of bacterial leaf spot/late blight diseases, but only Stemphylium-like fungi were consistently isolated from the diseased tomato. Upon spray inoculation of tomato, Stemphylium-like isolates caused leaf spot symptoms identical to those of naturally infected plants, and the pathogenic isolates were successfully re-isolated from inoculated leaves. The tomato-pathogenic isolates were identified as S. lycopersici based on morphological characterization and molecular identification. S. lycopersici has been previously reported to cause gray leaf spot of tomato in the temperate regions, but the majority of S. lycopersici-caused lesions were black/dark brown rather than gray in our surveillance. Accordingly, it is suggested that S. lycopersici-caused disease of tomato is named Stemphylium leaf spot of tomato more appropriately than tomato gray leaf spot. Moreover, S. lycopersici-caused leaf spot disease on tomato has been distributed in major tomato production regions in Taiwan. The information provided by our study will be important for future breeding of tomato cultivars, especially for tomato producers in Taiwan.  相似文献   

16.
Shot hole disease of stone fruits caused by Thyrostroma carpophilum has become a major threat to stone fruit industry of Jammu and Kashmir, India because of the failure in its management with fungicides. To understand the diversity in shot hole pathogen, a combination of conventional (morphological, cultural and pathological) and molecular (ISSR and ITS markers) approaches were employed to discern variability in 25 isolates of T. carpophilum isolated from peach, plum, apricot, almond and cherry leaves collected from Srinagar, Ganderbal, and Baramulla districts of Jammu and Kashmir, India. The studies revealed a high level of variability among the pathogen. Based on the morpho-cultural and pathological studies, the isolates were grouped into different categories based on colony growth, texture, margin and colour besides change in media colour, incubation period, leaf area infected, etc. Using ISSR markers, a high level of polymorphism in different isolates of T. carpophilum was observed which indicated that these markers are suitable for studying the genetic diversity in this pathogen. Based on dendrogram, the isolates were grouped irrespective of their geographical origin or host species. Phylogenetic analysis of the 25 sequences based on ITS region showed maximum similarity with T. carpophilum (Syn. Wilsonomyces carpophilus) sequences retrieved from NCBI and grouped them in a single clade which proved it as a powerful tool for authentic identification. The pathogen was highly variable based on morpho-cultural, pathological and molecular (ISSR) characterisation.  相似文献   

17.
Bacterial blight (BB) of rice caused by Xanthomonas oryzae pv. oryzae (Xoo), remains a major production constraint in rice cultivation especially in irrigated and rainfed lowland ecosystems in India. The pathogen is highly dynamic in nature and knowledge on pathotype composition among the Xoo population is imperative for designing a scientific resistance breeding program. In this study, four hundred isolates of Xoo collected from diverse rice growing regions of India were analyzed for their virulence and genetic composition. Virulence profiling was carried out on a set of differentials consisting of 22 near isogenic lines (NILs) of IR24 possessing different BB resistance genes and their combinations along with the checks. It was observed that different NILs possessing single BB resistance gene were susceptible to about 59–94% of the Xoo isolates except IRBB 13 (containing BB resistance gene xa13), which showed susceptibility to about 35% of the isolates. Based on the reaction of the Xoo isolates on the differentials, they were categorized into 22 pathotypes. Among the 22 pathotypes, IXoPt-1 and IXoPt-2 were least virulent and IXoPt # 18–22 were highly virulent. Pathotype IXoPt-19 which was virulent on all single BB resistance genes except xa13 constituted the major pathotype (22.5% isolates) and was widely distributed throughout India (16 states). This was followed by pathotype IXoPt-22 (17.25%) which was virulent on all the NILs possessing single BB resistance genes. Molecular analysis was carried out using two outwardly directed primers complementary to sequence of IS1112, a repetitive element of Xoo. A high level of genetic polymorphism was detected among these isolates and the isolates were grouped into 12 major clusters. The data indicated complex nature of evolution of the Xoo pathotypes and there was no strong correlation between pathotypes and genetic clusters as each genetic cluster was composed of Xoo isolates belonging to different pathotypes. The study indicated that none of the single BB resistance genes can provide broad spectrum resistance in India. However, two-gene combinations like xa5 + xa13 and different 3 or 4 genes combination like Xa4 + xa5 + xa13, Xa4 + xa13 + Xa21, xa5 + xa13 + Xa21 and Xa4 + xa5 + xa13 + Xa21 are broadly effective throughout India.  相似文献   

