首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present study was to clarify the effect of photoperiod on secretory patterns of growth hormone (GH) in male goats. Adult male goats were kept at 20°C with an 8‐h or 16‐h light photoperiod, and secretory patterns of GH secretion were compared. In addition, plasma profiles of prolactin (PRL), insulin‐like growth factor‐I (IGF‐I) and testosterone (T) were also examined to characterize GH secretion. GH was secreted in a pulsatile manner. There was no significant difference in pulse frequency between the 8‐h and 16‐h photoperiods. However, GH pulse amplitude tended to be greater in the group with the 16‐h photoperiod (P = 0.1), and mean GH concentrations were significantly greater in the 16‐h photoperiod (P < 0.05). The GH‐releasing response to GH releasing hormone was greater in the 16‐h than 8‐h photoperiod (P < 0.05). Plasma PRL and IGF‐I levels were higher in the 16‐h than 8‐h photoperiod (P < 0.05). In contrast, plasma T levels were lower in the 16‐h photoperiod (P < 0.05). These results show that a long light photoperiod enhances the secretion of GH as well as PRL and IGF‐I, but reduces plasma T concentrations in male goats.  相似文献   

2.
The aim of the present study was to clarify the effect of photoperiod on the secretion of growth hormone (GH) in goats. Adult female goats were kept at 20°C with an 8‐h or 16‐h photoperiod, and secretory patterns of GH for 4 h (12.00 to 16.00 hours) were compared. In addition, the goats were kept under a 16‐h photoperiod and orally administered saline (controls) or melatonin, and the effects of melatonin on the secretion of GH were examined. GH was secreted in a pulsatile manner. There were no significant differences in pulse frequency between the 8‐ and 16‐h photoperiods; however, GH pulse amplitude tended to be greater in the group with the 16‐h photoperiod (P = 0.1), and mean GH concentrations were significantly greater in the 16‐h photoperiod (P < 0.05). The GH‐releasing response to GH‐releasing hormone (GHRH) was also significantly greater for the 16‐h photoperiod (P < 0.05). There were no significant differences in GH pulse frequency between the saline‐ and melatonin‐treated groups. However, GH pulse amplitude and mean GH concentrations were significantly greater in the saline‐treated group (P < 0.05). The present results show that a long photoperiod enhances the secretion of GH, and melatonin modifies GH secretion in female goats.  相似文献   

3.
The aim of the present study was to clarify the effects of hypothalamic dopamine (DA) on salsolinol (SAL)‐induced prolactin (PRL) release in goats. The PRL‐releasing response to an intravenous (i.v.) injection of SAL was examined after treatment with augmentation of central DA using carbidopa (carbi) and L‐dopa in male goats under 8‐h (8 h light, 16 h dark) or 16‐h (16 h light, 8 h dark) photoperiod conditions. The carbi and L‐dopa treatments reduced basal PRL concentrations in the 16‐h photoperiod group (P < 0.05), while a reduction was not observed in the 8‐h photoperiod group. The mean basal plasma PRL concentration in the control group for the 8‐h photoperiod was lower than that for the 16‐h photoperiod (P < 0.05). SAL significantly stimulated the release of PRL promptly after the injection in both the 8‐ and 16‐h photoperiod groups (P < 0.05). PRL‐releasing responses for the 16‐h photoperiod were greater than those for the 8‐h photoperiod (P < 0.05). The carbi and L‐dopa treatments blunted SAL‐induced PRL release in both the 8‐ and 16‐h photoperiods (P < 0.05). These results indicate that hypothalamic DA blunts the SAL‐induced release of PRL in male goats, regardless of the photoperiod, which suggests that both SAL and DA are involved in regulating the secretion of PRL in goats.  相似文献   

