首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The aim of the present study was to clarify the effect of melatonin (MEL) on the salsolinol (SAL)‐induced release of prolactin (PRL) in goats. Female goats were kept at 20°C with 16 h of light, 8 h of darkness, and orally administered saline or MEL for 5 weeks. A single intravenous (i.v.) injection of saline (controls), SAL, thyrotropin‐releasing hormone (TRH) or a dopamine receptor antagonist, sulpiride, was given to the goats 3 weeks after the first oral administrations of saline or MEL, and the responses were compared. The mean basal plasma PRL concentrations in the control group were higher for the saline treatments than MEL treatments (P < 0.05). SAL as well as TRH and sulpiride stimulated the release of PRL promptly after each injection in both the saline‐ and MEL‐treated groups (P < 0.05). The area under the response curve of PRL for the 60‐min period after the i.v. injection of SAL, TRH and sulpiride in the saline‐treated group was greater than each corresponding value in the MEL‐treated group (P < 0.05). These results show that daily exposure to MEL under a long day length reduces the PRL‐releasing response to SAL as well as TRH and sulpiride in goats.  相似文献   

2.
The aim of the present study was to clarify the effects of hypothalamic dopamine (DA) on salsolinol (SAL)‐induced prolactin (PRL) release in goats. The PRL‐releasing response to an intravenous (i.v.) injection of SAL was examined after treatment with augmentation of central DA using carbidopa (carbi) and L‐dopa in male goats under 8‐h (8 h light, 16 h dark) or 16‐h (16 h light, 8 h dark) photoperiod conditions. The carbi and L‐dopa treatments reduced basal PRL concentrations in the 16‐h photoperiod group (P < 0.05), while a reduction was not observed in the 8‐h photoperiod group. The mean basal plasma PRL concentration in the control group for the 8‐h photoperiod was lower than that for the 16‐h photoperiod (P < 0.05). SAL significantly stimulated the release of PRL promptly after the injection in both the 8‐ and 16‐h photoperiod groups (P < 0.05). PRL‐releasing responses for the 16‐h photoperiod were greater than those for the 8‐h photoperiod (P < 0.05). The carbi and L‐dopa treatments blunted SAL‐induced PRL release in both the 8‐ and 16‐h photoperiods (P < 0.05). These results indicate that hypothalamic DA blunts the SAL‐induced release of PRL in male goats, regardless of the photoperiod, which suggests that both SAL and DA are involved in regulating the secretion of PRL in goats.  相似文献   

3.
The secretion of prolactin (PRL) is under the dominant and tonic inhibitory control of dopamine (DA); however, we have recently found that salsolinol (SAL), an endogenous DA‐derived compound, strongly stimulated the release of PRL in ruminants. The aim of the present study was to clarify the inhibitory effect of DA on the SAL‐induced release of PRL in ruminants. The experiments were performed from late June to early July. Male goats were given a single intravenous (i.v.) injection of SAL (5 mg/kg body weight (BW)), a DA receptor antagonist (sulpiride, 0.1 mg/kg BW), or thyrotropin‐releasing hormone (TRH, 1 µg/kg BW) before and after treatment with a DA receptor agonist (bromocriptine), and the effect of DA on SAL‐induced PRL release was compared to that on sulpiride‐ or TRH‐induced release. Bromocriptine completely inhibited the SAL‐induced release of PRL (P < 0.05), and the area under the response curve (AUC) for a 120‐min period after the treatment with bromocriptine was 1/28 of that for before the treatment (P < 0.05). Bromocriptine also completely inhibited the sulpiride‐induced release (P < 0.05). The AUC post‐treatment was 1/17 that of pre‐treatment with bromocriptine (P < 0.05). Bromocriptine also inhibited the TRH‐induced release (P < 0.05), though not completely. The AUC post‐treatment was 1/3.8 that of pre‐treatment (P < 0.05). These results indicate that DA inhibits the SAL‐induced release of PRL in male goats, and suggest that SAL and DA are involved in regulating the secretion of PRL. They also suggest that in terms of the regulatory process for the secretion of PRL, SAL resembles sulpiride but differs from TRH.  相似文献   