18.
A new dagger nematode, Xiphinema tica n. sp., is described and illustrated from several populations extracted from soil associated with several crops and wild plants in Costa Rica. The new dagger nematode is characterised by a moderate body size (3276–4240 μm), a rounded lip region, ca 13.5 μm wide, separated from body contour by a shallow depression, amphidial fovea large, stirrup-shaped, a moderately long odontostyle ca 135 μm long, stylet guiding ring located at ca 122 μm from anterior end, vulva almost equatorial (50–54%), well-developed Z-organ, with heavy muscularised wall containing in the most of specimens observed two moderately refractive inclusions variable in shape (from round to star-shaped), with uterine spines and crystalloid bodies; female tail short, dorsally convex-conoid, with rounded end and a small peg, with a c’ ratio ca 0.8, bearing two or three pairs of caudal pores and male absent. The unique and novel uterine differentiation based on the coexistence of a well-developed Z-organ mixed with uterine spines and crystalloid bodies in Xiphinema prompted us to update and include this combination of characters in the polytomous key of Loof and Luc (1990). Integrative diagnosis was completed with molecular data obtained, using D2-D3 expansion segments of 28S rDNA, ITS1-rDNA, partial 18S–rDNA and the partial mitochondrial gene cytochrome c oxidase subunit 1 (coxI). The phylogenetic relationships of this species with other Xiphinema spp. indicated that X. tica n. sp. was monophyletic to the other species from the morphospecies Group 4, Xiphinema oleae.  相似文献   

19.
Olive knot disease in Japan was first reported in Shizuoka Prefecture in 2014, and the causal agent was identified as Pseudomonas savastanoi pv. savastanoi. Subsequently, olive trees having knots were also found in Aichi and Kanagawa Prefectures in 2015, and the isolates from knots were also suspected to be P. savastanoi pv. savastanoi through preliminary examinations. Therefore, the Aichi and Kanagawa isolates were identified through comparison of isolates from three prefectures. Phylogenic analysis based on 16S rDNA and housekeeping genes (gyrB, rpoD, gltA and gap1) revealed that the isolates belonged to the same cluster as the pathotype strain, ICMP4352PT. The iaaM, H and L genes, which are involved in promotion of symptoms, and the ina gene coding the ice nucleation protein, were detected by PCR from all the isolates. In rep-PCR (ERIC and REP) analyses, the isolates yielded DNA fragment-banding patterns that were nearly identical to that of ICMP4352PT, but slight variations in banding patterns were observed among them. In a pathogenicity test, the isolates formed distinct knots on olive and pink jasmine. Phenotypic properties of the isolates were almost identical to those of ICMP4352PT, with the exception of d-sorbitol utilization. Consequently, Aichi and Kanagawa isolates from olive were identified as P. savastanoi pv. savastanoi, and several genetic diversities in terms of rep-PCR were found in the Japanese population of P. savastanoi pv. savastanoi, indicating their heterogeneity.  相似文献   

20.
The taxonomic assignment of Japanese potato blackleg isolates of Dickeya spp. has not been confirmed after the changes in their former name, Erwinia chrysanthemi. Therefore, we investigated and identified 23 representative isolates of Dickeya spp. from symptomatic stems of potatoes in Japan, with biochemical tests and phylogenetic sequence analysis using recA, dnaX, rpoD, gyrB, and 16S rDNA sequences. Results of our biochemical tests showed that all isolates can be assigned to phenon 5 and biovar 1, which are associated with D. dianthicola. Based on the recA, dnaX, rpoD, gyrB, and 16S rDNA sequences, all isolates are in the same clade with D. dianthicola and were clearly distinguished from D. chrysanthemi, D. dadantii, D. dadantii subsp. dieffenbachiae, D. solani, D. zeae, and D. paradisiaca. Therefore, we conclude that Dickeya spp. isolated from potatoes with blackleg symptoms in Japan are D. dianthicola.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号