4.
The aim of the present study was to clarify the relation between salsolinol (SAL)‐induced prolactin (PRL) release and photoperiod in goats. A single intravenous (i.v.) injection of SAL was given to adult female goats under short (8 h light, 16 h dark) or long (16 h light, 8 h dark) photoperiod conditions at two different ambient temperatures (20°C or 5°C), and the PRL‐releasing response to SAL was compared to that of thyrotropin‐releasing hormone (TRH) or a dopamine (DA) receptor antagonist, sulpiride. SAL, as well as TRH or sulpiride, stimulated the release of PRL promptly after each injection in both 8‐ and 16‐h daily photoperiods at 20°C (P < 0.05). The area under the response curve (AUC) of PRL for the 60‐min period after injections of saline (controls), SAL, TRH and sulpiride in the 16‐h daily photoperiod group was greater than each corresponding value in the 8‐h daily photoperiod group (P < 0.05). There were no significant differences in the AUC of PRL among the values produced after the injection of SAL, TRH and sulpiride in 16‐h daily photoperiod group; however, the values produced after the injection of TRH were smallest among the three in the 8‐h daily photoperiod group (P < 0.05). The PRL‐releasing responses to SAL, TRH and sulpiride under a short and long photoperiod condition at 5°C resembled those at 20°C. These results show that a long photoperiod highly enhances the PRL‐releasing response to SAL as well as TRH or sulpiride in either medium or low ambient temperature in goats.  相似文献   

5.
The aim of the present study was to clarify the effects of hypothalamic dopamine (DA) on the secretion of growth hormone (GH) in goats. The GH‐releasing response to an intravenous (i.v.) injection of GH‐releasing hormone (GHRH, 0.25 μg/kg body weight (BW)) was examined after treatments to augment central DA using carbidopa (carbi, 1 mg/kg BW) and L‐dopa (1 mg/kg BW) in male and female goats under a 16‐h photoperiod (16 h light, 8 h dark) condition. GHRH significantly and rapidly stimulated the release of GH after its i.v. administration to goats (P < 0.05). The carbi and L‐dopa treatments completely suppressed GH‐releasing responses to GHRH in both male and female goats (P < 0.05). The prolactin (PRL)‐releasing response to an i.v. injection of thyrotropin‐releasing hormone (TRH, 1 μg/kg BW) was additionally examined in male goats in this study to confirm modifications to central DA concentrations. The treatments with carbi and L‐dopa significantly reduced TRH‐induced PRL release in goats (P < 0.05). These results demonstrated that hypothalamic DA was involved in the regulatory mechanisms of GH, as well as PRL secretion in goats.  相似文献   

6.
Photoperiod modulates reproduction in goats. We tested the hypothesis that the excitatory glutamatergic tone is reduced in the photoinhibited goat. The objectives of this study were to determine the effect of photoperiod and glutamatergic stimulation on LH, GH, and testosterone (T) secretion in goat bucks. Eight mature, intact bucks were used in two simultaneous 4 x 4 Latin square designs. Variables were two photoperiod regimens (short day; SD, 10 h light:14 h dark, n = 4; vs long day; LD, 16 h light:8 h dark, n = 4) and four doses of N-methyl-D-L-aspartate (NMA; 0, 1, 2 and 4 mg/kg BW, i.v.). Venous blood was obtained for 2 h before and after NMA injection, followed by GnRH injection and then a final 1 h of sampling. Injection of NMA increased (P < 0.002) LH secretion within 20 min. This increase was sustained for 120 min, but the response was most pronounced in LD goats. The increase in mean LH was associated with a concomitant dose-dependent increase in pulse frequency (P < 0.006). However, NMA treatment had no effect (P > 0.10) on LH pulse amplitude. The release of LH after injection of GnRH was not affected by photoperiod. Exposure of bucks to LD reduced T secretion relative to that of SD bucks (P < 0.01). However, GH secretion was enhanced in LD bucks (P< 0.001). The response of GH to NMA was dependent on photoperiod history. A highly significant immediate and sustained increase (P < 0.001) was observed in LD but not in SD bucks within 10 min. Overall, a dose-dependent increase (P < 0.01) in T secretion was stimulated by NMA in both LD and SD bucks. These results indicate that NMA receptors may be involved in the regulation of LH, GH, and testosterone secretion in the goat. Furthermore, length of day influences GH secretion in the goat and NMA receptor activation had divergent effects on the secretion of this hormone.  相似文献   