4.
The aim of the present study was to clarify the effect of photoperiod on secretory patterns of growth hormone (GH) in male goats. Adult male goats were kept at 20°C with an 8‐h or 16‐h light photoperiod, and secretory patterns of GH secretion were compared. In addition, plasma profiles of prolactin (PRL), insulin‐like growth factor‐I (IGF‐I) and testosterone (T) were also examined to characterize GH secretion. GH was secreted in a pulsatile manner. There was no significant difference in pulse frequency between the 8‐h and 16‐h photoperiods. However, GH pulse amplitude tended to be greater in the group with the 16‐h photoperiod (P = 0.1), and mean GH concentrations were significantly greater in the 16‐h photoperiod (P < 0.05). The GH‐releasing response to GH releasing hormone was greater in the 16‐h than 8‐h photoperiod (P < 0.05). Plasma PRL and IGF‐I levels were higher in the 16‐h than 8‐h photoperiod (P < 0.05). In contrast, plasma T levels were lower in the 16‐h photoperiod (P < 0.05). These results show that a long light photoperiod enhances the secretion of GH as well as PRL and IGF‐I, but reduces plasma T concentrations in male goats.  相似文献   

5.
We have recently demonstrated that salsolinol (SAL), a dopamine (DA)-derived compound, is present in the posterior pituitary gland and is able to stimulate the release of prolactin (PRL) in ruminants. The aim of the present study was to clarify the effect that the interaction of SAL with thyrotropin-releasing hormone (TRH) or DA has on the secretion of PRL in ruminants. A single intravenous (i.v.) injection of SAL (5mg/kg body weight (b.w.)), TRH (1microg/kg b.w.), and SAL plus TRH significantly stimulated the release of PRL in goats (P<0.05). The cumulative response curve (area under the curve: AUC) during 120min was 1.53 and 1.47 times greater after the injection of SAL plus TRH than either SAL or TRH alone, respectively (P<0.05). A single i.v. injection of sulpiride (a DA receptor antagonist, 0.1mg/kg b.w.), sulpiride plus SAL (5mg/kg b.w.), and sulpiride plus TRH (1microg/kg b.w.) significantly stimulated the release of PRL in goats (P<0.05). The AUC of PRL during 120min was 2.12 and 1.78 times greater after the injection of sulpiride plus TRH than either sulpiride alone or sulpiride plus SAL, respectively (P<0.05). In cultured bovine anterior pituitary (AP) cells, SAL (10(-6)M), TRH (10(-8)M), and SAL plus TRH significantly increased the release of PRL (P<0.05), but the additive effect of SAL and TRH detected in vivo was not observed in vitro. In contrast, DA (10(-6)M) inhibited the TRH-, as well as SAL-induced PRL release in vitro. All together, these results clearly show that SAL can stimulate the release of PRL in ruminants. Furthermore, they also demonstrate that the additive effect of SAL and TRH on the release of PRL detected in vivo may not be mediated at the level of the AP, but that DA can overcome their releasing activity both in vivo and in vitro, confirming the dominant role of DA in the inhibitory regulation of PRL secretion in ruminants.  相似文献   

6.
The aim of the present study was to clarify the effect of extracerebral dopamine (DA) on salsolinol (SAL)‐induced prolactin (PRL) secretion in goats. An intravenous injection of SAL or thyrotropin‐releasing hormone (TRH) was given to female goats before and after treatment with an extracerebral DA receptor antagonist, domperidone (DOM), and the PRL‐releasing response to SAL was compared with that to TRH. DOM alone increased plasma PRL concentrations and the PRL‐releasing response to DOM alone was greater than that to either SAL alone or TRH alone. The PRL‐releasing response to DOM plus SAL was similar to that to DOM alone, and no additive effect of DOM and SAL on the secretion of PRL was observed. In contrast, the PRL‐releasing response to DOM plus TRH was greater than that to either TRH alone or DOM alone and DOM synergistically increased TRH‐induced PRL secretion. The present results demonstrate that the mechanism involved in PRL secretion by SAL differs from that by TRH, and suggest that the extracerebral DA might be associated in part with the modulation of SAL‐induced PRL secretion in goats.  相似文献   

7.
The aim of the present study was to clarify the effect of photoperiod on nighttime secretion of growth hormone (GH) in goats. Adult female goats were kept at 20°C with an 8 h or 16 h dark photoperiod, and secretory patterns of GH for 8 h in the dark period were examined with the profile of prolactin (PRL) secretion. GH was secreted in a pulsatile manner in the dark period. There were no significant differences in pulse frequency between the 8‐ and 16‐h dark photoperiods; however, pulse amplitude tended to be greater in the group with the 16‐h dark photoperiod (P = 0.1), and mean GH concentrations were significantly greater in the same photoperiod (P < 0.05). PRL secretion increased quickly after lights off under both photoperiods. The PRL‐releasing responses were weaker in the 8‐h than 16‐h dark photoperiod. The secretory response to photoperiod was more obvious for PRL than GH. The present results show that a long dark photoperiod enhances the nighttime secretion of GH in female goats, although the response is not as obvious as that for PRL.  相似文献   