7.
The aim of the present study was to clarify the effect of melatonin (MEL) on the salsolinol (SAL)‐induced release of prolactin (PRL) in goats. Female goats were kept at 20°C with 16 h of light, 8 h of darkness, and orally administered saline or MEL for 5 weeks. A single intravenous (i.v.) injection of saline (controls), SAL, thyrotropin‐releasing hormone (TRH) or a dopamine receptor antagonist, sulpiride, was given to the goats 3 weeks after the first oral administrations of saline or MEL, and the responses were compared. The mean basal plasma PRL concentrations in the control group were higher for the saline treatments than MEL treatments (P < 0.05). SAL as well as TRH and sulpiride stimulated the release of PRL promptly after each injection in both the saline‐ and MEL‐treated groups (P < 0.05). The area under the response curve of PRL for the 60‐min period after the i.v. injection of SAL, TRH and sulpiride in the saline‐treated group was greater than each corresponding value in the MEL‐treated group (P < 0.05). These results show that daily exposure to MEL under a long day length reduces the PRL‐releasing response to SAL as well as TRH and sulpiride in goats.  相似文献   

8.
Photoperiod, or the daily sequence of light and dark, has dramatic effects on many physiological systems across animal species. Light patterns alter melatonin secretion profiles and, subsequently, the release profiles and circulating concentrations of several hormones that influence a variety of physiological responses. Although the impact of photoperiod on reproductive processes is perhaps the most common example, it is often the seasonal aspects of ovulation and anestrus that are considered. However, in cattle, the final phase of reproduction, that is, lactation, is significantly influenced by photoperiod. In contrast to short days (SDPP; 8 h light:16 h dark), exposure to long days (LDPP) of 16 to 18 h of light and 6 to 8 h of darkness increases milk yield 2 to 3 kg/d, regardless of the stage of lactation. There is evidence that this LDPP effect is due to increased circulating IGF-I, independent of any effect on GH concentrations. Cows that are housed under SDPP during the dry period have increased mammary growth and produce 3 to 4 kg/d more milk in the subsequent lactation compared with cows on LDPP when dry. While cows are on SDPP, circulating prolactin (PRL) diminishes but expression of PRL receptor increases in mammary, liver, and immune cells. Moreover, PRL signaling pathways within those tissues are affected by photoperiod. Further, replacement of PRL to cows on SDPP partially reverses the effects of SDPP on production in the next lactation. Thus, effects on dry cows are mediated through a PRL-dependent pathway. Before maturity, LDPP improve mammary parenchymal accumulation and lean body growth, which lead to greater yields in the first lactation. The accumulated evidence supports the concept that photoperiod manipulation can be harnessed to improve the efficiency of production across the life cycle of the dairy cow.  相似文献   

9.
Studies were conducted in anestrous mares to characterize daily rhythms of cortisol in non-interrupted [ambient and 16 h light (L): 8 h dark (D)] and skeleton (10L:4D:2L:8D, 10L:6D:2L:6D and 10L:8D:2L:4D) photoperiods, and to determine if there exists a photosensitive phase for the secretion of prolactin. Neither peak or nadir concentrations of cortisol, nor the time of peak or nadir concentrations differed among photoperiod treatments. Highest concentrations (66 +/- 4.4 ng/ml, mean +/- SE) occurred between 0700 and 0900, whereas lowest concentrations (31 +/- 3.6 ng/ml) were found from 1900 to 2300. Mean daily concentrations of serum prolactin were significantly higher in mares housed under the 16L:8D and the 10L:8D:2L:4D photoperiods as compared with the remaining photoperiod treatments, and were lowest in the ambient photoperiod treatment. The mean daily concentration of prolactin in February among photoperiod treatments was inversely related to the number of days (from December 1) to first seasonal ovulation (r = -.92, P = .027). The results were interpreted to: 1) suggest that mares in the 10L:8D:2L:4D skeleton photoperiod do not phase-shift to interpret the 2-h light pulse as the beginning of their subjective day; and 2) provide further evidence that the photo-inducible phase for both prolactin secretion and the stimulation of seasonal reproductive activity occurs 8 to 10 h following the onset of the dark period (scotophase).  相似文献   