8.
The aim of the present study was to clarify the relationship between hypothalamic dopamine (DA) and salsolinol (SAL) for the secretion of prolactin (PRL) in goats. SAL or thyrotropin‐releasing hormone (TRH) was intravenously injected into female goats treated with or without the D2 DA receptor antagonist haloperidol (Hal), which crosses the blood‐brain barrier, and the PRL‐releasing response to SAL was compared with that to TRH. PRL‐releasing responses to SAL, Hal, and Hal plus SAL were also examined after a pretreatment to augment central DA using carbidopa (Carbi) and L‐dopa. The PRL‐releasing response to Hal alone was greater than that to SAL or TRH alone. The PRL‐releasing response to Hal plus SAL was similar to that of Hal alone. In contrast, the PRL‐releasing response to Hal plus TRH was greater than that to TRH or Hal alone. The treatment with Carbi plus L‐dopa inhibited SAL‐ and Hal‐induced PRL secretion. The inhibition of the PRL‐releasing response to SAL disappeared when SAL was injected with Hal. These results indicate that the mechanisms underlying the SAL‐induced PRL response differ from those of TRH, and suggest that hypothalamic DA and its synthesis is associated in part with SAL‐induced PRL secretion in goats.  相似文献   

9.
The aim of the present study was to clarify the effects of hypothalamic dopamine (DA) on the secretion of growth hormone (GH) in goats. The GH‐releasing response to an intravenous (i.v.) injection of GH‐releasing hormone (GHRH, 0.25 μg/kg body weight (BW)) was examined after treatments to augment central DA using carbidopa (carbi, 1 mg/kg BW) and L‐dopa (1 mg/kg BW) in male and female goats under a 16‐h photoperiod (16 h light, 8 h dark) condition. GHRH significantly and rapidly stimulated the release of GH after its i.v. administration to goats (P < 0.05). The carbi and L‐dopa treatments completely suppressed GH‐releasing responses to GHRH in both male and female goats (P < 0.05). The prolactin (PRL)‐releasing response to an i.v. injection of thyrotropin‐releasing hormone (TRH, 1 μg/kg BW) was additionally examined in male goats in this study to confirm modifications to central DA concentrations. The treatments with carbi and L‐dopa significantly reduced TRH‐induced PRL release in goats (P < 0.05). These results demonstrated that hypothalamic DA was involved in the regulatory mechanisms of GH, as well as PRL secretion in goats.  相似文献   

10.
The aim of the present study was to clarify the effect of photoperiod on the secretion of growth hormone (GH) in goats. Adult female goats were kept at 20°C with an 8‐h or 16‐h photoperiod, and secretory patterns of GH for 4 h (12.00 to 16.00 hours) were compared. In addition, the goats were kept under a 16‐h photoperiod and orally administered saline (controls) or melatonin, and the effects of melatonin on the secretion of GH were examined. GH was secreted in a pulsatile manner. There were no significant differences in pulse frequency between the 8‐ and 16‐h photoperiods; however, GH pulse amplitude tended to be greater in the group with the 16‐h photoperiod (P = 0.1), and mean GH concentrations were significantly greater in the 16‐h photoperiod (P < 0.05). The GH‐releasing response to GH‐releasing hormone (GHRH) was also significantly greater for the 16‐h photoperiod (P < 0.05). There were no significant differences in GH pulse frequency between the saline‐ and melatonin‐treated groups. However, GH pulse amplitude and mean GH concentrations were significantly greater in the saline‐treated group (P < 0.05). The present results show that a long photoperiod enhances the secretion of GH, and melatonin modifies GH secretion in female goats.  相似文献   