10.
Hy‐Line Gray commercial pullets were maintained under 8‐h photoperiods, 16‐h photoperiods and 16‐h photoperiods supplemented with a diet containing 20 or 200 mg/kg melatonin (MEL) to investigate the role of MEL in sexual development. A total of 256 Hy‐Line Gray commercial pullets were placed, four birds to a cage, in four similar light‐proof rooms (8‐h photoperiod) at 6 weeks of age. At 70 day, three rooms containing a total of 192 birds were transferred to a 16‐h photoperiod, whereas 64 birds were maintained under the 8‐h photoperiod. Diets containing MEL at 20 and 200 mg/kg were fed to birds in two of the rooms under 16‐h photoperiods. Birds maintained under an 8‐h photoperiod matured 11.25 day later than those maintained under a 16‐h photoperiod (p < 0.05). The group of birds receiving 20 mg/kg MEL matured 1.19 day later than those maintained under the 16‐h photoperiod and 10.06 day earlier than those maintained under the 8‐h photoperiod. The group of birds receiving 200 mg/kg MEL matured 3.13 day later than those maintained under a 16‐h photoperiod and 8.12 day earlier than those maintained under an 8‐h photoperiod. The average body weight of birds maintained under the 8‐h photoperiod was greater than that of birds maintained under the 16‐h photoperiod (p < 0.05) and was similar between the different MEL groups. The abdominal fat weight was lower in 16L:8D group compared with 8L:16D group (p < 0.05). The concentrations of follicle‐stimulating hormone, luteinizing hormone, oestrogen and insulin did not differ significantly among the groups. The melatonin concentration in 200 mg/kg melatonin group was higher than that observed in the other groups; however, this concentration did not differ significantly (p > 0.05). These data suggest that the birds did not perceive the final 8‐h photoperiod as being part of the night when they were given the MEL diets; continuously high plasma MEL was not observed in birds that responded as if they were in constant darkness. However, the later maturity of the groups administered MEL diets compared with the groups maintained under a constant 16‐h photoperiod clearly indicated that MEL has some influence on the sexual maturity of pullets.  相似文献   

11.
This study examined the reproductive endocrine profile under natural and artificial photoperiods in Magang goose ganders. Group 1 ganders (n=8) served as non-treated controls and were exposed to natural photoperiod throughout the experiment from 13th January to 17th December 2004. Group 2 ganders (n=8) were exposed to 18 h long daily photoperiod for 60 days from 13 January till 15 March 2004 and again to 16 h photoperiod for 75 days till 10th October 2004, and the 11h short photoperiod in the remainder periods of the experiment. In control ganders, plasma LH concentrations were high in normal breeding seasons (August-March) and decreased to low levels in non-breeding season from April to July. Testosterone concentrations changed similarly to that of LH throughout the seasons. Seasonal pattern of PRL concentrations was opposite to those of LH and testosterone, with low values in breeding season and high values in non-breeding season. In artificial photoperiod treated ganders, increasing photoperiod increased PRL and decreased LH and testosterone concentrations, while decreasing photoperiod reversed these changes. There were no seasonal or photoperiod caused changes in plasma T3 concentrations in both control ganders and artificial photoperiod treated ganders. These results demonstrated that in Magang goose ganders that long photoperiod stimulates PRL secretion and decreases LH secretion, which terminates reproductive season in spring and early summer, and short photoperiod stimulates LH secretion and inhibits PRL secretion rendering ganders enter into reproductive season.  相似文献   