11.
Five ovariectomized (OVX) gilts were placed in each of two chambers at 20 C with a photoperiod of 12 h light and 12 h dark for 8 d (12L:12D). On d 1, blood samples were collected via jugular cannula every 30 min from 0830 to 1630. At 1630, 200 micrograms of thyrotropin releasing hormone (TRH) were injected iv and blood samples taken every 10 min for 1 h and every 30 min for the next 2 h. On d 2, samples were taken every 30 min from 0830 to 0930 and from 1530 to 1630. Temperature was changed to 10 C or 30 C on d 3. Samples were taken from 0830 to 1630 on d 3, 4 and 9. At 1630 on d 9, the TRH challenge was repeated. Mean basal serum concentrations of prolactin (PRL) were similar for all gilts and for all periods. However, serum PRL response (ng PRL X ml-1 X 150 min-1) to TRH increased (P less than .0001) after exposure to 30 C, while exposure to 10 C failed to alter PRL response. In Exp. 2, six ovariectomized gilts were assigned to each chamber. The protocol of Exp. 1 was followed through d 3, except temperature and photoperiod were changed to 10 C and 8L:16D or 30 C and 16L:8D. On d 34 the TRH challenge was repeated. Mean basal serum concentration of PRL was similar for all gilts and all periods. However, simultaneous increases in temperature and photoperiod increased (P less than .005) serum PRL response to TRH, whereas simultaneous decreases in temperature and photoperiod failed to alter PRL response to TRH.  相似文献   

12.
The secretion of prolactin (PRL) is stimulated by thyrotropin-releasing hormone (TRH), and inhibited by dopamine (DA). However, we have recently demonstrated that salsolinol (SAL), a DA-derived endogenous compound, is able to stimulate the release of PRL in ruminants. The aims of the present study were to compare the characteristics of the PRL-releasing response to SAL and TRH, and examine the relation between the effects that SAL and DA exert on the secretion of PRL in ruminants in vivo and in vitro. Three consecutive intravenous (i.v.) injections of SAL (5 mg/kg body weight (b.w.): 19.2 μmol/kg b.w.) or TRH (1 μg/kg b.w.: 2.8 nmol/kg b.w.) at 2-h intervals increased plasma PRL levels after each injection in goats (P < 0.05); however, the responses to SAL were different from those to TRH. There were no significant differences in each peak value between the groups. The rate of decrease in PRL levels following the peak was attenuated in SAL-treated compare to TRH-treated animals (P < 0.05). PRL-releasing responses to SAL were similar to those to sulpiride (a DA receptor antagonist, 0.1 mg/kg b.w.: 293.3 nmol/kg b.w.). In cultured bovine anterior pituitary (AP) cells, TRH (10−8 M) significantly increased the release of PRL following both 15- and 30-min incubation periods (P < 0.05), but SAL (10−6 M) did not increase the release during the same periods. DA (10−6 M) completely blocked the TRH-induced release of PRL for a 2-h incubation period in the AP cells (P < 0.05). Sulpiride (10−6 M) reversed this inhibitory effect but SAL (10−6 M) did not have any influence on the action of DA. These results show that the mechanism(s) by which SAL releases PRL is different from the mechanism of action of TRH. Furthermore, they also show that the secretion of PRL is under the inhibitory control of DA, and SAL does not antagonize the DA receptor's action.  相似文献   

13.
The aims of the present study were to clarify the effect of salsolinol (SAL), a dopamine (DA)-derived endogenous compound, on the secretion of prolactin (PRL) in cattle. The experiments were performed from April to June using calves and cows. A single intravenous (i.v.) injection of SAL (5 mg/kg body weight [BW]) or sulpiride (a DA receptor antagonist, 0.1 mg/kg BW) significantly stimulated the release of PRL in male and female calves (P < 0.05), though the response to SAL was smaller than that to sulpiride. The secretory pattern of PRL in response to SAL or sulpiride in female calves resembled that in male calves. A single i.v. injection of SAL or sulpiride significantly stimulated the release of PRL in cows (P < 0.05). There was no significant difference in the PRL-releasing response between the SAL- and sulpiride-injected groups in cows. A single intracerebroventricular injection of SAL (10 mg/head) also significantly stimulated the release of PRL in castrated calves (P < 0.05). These results show that SAL is involved in the regulatory process for the secretion of PRL, not only in male and female calves, but also in cows. The results also suggest that the potency of the PRL-releasing response to SAL differs with the physiological status of cattle.  相似文献   