12.
The aims of this study were to examine whether mouflons exposed to constant long and short day photoperiods are able to exhibit an annual cycle of hair growth and moult, and prolactin (PRL) secretion. Mouflon ewes were assigned to three groups of treatment. Ewes were maintained, either under natural photoperiod (control, n=9), or received a series of subcutaneous melatonin implants from December to April (n=8), or were exposed to a constant long day photoperiod (16-h light:8-h dark; 16L:8D) during 18 months (n=7). Blood was collected weekly to determine PRL concentrations, and hair samples were clipped weekly from the base of the neck to measure the length of predominant hair. Under constant long days and with melatonin implants, mouflons expressed an annual rhythm of PRL secretion, even though these treatments modified the times of rise or falling of PRL concentrations throughout the year. Hair growth initiation was almost coincident with the summer solstice in both control and melatonin-implanted mouflons but occurred two months earlier in long day hold mouflons (P<0.001). Long day hold mouflons had a lower hair growth rate than control and melatonin-implanted mouflons (P<0.001), and at the end of the experiment, a shorter hair length (3.4±0.24 cm; P<0.01) than control (4.3±0.17 cm), and melatonin-implanted mouflons (4.2±0.12 cm). Our data support the conclusion that in mouflon, an endogenous circannual rhythm of PRL secretion exists, and that the seasonal cycle of hair growth and moult appears to depend, at least in part, on circulating levels of PRL.  相似文献   

13.
Effects of photoperiod on growth, carcass composition and serum concentrations of prolactin, growth hormone and cortisol were determined in prepubertal and postpubertal Holstein heifers. Forty-two prepubertal (avg body wt 84 +/- 3.0 kg) and 42 postpubertal (avg body wt 303 +/- 7.1 kg) Holstein heifers were utilized. Ten prepubertal and 10 postpubertal heifers were slaughtered before treatment began to obtain initial carcass data. The remaining 32 prepubertal and 32 postpubertal heifers were paired by body weight and randomly assigned to short-day (8 h of light: 16 h of dark) or long-day (16 h of light: 8 h of dark) photoperiods. After exposure to treatments for an average of 139 d, 10 prepubertal and 10 postpubertal heifers from each photoperiod treatment were slaughtered. In prepubertal heifers, photoperiod did not affect (P greater than .10) average daily body weight gain, carcass weight, carcass composition, accretion of carcass fat and carcass protein, or serum concentrations of prolactin, growth hormone or cortisol. However, prepubertal heifers exposed to long-day photoperiods had reduced (P less than .01) urinary N tau-methylhistidine excretion compared with heifers given short-day photoperiods. Postpubertal heifers exposed to short-day photoperiods had greater average body weight daily gain than animals exposed to long-day photoperiods. Although there was no effect of photoperiod (P greater than .10) on carcass or fat depot weights, postpubertal heifers exposed to short days had greater (P = .06) percentages of fat and reduced (P = .07) percentages of protein in the soft tissue of the 9-10-11 rib sections. Fat accretion was greater (P less than .05) in carcasses of postpubertal heifers exposed to short days than heifers given long-day photoperiods, but there was no effect (P greater than .10) of photoperiod on protein accretion. Photoperiod did not affect serum concentrations of growth hormone and cortisol, but serum prolactin tended (P less than .10) to be greater in postpubertal heifers exposed to long days. Under the conditions of this experiment, we conclude that exposure to short-day photoperiods stimulated body weight gain and fat accretion in postpubertal but not prepubertal Holstein heifers.  相似文献   

14.
To understand the regulatory mechanism of the secretory rhythm of GH and the involvement of melatonin (MEL) in GH regulation in cattle, daytime and nighttime profiles of GH secretion and the effect of a photic stimulation on nocturnal GH and MEL secretion were investigated in Holstein steers. Steers were kept under a constant lighting condition of 12 h of light (LIGHT; 500 lx, 0600 to 1800 h):12 h of dark (DARK; 10 lx, 1800 to 0600 h). In Exp. 1, blood was taken for 4 h at 15-min intervals during LIGHT (1100 to 1500 h) and DARK (2300 to 0300 h), respectively. The sampling was also performed from 0500 to 0900 h, with the usual light transition (light onset at 0600 h; morning sampling). In Exp. 2, steers were exposed to light (500 lx) for 1 h from 0000 to 0100 h. Plasma GH and MEL concentrations were determined by RIA and enzyme immunoassay, respectively. Both GH (P < 0.05) and MEL (P < 0.01) concentrations in plasma for 4 h during DARK were greater than those during LIGHT. On the other hand, although MEL concentrations were decreased after the light onset at 0600 during the morning, GH release was not altered. Increased GH secretion during DARK was suppressed (P < 0.01) by the 1 h of light exposure, as were MEL concentrations (P < 0.05). Pineal MEL, which was affected by the photic condition, may play an important role in the secretory rhythm of GH secretion in cattle.  相似文献   

15.
Photoperiod manipulation, specifically a long-day photoperiod (LDPP), increases milk production in lactating cattle. We have previously reported that the galactopoietic effect of LDPP is associated with an increase in circulating IGF-I, which seems to occur independently of changes in concentrations of GH, IGFBP-2, and IGFBP-3. This study tested the hypothesis that LDPP increases the expression of GH receptor (GHR) 1A messenger RNA (mRNA) in the liver. Two groups of Holstein steer calves (98 +/- 4 d old) were maintained indoors and exposed to LDPP (16-h light: 8-h dark; n = 6) or short-day photoperiod (SDPP; 8-h light: 16-h dark; n = 6) for 60 d. Calves were individually fed a grain- and alfalfa-based diet. Jugular blood samples were collected weekly and via cannula at 15-min intervals for a 4-h period on d 1, 26, and 55 of the study to monitor pulsatile hormone secretion. Serum was harvested and assayed for IGF-I, prolactin (PRL), and GH using RIA. Liver biopsies were obtained at 3-wk intervals to quantify changes in hepatic IGF-I and GHR 1A mRNA using real-time PCR. Steer BW increased during the study but did not differ between treatments. No differences in ADG or total DMI were observed. Relative to SDPP, calves on LDPP had higher (P < 0.05) serum IGF-I concentrations. Concentrations of PRL increased (P < 0.01) in calves exposed to LDPP compared with calves exposed to SDPP. Differences (P < 0.05) in pulsatile GH secretion were also detected. Hepatic IGF-I and GHR 1A mRNA were positively correlated with circulating IGF-I concentrations, and although both increased with time, they were not affected by photoperiod treatment. These results confirm that LDPP increases circulating concentrations of IGF-I, but this occurs independently of changes in IGF-I synthesis and GHR 1A mRNA expression in the liver. Therefore, our hypothesis that LDPP increases the expression of GHR 1A mRNA in the bovine liver is rejected.  相似文献   

16.
The effects of l ‐DOPA, a precursor of dopamine (DA), and sulpiride, a D2‐type DA receptor blocker, on growth hormone (GH) and prolactin (PRL) secretion were investigated in steers. Eight Holstein steers (212.8 ± 7.8 kg body weight) were used. Lighting conditions were 12:12 L:D (lights on: 06.00–18.00 hours). Blood samplings were performed during the daytime (11.00–15.00 hours) and nighttime (23.00–03.00 hours). Intravenous injections of drugs or saline were performed at 12.00 hour for the daytime and 00.00 hour for the nighttime, respectively. Plasma GH and PRL concentrations were determined by radioimmunoassay. l ‐DOPA did not alter the GH secretion when it was injected at 12.00 hour (spontaneous GH level at its peak). On the other hand, l ‐DOPA increased GH secretion at 00.00 hour (GH level at its trough). Injection of sulpiride suppressed GH secretion at 12.00 hour but did not affect GH levels at 00.00 hour. l ‐DOPA inhibited and sulpiride stimulated PRL release during both periods. These results suggest that dopaminergic neurons have stimulatory action on GH secretion and inhibitory action on PRL secretion in cattle. In addition, injection time should be considered to evaluate the exact effects on GH secretion due to its ultradian rhythm of GH secretion in cattle.  相似文献   

17.
The aim of the present study was to clarify the effect of extracerebral dopamine (DA) on salsolinol (SAL)‐induced prolactin (PRL) secretion in goats. An intravenous injection of SAL or thyrotropin‐releasing hormone (TRH) was given to female goats before and after treatment with an extracerebral DA receptor antagonist, domperidone (DOM), and the PRL‐releasing response to SAL was compared with that to TRH. DOM alone increased plasma PRL concentrations and the PRL‐releasing response to DOM alone was greater than that to either SAL alone or TRH alone. The PRL‐releasing response to DOM plus SAL was similar to that to DOM alone, and no additive effect of DOM and SAL on the secretion of PRL was observed. In contrast, the PRL‐releasing response to DOM plus TRH was greater than that to either TRH alone or DOM alone and DOM synergistically increased TRH‐induced PRL secretion. The present results demonstrate that the mechanism involved in PRL secretion by SAL differs from that by TRH, and suggest that the extracerebral DA might be associated in part with the modulation of SAL‐induced PRL secretion in goats.  相似文献   