14.
Ten lighthorse stallions were used to determine 1) whether prolactin (PRL) and cortisol responses previously observed after acute exercise in summer would occur in winter when PRL secretion is normally low, 2) whether subsequent treatment with a dopamine receptor antagonist, sulpiride, for 14 d would increase PRL secretion and response to thyrotropin-releasing hormone (TRH) and exercise, and 3) whether secretion of LH, FSH, and cortisol would be affected by sulpiride treatment. On January 11, blood samples were drawn from all stallions before and after a 5-min period of strenuous running. On January 12, blood samples were drawn before and after an i.v. injection of GnRH plus TRH. From January 13 through 26, five stallions were injected s.c. daily with 500 mg of sulpiride; the remaining five stallions received vehicle. The exercise and secretagogue regimens were repeated on January 27 and 28, respectively. Before sulpiride injection, concentrations of both cortisol and PRL increased (P less than .05) 40 to 80% in response to exercise; concentrations of LH and FSH also increased (P less than .05) approximately 5 to 10%. Sulpiride treatment resulted in (P less than .05) a six- to eightfold increase in daily PRL secretion. The PRL response to TRH increased (P less than .05) fourfold in stallions treated with sulpiride but was unchanged in control stallions. Sulpiride treatment did not affect (P greater than .05) the LH or FSH response to exogenous GnRH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The aims of the present study were to determine whether salsolinol (SAL), a dopamine-related compound, is present in the bovine posterior pituitary (PP) gland, and to clarify the effect of SAL on the secretion of prolactin (PRL) in ruminants. SAL was detected in extract of bovine PP gland using high-pressure liquid chromatography with electrochemical detection (HPLC-EC). A single intravenous (i.v.) injection of SAL (5 and 10mg/kg body weight) significantly and dose-dependently stimulated the release of PRL in goats (P<0.05). Plasma PRL levels reached a peak 10min after the injection, then gradually returned to basal values in 60-80min. The PRL-releasing pattern was similar to that in response to sulpiride (a dopamine receptor antagonist). The intracerebroventricular (i.c.v.) injection of 1mg of SAL had no significant effect on the release of PRL in calves, however, 5mg significantly stimulated the release (P<0.05) with peak values reached 30-40min after the injection. Moreover, SAL significantly stimulated the release of PRL from cultured bovine anterior pituitary cells at doses of 10(-6) and 10(-5)M, compared to control cells (P<0.05). Taken together, our data clearly show that SAL is present in extract of the PP gland of ruminants, and has PRL-releasing activity both in vivo and in vitro. Therefore, this endogenous compound is a strong candidate for the factor having PRL-releasing activity that has been previously detected in extract of the bovine PP gland.  相似文献   

16.
A study was conducted to determine whether exogenous opioids increase prolactin (PRL) secretion in Holstein heifer calves via a dopaminergic mechanism. Twenty-four Holstein heifer calves ranging in age from 5 to 7 mo were assigned to one of four treatment groups (six/treatment): 1) injection of saline (SAL); 2) injection of a synthetic enkephalin (D-Ala2, N-Me-Phe4, Met(O)5-ol enkephalin; DAMME); 3) injection of DAMME after pretreatment with the long-acting dopamine agonist 2-bromo-alpha-ergocryptine; or 4) injection of thyrotropin-releasing hormone (TRH) after pretreatment with 2-bromo-alpha-ergocryptine. Calves were equipped with indwelling jugular cannulas on d 1, and baseline plasma PRL concentrations were established. Animals receiving 2-bromo-alpha-ergocryptine were injected s.c. 3 h after the last baseline sample was drawn on d 1. On d 2, calves assigned to receive SAL, DAMME, or TRH were injected 2 h after the start of sampling, and sampling was continued for an additional 4.5 h. Basal plasma PRL was lower (P less than .01) on d 2 in calves injected with 2-bromo-alpha-ergocryptine than baseline levels on d 1. Plasma PRL was higher (P less than .01) in calves not pretreated with 2-bromo-alpha-ergocryptine after DAMME injection on d 2 but was not different after DAMME injection in calves pretreated with 2-bromo-alpha-ergocryptine. In contrast, plasma PRL increased (P less than .01) after TRH injection on d 2 in calves pretreated with 2-bromo-alpha-ergocryptine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
After 8 wk exposure to 8 h of light per day, prolactin (PRL) averaged 18.3 ng/ml of serum in eight male calves. Four calves then received 16 h of light per day; 6 wk later (age 14 wk) PRL averaged 93.8 ng/ml of serum, whereas PRL averaged 36.9 ng/ml of serum in four calves maintained under 8 h of daily light. By wk 20, PRL was not different in calves exposed to 16 or 8 h of daily light, averaging 34.7 and 17.2 ng/ml serum. Testosterone averaged .43 ng/ml of serum at wk 8 but was greater at wk 14 in calves receiving 16 h of light daily when compared with controls receiving 8 h of light (1.92 vs. .97 ng/ml of serum). Testosterone concentrations were not different between photoperiod treatments at wk 20. Luteinizing hormone (LH) concentrations were unaffected by photoperiod. In a second experiment, four male calves were castrated at approximately 2 wk of age while four similar controls were left gonadally intact. After 8 wk exposure to 8 h of light per day, PRL averaged 12.3 ng/ml of serum in all calves. After 6 wk exposure to 16 h of light per day, PRL in serum increased in castrates to 48.0 ng/ml and in controls to 59.8 ng/ml. We conclude that serum concentrations of PRL and testosterone, but not LH, increased in bull calves receiving 16 h of light daily relative to calves receiving 8 h of light, and that the PRL response to photoperiod is independent of the testes. However, 16 h light-induced stimulation of serum concentrations of prolactin is not maintained indefinitely.  相似文献   