18.
Three experiments were conducted to evaluate sow and piglet productivity under extended photoperiod. In Exp. 1, 98 crossbred, lactating sows were housed in one of four treatments: thermoneutral air temperature (23.6 degrees C) in either (h of light:dark) 1:23 or 16:8 photoperiods, or heat stress (30.4 degrees C) in either 1:23 or 16:8 photoperiods. Heat stress reduced (P less than .05) sow feed intake, piglet mortality and piglet weaning weight and increased (P less than .01) sow lactation weight loss. Number of pigs weaned per litter was increased (P less than .01) when sows were heat-stressed. Extended photoperiod reduced (P greater than .05) time for sows to rebreed postweaning by .4 d. The interaction between air temperature and photoperiod was significant only for sow lactation weight loss. Heat stress increased sow lactation weight loss, but this effect was more severe in the 1:23 than in the 16:8 photoperiod. Experiments 2 and 3 examined the effects of 1:23 or 16:8 photoperiods on nursery pig performance when pigs were weaned from sows experiencing 1:23 (Exp. 3) or 16:8 (Exp. 2) photoperiods. In both nursery studies, photoperiod did not influence (P greater than .10) postweaning pig mortality, feed intake, weight gain or gain:feed ratio. In conclusion, extended photoperiod reduced days to return to estrus and reduced sow lactation weight loss, especially during heat stress. No benefits in preweaning or postweaning piglet weight or survival were observed by use of extended photoperiod.  相似文献   

19.
The aim of the present study was to clarify the relationship between hypothalamic dopamine (DA) and salsolinol (SAL) for the secretion of prolactin (PRL) in goats. SAL or thyrotropin‐releasing hormone (TRH) was intravenously injected into female goats treated with or without the D2 DA receptor antagonist haloperidol (Hal), which crosses the blood‐brain barrier, and the PRL‐releasing response to SAL was compared with that to TRH. PRL‐releasing responses to SAL, Hal, and Hal plus SAL were also examined after a pretreatment to augment central DA using carbidopa (Carbi) and L‐dopa. The PRL‐releasing response to Hal alone was greater than that to SAL or TRH alone. The PRL‐releasing response to Hal plus SAL was similar to that of Hal alone. In contrast, the PRL‐releasing response to Hal plus TRH was greater than that to TRH or Hal alone. The treatment with Carbi plus L‐dopa inhibited SAL‐ and Hal‐induced PRL secretion. The inhibition of the PRL‐releasing response to SAL disappeared when SAL was injected with Hal. These results indicate that the mechanisms underlying the SAL‐induced PRL response differ from those of TRH, and suggest that hypothalamic DA and its synthesis is associated in part with SAL‐induced PRL secretion in goats.  相似文献   

20.
光照和埋植褪黑激素对绒山羊相关激素分泌的影响   总被引:1,自引:0,他引:1  
本试验旨在研究光照和褪黑激素对绒山羊内分泌的影响。本文采用随机区组试验的方法,把36只绒山羊平均分成3组,分别进行长光照(16L:8D)、自然光照(12.37hL)和短光照(8L:16D)处理,每种光照下一半埋植动物褪黑素,分别检测血液激素水平。结果表明:光照类型对绒山羊的激素分泌有显著的影响,长光照对催乳素(PRL)、类胰岛素促生长因子I(IGF-I)有促进作用,对褪黑素(MT)、胰岛素(INS)有抑制作用;短光照对催乳素(PRL)、IGF-I有抑制作用,对MT、INS有促进作用。埋植褪黑素后,在各种光照条件下对PRL、IGF-I均有抑制作用;INS在短光照+MT组降低,在自然光照+MT和长光照+MT组升高。这些都表明,几种激素在一天之内随着时间(光照)的变化而呈现不同程度的波动变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号