18.
光照和埋植褪黑激素对绒山羊相关激素分泌的影响   总被引:1,自引:0,他引:1  
本试验旨在研究光照和褪黑激素对绒山羊内分泌的影响。本文采用随机区组试验的方法,把36只绒山羊平均分成3组,分别进行长光照(16L:8D)、自然光照(12.37hL)和短光照(8L:16D)处理,每种光照下一半埋植动物褪黑素,分别检测血液激素水平。结果表明:光照类型对绒山羊的激素分泌有显著的影响,长光照对催乳素(PRL)、类胰岛素促生长因子I(IGF-I)有促进作用,对褪黑素(MT)、胰岛素(INS)有抑制作用;短光照对催乳素(PRL)、IGF-I有抑制作用,对MT、INS有促进作用。埋植褪黑素后,在各种光照条件下对PRL、IGF-I均有抑制作用;INS在短光照+MT组降低,在自然光照+MT和长光照+MT组升高。这些都表明,几种激素在一天之内随着时间(光照)的变化而呈现不同程度的波动变化。  相似文献   

19.
In two experiments, 17-wk-old Holstein bulls exposed to 16 (Exp. 1) or 24 h (Exp. 2) of light daily were compared with bulls given 8 h of light. Blood was sampled at 30-min or 120-min intervals for 48 h at the beginning and again after 4 wk of light treatment. Melatonin concentrations varied episodically in serum, and means were 1.6-fold to 5.1-fold greater during darkness than during light periods. Continuous lighting abolished the nocturnal increase in concentrations of melatonin in three of four calves. Prolactin (PRL) was greater (P less than .05) in calves receiving 16 h (30.9 ng/ml of serum) than in calves receiving 8 h (7.0 ng/ml) of light daily. Prolactin was not different between calves receiving 24 or 8 h of light daily. In a third experiment, one pinealectomized (PX) and two sham PX (SPX) calves were exposed to continuous lighting and infused with melatonin for 16 h/d for 5 wk, and one PX and two SPX calves were infused for 8 h daily. Melatonin infusion increased average concentrations of melatonin in serum 7.2-fold to 18-fold above baseline concentrations. Duration of melatonin infusion did not affect PRL (21.0 vs 20.8 ng/ml of serum). Also, surgical treatment did not affect PRL concentrations. Similarly, in a fourth experiment, PRL in postpubertal heifers fed melatonin to mimic and 8L:16D photoperiod averaged 27.1 ng/ml of serum, which was not different from PRL in heifers receiving 16L:8D and fed vehicle (32.6 ng/ml). We conclude that PRL and melatonin are each affected by photoperiod but are not casually related in cattle.  相似文献   

20.
为了研究光照和褪黑激素对绒山羊激素分泌和绒毛生长的影响。作者采用随机试验区组的方法,把36只绒山羊平均分成3组,分别进行长光照、短光照和自然光照处理,每组当中一半埋植褪黑素,分别检测血液激素水平和绒毛生长状况。结果表明,光照时间和埋植褪黑素显著影响绒山羊体内的激素分泌,长光照抑制褪黑素的分泌,短光照促进褪黑素的分泌,埋植褪黑素组的血浆褪黑素水平显著高于不埋植组。光照和褪黑素显著影响PRL、IGFI的分泌类型,并与绒山羊的绒毛生长有关,短光照或褪黑激素处理各组绒毛平均增加338.83 g;新生羊绒的长度、细度、强度等品质指标均符合纺织工业标准的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号